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1. Introduction

Let G be a connected reductive algebraic group over an algebraically
closed field k of characteristic zero and let W be a finite dimensional
representation of G. Then G acts on the polynomial ring R = SW and
the Hochster-Roberts theorem asserts that RG is Cohen-Macaulay.

A natural question would be whether the same is true for modules
of covariants, i.e. let U be another finite dimensional G-representation.
Then U ⊗k R is a free R-module and a natural generalization of the
Hochster-Roberts theorem would be that (U⊗kR)G is a Cohen-Macaulay
RG-module. Unfortunately, it is easy to see that this cannot be true in
general (see [10, Ex. 3.1] for a simple counter example).

For an arbitrary irreducible character χ, Stanley defines RG
χ as the

sum of all irreducible subrepresentations of R, with character χ [7].
Assume that U is irreducible and let χ be the character of U∗. Then

it is easy to see that

RG
χ
∼= U∗ ⊗ (U ⊗R)G

as RG-modules. Hence the Cohen-Macaulayness of RG
χ is equivalent

with that of (U ⊗R)G.
There is a well known conjecture, due to Stanley, that gives suffi-

cient conditions for RG
χ to be Cohen-Macaulay [7]. This conjecture was

proved by him if G is a torus.
Let T ⊂ G be a maximal torus and letX(T ) be the character group of

T . The group law on X(T ) will be written additively. Let α1, . . . , αd ∈
X(T ) be the weights of W (taken with multiplicity).

Let χ ∈ X(T ). Then Stanley says that χ is critical for (T,W ) if the
following condition is satisfied :

The system

(1) z1α1 + · · ·+ zdαd = χ
1
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has a rational (or equivalently real) solution (u1, . . . , ud) with the fol-
lowing properties :

• ui ≤ 0
• if (b1, . . . , bd) is an integer solution to (1) such that bi ≥ ui then
bi ≥ 0 for all i.

(Note that it makes sense to speak of a rational solution to (1) because
X(T ) is a torsion free abelian group.)

A character is clearly critical if it is of the form
∑
uiαi, −1 < ui ≤ 0.

We will call such a character strongly critical for (T,W ). This notion
is useful because it is somewhat easier to check that a character is
strongly critical than that it is critical.

Let χ be an irreducible character of G. Then χ | T = χ1 + · · · + χu
where χi ∈ X(T ). Let Φ be the set of roots of G. Then Stanley calls χ
critical for (G,W ) if χi−

∑
ρ∈S ρ is critical for (T,W ) for all 1 ≤ i ≤ u

and for all S ⊂ Φ.
Again we will say that χ is strongly critical for (G,W ) if all χi −∑
ρ∈S ρ are strongly critical for (T,W ).

Conjecture 1.1. [7] If χ is critical for (G,W ) then RG
χ is Cohen-

Macaulay.

In this paper we will prove a different criterion, in terms of one-
parameter subgroups, for the Cohen-Macaulayness of RG

χ (Theorem
1.2). This result allows us to prove a large part of Stanley’s conjecture
(see Theorem 1.3 below).

Let χ ∈ X(T ), λ ∈ X(T )∗. Define

(2) Iλ = {i ∈ {1, . . . , d} | 〈λ, αi〉 ≥ 0}
Then we say that χ is good for (T,W, λ) if χ is not of the form

∑d
i=1 aiαi

where (ai)i=1,...,d is a set of integers with the property that ai < 0 if
i ∈ Iλ and ai ≥ 0 otherwise. We say that χ is good for (T,W ) if χ is
good for all (T,W, λ) with λ 6= 0.

Now let χ be an irreducible character of G, with corresponding high-
est weight χhi. Then we say that χ is good for (G,W ) if for all S ⊂ Φ,
χhi −

∑
ρ∈S ρ is good for (T,W ).

Denote X = SpecR. Let us call a point on X stable if it has a closed
orbit and finite stabilizer.

We prove the following result :

Theorem 1.2. Assume that X has a G-stable point. Let χ be an irre-
ducible character of G, good for (G,W ). Then RG

χ is Cohen-Macaulay.

Note that the spirit of 1.1 and 1.2 is that for RG
χ to be Cohen-

Macaulay, χ should be “small” in comparison with W .
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As a corollary to Theorem 1.2 we obtain the following result :

Theorem 1.3. Assume that X has a G-stable point. Let χ be an
irreducible character of G. Suppose that one of the following is true :

(1) χ is strongly critical for (G,W ).
(2) χ is critical for (G,W ) and every G-invariant subspace of codi-

mension one in X has a T -stable point.

Then RG
χ is Cohen-Macaulay.

This theorem may be used in conjunction with the following obser-
vation :

Proposition 1.4. Assume that G is semisimple and that X has a G-
stable point. Let χ be an irreducible character of G such that RG

χ 6= 0.
Then χ will be critical for (G,W ) if and only if it is strongly critical
for (G,W ).

The foregoing results will be proved in section 6.
Let h = dimRG and let Xu be the null cone in X. Our approach,

to study Cohen-Macaulayness of RG
χ , will be based on the following

lemma :

Lemma 1.5. [10] RG
χ is Cohen-Macaulay if and only if there is no

representation with character χ in H i
Xu(X,OX) for i = 0, . . . , h− 1.

This lemma reduces the problem to the computation (or at least
estimation) of H i

Xu(X,OX). To this end we develop a generalization of
the well known stratification of Xu, due to Hesselink [2]. This, together
with the observation that cohomology with support is a special case of
relative algebraic De Rham homology, allows us to construct a spectral
sequence which abuts to H i

Xu(X,OX). We then bound the terms in
this spectral sequence.

This approach is inspired by the one used in [10]. However this paper
is independent of [10]. On the other hand, essential use is made of the
results in [9], which handled the torus case.

An interesting question remaining is whether our methods suffice to
give a new proof of the Hochster-Roberts theorem. We may use the
Luna-Richardson restriction theorem [4] to reduce to the case where X
has a stable point. Furthermore we may assume that dimXu > dimG
since otherwise it is well known that the problem is trivial. The ques-
tion is now whether, under these hypothesis, the trivial representation
is good for (G,W ). I don’t know this.

If G is a torus then the trivial representation is always (strongly)
critical. This is not true in general however, as the following easy
example shows.
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Example 1.6. Let V be a 3-dimensional k-vectorspace. Define G =
Sl(V ) and W = V 4. Then X has a G-stable point and dimXu > dimG.
The trivial representation is not critical but it is easy to see that it is
good. This shows that sometimes Theorem 1.3 is better than conj. 1.1.

This paper is organized as follows :
In section 2 we introduce some often used notations.
In section 3 we review algebraic De Rham homology.
In section 4 we develop a generalization of the classical stratification

of Xu.
In section 5 we construct a spectral sequence, abutting toH i

Xu(X,OX).
In section 6 we apply the results of section 4 and 5 to give the proofs

of Theorems 1.2 and 1.3.
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2. Notations and conventions

In the sequel k will always be an algebraically closed field of charac-
teristic zero.

If G is a linear algebraic group over k thenWG will be the Weylgroup
of G. Y (G) will be the pointed set of one-parameter subgroups of G.

If A is an abelian group then AR will be defined as R⊗Z A.
If T is a torus over k then the character group of T will be denoted

by X(T ) and the group law will be written additively. Since T is
a torus, Y (T ) also carries an abelian group structure and there is a
natural pairing Y (T ) × X(T ) → X(Gm) ∼= Z given by composition.
This pairing will be denoted by 〈 , 〉. We will extend this pairing
to Y (T )R × X(T )R. The pairing 〈 , 〉 allows one to identify Y (T )
with X(T )∗.

If P ⊂ G is an algebraic subgroup of G and X is a scheme with
a P -action then G ×P X = G × X/P . There is a natural projection

map G ×P X → G/P given by (g, x) 7→ g, with fibers isomorphic to
X. Taking the fiber over [P ] in G/P induces an equivalence between
the category of quasicoherent OG×PX-modules with a G-action and the
category of quasicoherent OX-modules with a P -action. The inverse of
this equivalence will be denoted by .̃
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3. Algebraic De Rham homology

In this section we collect the results and definitions we need from
[1]. The only thing new is the somewhat greater generality in which
Trπ and π∗ are defined.

We will fix some base scheme S over k.
An embeddable S-scheme θ : T → S will be an S-scheme such that

the structure map θ factors as

(3)
T ↪→ X
θ ↘ ↓ θ

S

where the horizontal map is a closed immersion and the vertical map
is smooth.

Let n be the relative dimension of X/S and let Ω.
X/S be the relative

De Rham complex. Then the relative De Rham homology HDR
i (T/S)

is defined as R2n−iθT∗(Ω
.
X/S). Here θT∗ is the composition θ∗ΓT (where

Γ
T

denotes the sheaf of sections with support in T ). It can be shown
that this definition is independent of X.

We will use relative algebraic De Rham homology as a generalization
of homology with support.

Lemma 3.1. Assume that θ : T → S is a closed immersion. Then

HDR
−i (T/S) = H i

T (S,OS)

Proof. Clear. �

In [1] the properties of relative algebraic De Rham homology are
proved through the use of a canonical injective resolution 0→ Ω.

X/S →
E(Ω.

X/S) Then

HDR
i (T/S) = H2n−i(θ∗ΓT (E(Ω.

X/S)))

Relative algebraic De Rham homology is a covariant functor for proper
maps. I.e. if π : T ′ → T is a proper map between embeddable S-
schemes then there is a map π∗ : HDR

i (T ′/S) → HDR
i (T/S). The

construction of π∗ is somewhat involved and is explained below.
It is possible to construct a commutative diagram of S-schemes

T ′ ↪→ X ′

↓ π ↓ π
T ↪→ X

where the horizontal maps are closed immersions, X ′, X are smooth
over S with structure maps θ′, θ and π : X ′ → X is smooth. Let n′,
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n be the relative dimensions of X ′ and X over S. There is a certain
canonically defined map, called the trace map

Trπ : π∗ΓT ′(E(Ω.
X′/S)[2n′])→ Γ

T
(E(Ω.

X/S)[2n])

Applying the functor θ∗ yields a map

θ∗(Trπ) : θ′∗ΓT ′(E(Ω.
X′/S)[2n′])→ θ∗ΓT (E(Ω.

X/S)[2n])

Then π∗ is defined as the map induced on homology by θ∗(Trπ).
For a diagram

T ′′ ↪→ X ′′

↓ ↓ π′
T ′ ↪→ X ′

↓ ↓ π
T ↪→ X

we have that

(4) Trπ◦π′ = (Trπ) ◦ (π∗Trπ′)

Taking homology yields that

(5) (π ◦ π′)∗ = π∗ ◦ π′∗
The following lemma will be used :

Lemma 3.2. Assume that π : T ′ → T is a proper map between embed-
dable S-schemes, of finite type over the groundfield. Assume further-
more that π is settheoretically a bijection. Then π∗ defines an isomor-
phism between HDR

i (T ′/S) and HDR
i (T/S).

Proof. We use induction on the dimension of T . The lemma is clearly
correct if dimT = 0. In general, since we are in characteristic zero,
there will be a dense open U ⊂ T such that π defines an isomorphism
between π−1(U) and U . Therefore π∗ defines isomorphisms between
HDR
i (π−1(U)/S) and HDR

i (U/S) and between HDR
i (T ′ − π−1(U)/S)

and HDR
i (T −U/S) (induction). The lemma now follows from the five

lemma and the relative version of [1, Th 3.3]. �

We will have to define Trπ and π∗ in a slightly more general situation :
Assume that there is a commutative diagram

Y ′ ↪→ T ′ ↪→ X ′

↓ ↓ ↓ π
Y ↪→ T ↪→ X

where the horizontal maps are closed immersions and π is a smooth
map between smooth S-schemes X ′, X with relative dimension n′, n
over S.
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Let U ′ = T ′−Y ′, U = T−Y and denote the injections X ′−Y ′ ↪→ X ′,
X−Y ↪→ X by i′ and i. Then we may construct a commutative diagram
(6)

0 → π∗Γ
Y ′

(E(Ω.
X′/S)[2n′]) → π∗Γ

T ′
(E(Ω.

X′/S)[2n′]) → π∗i′∗ΓU′
(E(Ω.

X′−Y ′/S)[2n′]) → 0

↓Trπ ↓Trπ ↓F

0 → Γ
Y

(E(Ω.
X/S

)[2n]) → Γ
T

(E(Ω.
X/S

)[2n]) → i∗Γ
U′

(E(Ω.
X−Y/S)[2n]) → 0

Assume now that we have another diagram

Y ′1 ↪→ T ′1 ↪→ X ′

↓ ↓ ↓ π
Y1 ↪→ T1 ↪→ X

where Y ′1 ⊂ Y ′, T ′1 ⊂ T ′, Y1 ⊂ Y , T1 ⊂ T and T ′1−Y ′1 = U ′, T1−Y1 = U .
The injections X ′ − Y ′1 ↪→ X ′, X − Y1 ↪→ X will now be denoted by i′1
and i1. Using a similar diagram as (6) we may construct a map

F1 : π∗i
′
1∗ΓU ′(E(Ω.

X−Y ′1/S
)[2n′])→ π∗i1∗ΓU(E(Ω.

X−Y1/S
)[2n])

Combining the diagrams for F and F1 yields a commutative square

π∗i
′
1∗ΓU ′(E(Ω.

X−Y ′1/S
)[2n′]) → π∗i

′
∗ΓU ′(E(Ω.

X−Y ′/S)[2n′])

↓ F1 ↓ F

π∗i1∗ΓU(E(Ω.
X−Y1/S

)[2n]) → π∗i∗ΓU(E(Ω.
X−Y/S)[2n])

where the horizontal maps are obtained from the injections X − Y ′ ↪→
X − Y ′1 , X − Y ↪→ X − Y1. Hence these horizontal maps are isomor-
phisms. This means that, in an appropriate sense, F depends only on
the data (U,U ′, X,X ′, π) and not on the particular choice of (T, T ′).
Therefore F will be denoted by Trπ in this more general setting, even
if π does not restrict to a map U ′ → U .

Trπ still satisfies the compatibility condition for compositions of
maps (4).

Let θ be the structure map of X. Applying the functor θ∗ to F and
taking homology, yields a map

HDR
i (U ′/S)→ HDR

i (U/S)

which we will also denote by π∗. It is easy to see that (5) still holds.
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4. The stratifications

Let G be a connected reductive group over k and let T , B be resp.
a maximal torus in G and a Borel subgroup containing T . Denote by
Φ the set of roots of G.

We will choose a positive definite, WG invariant, quadratic form
( , ) on Y (T )R. The corresponding norm will be denoted by ‖ ‖.
Y (T )R will be partially ordered by putting λ < λ′ if ‖λ‖ < ‖λ′‖.
W will be a finite dimensional G-representation. Let w1, . . . , wd be

a basis of W for which the action of T is diagonal with corresponding
weights α1, . . . , αd ∈ X(T ).

Let R = SW and X = SpecR. The closed points of X correspond
to the elements of W ∗ and hence X is a linear space, spanned by the
dual basis w∗1, . . . , w

∗
d, on which T acts with weights −α1, . . . ,−αd.

For λ ∈ X(T ), define

Xλ = {x ∈ X | lim
t→0

λ(t)x = 0}

Pλ = {g ∈ G| lim
t→0

λ(t)gλ(t)−1 exists}

Clearly PλXλ = Xλ. Furthermore, it follows from [5, Prop. 2.6] that
Pλ is a parabolic subgroup of G.

It is easy to see that Xλ is a linear subspace spanned by those w∗i
such that 〈λ, αi〉 < 0. Pλ is the subgroup of G containing T and having
roots ρ ∈ Φ such that 〈λ, ρ〉 ≥ 0. These descriptions still make sense
for λ ∈ Y (T )R. Hence the notations Xλ and Pλ will also be used
in this more general setting. It is still true that Pλ is parabolic and
PλXλ = Xλ.

If λ ∈ Y (T )R then we define Yλ to be the linear subspace of X
spanned by those w∗i such that 〈λ, αi〉 ≤ −1. By going to the Lie
algebra we see that PλYλ = Yλ. Also Xλ = Ynλ for n� 0.

If U ⊂ Y (T )R then we define XU =
⋃
λ∈U Xλ. If P is a parabolic

subgroup of G, containing T then

AP = {λ ∈ Y (T )R | Pλ ⊃ P}

I.e.

AP = {λ ∈ Y (T )R | 〈λ, ρ〉 ≥ 0 for all roots ρ of P}
Note that any element of Y (T )R is conjugate to a unique element of
AB.
XP will be defined as XAP . Using this notation, the Hilbert Mumford

criterion may be written as

(7) Xu = GXB
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In this section we seek to stratify PXB for P a parabolic subgroup G
containing B. This stratification will be the basic technical tool in the
next section.

The stratification of Xu = GXB corresponds to that of [2] and [3].
See however remark 4.5 below.
T defines an apartment in the Tits building defined by G. This is

a Coxeter complex in the sense of [8]. We will use the geometrical
realization from [6] of this complex.

The faces are the sets AP ⊂ Y (T )R defined above. The faces of
maximal dimension (the “chambers”) are those AP where P is a Borel
subgroup of G.

Cham StP is defined to be the union of those chambers containing
AP . This is a convex set according to [8, prop. 2.7] and [6]. If P ⊃ B
then it follows from [8, p. 17] that

Cham StP =
⋃

w∈WP

AB

If λ ∈ Y (T )R then Cham StPλ is the union of the chambers containing
λ. Hence λ is an interior point of Cham StPλ.

If P , P ′ ⊃ B are parabolic subgroups of G then it is easy to see
that the sets Cham StP ∩ Cham StP ′ and Cham StP ∩ P ′ contain
the same chambers. Since Cham StP ∩Cham StP ′ is convex complex,
containing the chamber AB, it must be a union of chambers [8, cor.
2.21].

Therefore we deduce

Cham StP ∩ Cham StP ′ = Cham StP ∩ P ′

Now we start with some preparatory work

Lemma 4.1. Let λ, λ′, λ′′ ∈ Y (T )R such that λ′′ ∈ [λ, λ′]. Then

Yλ ∩ Yλ′ ⊂ Yλ′′

Proof. Yλ∩Yλ′ is spanned by those w∗i such that 〈λ, αi〉 ≤ −1, 〈λ′, αi〉 ≤
−1. This implies 〈λ′′, αi〉 ≤ −1. �

This lemma will be used in the following setting

Lemma 4.2. Assume that D ⊂ D′ are convex subsets of Y (T )R. Let
λ ∈ D, λ′ ∈ D′, ‖λ′‖ ≤ ‖λ‖, λ 6= λ′ and assume that λ is in the relative
interior of D in D′. Then there exists a λ′′ ∈ D such that λ′′ < λ and
Yλ ∩ Yλ′ ⊂ Yλ′′.

Proof. Our hypothesis imply that there exists a λ′′ ∈]λ, λ′] ∩D. Using
lemma 4.1, it is easy to see that λ′′ has the required properties. �
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Lemma 4.3. Let E ⊂ X. Then the set

(8) {λ ∈ AB | E ⊂ Yλ}
is closed convex and hence, if it is non empty, it contains a unique
minimal element.

Proof. Standard, using the definition of Yλ, and lemma 4.1 �

Let B be the set of elements of AB that occur as minimal elements
of sets of the form (8).

Lemma 4.4. B is a finite set.

Proof. Define

SE = {i ∈ {1, . . . , d} | ∃x ∈ E, xi 6= 0}
Then the set (8) is equal to the set

{λ ∈ AB | 〈λ, αi〉 ≤ −1,∀i ∈ SE}
Since there are only a finite number of possibilities for SE, B must be
a finite set. �

Remark 4.5. B will be the indexing set for our stratifications of the
sets PXB. This indexing set does not correspond completely to the
one used in [2] and [3]. In particular a stratum that will be indexed by
λ in our sense, will be indexed by λ/‖λ‖2 in [2] and [3].

Furthermore there are elements in B that do not index strata in
Xu = GXB in the sense of [2] and [3]. It turns out that our strata
are empty in this case. However this is not necessarily true for the
corresponding strata in PXB, P 6= G.

Lemma 4.6. Let λ ∈ AB. Then there exists a λ′ ∈ B, ‖λ′‖ ≤ ‖λ‖
such that Yλ ⊂ Yλ′

Proof. Clear from the definition of B. �

Lemma 4.7. Let λ ∈ AB and let P be a parabolic subgroup of G,
containing B. Then PYλ, PXλ are closed in X.

Proof. This follows, in a standard way, from the fact that there is a
Borel subgroup B stabilizing Yλ and Xλ. �

If P is a parabolic subgroup of G, containing B and λ ∈ B then we
define

SP,λ = PYλ −
⋃
λ′<λ
λ′∈B

PYλ′
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Lemma 4.8. Assume that P , P ′ are parabolic subgroups of G such
that P , P ′ ⊂ Pλ for some λ ∈ Y (T )R. Then SP,λ ⊂ XP ′

Proof. Since XP ′ ⊃ XPλ it is sufficient to show that SP,λ ⊂ XPλ . Now,
since XPλ is P -invariant and Yλ ⊂ Xλ, this follows from Xλ ⊂ XPλ

which is implied by the definition of XPλ . �

Proposition 4.9. Let C ⊂ B be a set with the property that λ ∈ C,
λ′ ∈ B, λ′ < λ implies λ′ ∈ C. Then⋃

λ∈C

SP,λ =
⋃
λ∈C

PYλ

Proof. Choose y ∈ PYλ, λ ∈ C and let λ′ be a minimal element of B
such that λ′ ≤ λ and y ∈ PYλ′ . Clearly λ′ ∈ C and y ∈ SP,λ′ . �

Proposition 4.10.

(1)
⋃
λ∈B SP,λ = PXB

(2) If λ, λ′ ∈ B, λ 6= λ′ then SP,λ ∩ SP,λ′ = ∅

Proof. (1) Using lemma 4.6 and prop. 4.9 we compute :⋃
λ∈B

SP,λ =
⋃
λ∈B

PYλ =
⋃
λ∈AB

PYλ

=
⋃
λ∈AB

PXλ = PXB

(2) By symmetry we may assume that ‖λ′‖ ≤ ‖λ‖. It is sufficient
to prove that

PYλ ∩ PYλ′ ⊂
⋃
λ′′<λ

PYλ′′

Using Bruhat’s lemma for P , this follows from

(9) ∀w′ ∈ WP ,∃w′′ ∈ WP ,∃λ′′ ∈ AB, λ′′ < λ : Yλ ∩ w′Yλ′ ⊂ w′′Yλ′′

Let λ′1 = w′λ′. Then λ′1 ∈ Cham StP and λ′1 6= λ.
To prove (9) it is sufficient to show that there exists a λ′′1 ∈

Cham StP , λ′′1 < λ such that

Yλ ∩ Yλ′1 ⊂ Yλ′′1

This follows from lemma 4.2, with D and D′ both equal to
Cham StP .

�

Proposition 4.11. SP,λ ⊂
⋃
‖λ′‖≤‖λ‖ SP,λ
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Proof. Clearly SP,λ ⊂ PYλ. But by prop. 4.9⋃
‖λ′‖≤‖λ‖

SP,λ =
⋃

‖λ′‖≤‖λ‖

PYλ′ ⊃ PYλ

�

Proposition 4.12. Let λ ∈ AB, and assume that P is a parabolic
subgroup of G containing B. Then

(1) PSPλ∩P,λ = SP,λ
(2) The natural map

π : P ×Pλ∩P SPλ∩P,λ → SP,λ

is settheoretically a bijection.

Proof. (1) We have to show that

P (Yλ −
⋃
λ′′<λ
λ′′∈B

(Pλ ∩ P )Yλ′′) = P (Yλ −
⋃
λ′<λ
λ′∈B

PYλ′)

which would follow from

(10) Yλ −
⋃
λ′′<λ
λ′′∈AB

(Pλ ∩ P )Yλ′′ = Yλ −
⋃
λ′<λ
λ′∈AB

PYλ′

For this it is sufficient that for any λ′ ∈ AB, λ′ < λ

Yλ ∩ PYλ′ ⊂
⋃
λ′′<λ
λ′′∈AB

(Pλ ∩ P )Yλ′′

Fix λ′. Using Bruhat’s lemma for P and Pλ ∩ P , it is sufficient
that for any w′ ∈ WP there are w′′ ∈ WPλ∩P , λ′′ ∈ AB, λ′′ < λ
such that

Yλ ∩ w′Yλ′ ⊂ w′′Yλ′′

Put λ′1 = w′λ′. Then λ′1 ∈ Cham StP . We have to find a
λ′′1 ∈ Cham StP ∩ Pλ, λ′′1 < λ such that

Yλ ∩ Yλ′1 ⊂ Yλ′′1

This follows from lemma 4.2 provided λ lies in the relative inte-
rior of Cham StP∩Pλ in Cham StP . This follows from the fact
that λ ∈ (Cham StPλ)

◦ and Cham StP ∩ Pλ = Cham StP ∩
Cham StPλ.

(2) Every element in SP,λ = PYλ −
⋃

λ′<λ
λ′∈AB

PYλ′ lies in the P -

orbit of some element in Yλ −
⋃

λ′<λ
λ′∈AB

PYλ′ . Hence let y ∈
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Yλ −
⋃

λ′<λ
λ′∈AB

PYλ′ . Then one computes (∼= means “there is a

bijection”).

π−1(y) =
{

(p, y′) ∈ P × (Yλ −
⋃
λ′′<λ
λ′′∈AB

(Pλ ∩ P )Yλ′′) | py′ = y
}
/Pλ ∩ P

∼=
{
p ∈ P | p−1y ∈ Yλ −

⋃
λ′′<λ
λ′′∈AB

(Pλ ∩ P )Yλ′′
}
/Pλ ∩ P

∼=
{
p ∈ P | p−1y ∈ Yλ −

⋃
λ′<λ
λ′∈AB

PYλ′
}
/Pλ ∩ P (using (10))

∼=
{
p ∈ P | y ∈ pYλ −

⋃
λ′<λ
λ′∈AB

PYλ′
}
/Pλ ∩ P

∼=
{
p ∈ P | y ∈ pYλ

}
/Pλ ∩ P (using the definition of y)(11)

Now (11) will be a singleton provided that

Yλ ∩ (P − P ∩ Pλ)Yλ ⊂
⋃
λ′<λ
λ′∈B

PYλ′

Again, using Bruhat’s lemma, it is sufficient to show that for
any w ∈ WP−WP∩Pλ there exist λ′′ ∈ AB, λ′′ < λ and w′′ ∈ WP

such that
Yλ ∩ wYλ ⊂ w′′Yλ′′

Put λ′ = wλ. Then ‖λ′‖ = ‖λ‖ but λ 6= λ′. Otherwise w ∈ WPλ

and since w ∈ WP this implies w ∈ WP∩Pλ , which was excluded.
We have to find λ′′1 ∈ Cham StP , λ′′1 < λ such that

Yλ ∩ Yλ′ ⊂ Yλ′′1
This follows from lemma 4.2, if we put D = D′ = Cham StP .

�

Remark 4.13. It seems quite likely that π is actually an isomorphism
(if G = P then this follows from the results in [2][3]). We have not
proved this since it will not be needed in the sequel.
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5. The main step

5.1. Some definitions. In this section, G will be a connected reduc-
tive algebraic group with a Borel subgroup denoted by B.

If P ⊃ Q are parabolic subgroups in G containing B and if there is
a maximal chain

Q = P0 ⊂ · · · ⊂ Pu = P

then u will be denoted by l(P/Q). l(G/B) will be denoted by r. Define

Q = {parabolic subgroups of G, containing B}

If Q, Q′ ∈ Q then we say that Q is a face of Q′, if Q ⊂ Q′.
It is easy to see that this definition makesQ into an abstract complex

in the sense of [8]. The faces of dimension n in Q are given by

Qn = {Q ∈ Q | l(Q/B) = n+ 1}

The boundary maps ∂ : ZQn → ZQn−1 define a set of numbers αP,Q ∈
{±1, 0}

∂(Q) =
∑

αQ,Q′Q
′

FixR1 ⊂ R2, parabolic subgroups ofG, containingB. Put l(R1/B) =
u, l(R2/B) = r′ and define

Q′ = {Q ∈ Q | R1 ⊂ Q ⊂ R2}

Q′n = Q′ ∩Qn+u

Then Q′ is again an abstract complex. The corresponding boundary
maps ∂′ : ZQ′n → ZQ′n−1 are now given by

∂′(Q) =
∑
Q′∈Q′

αQ,Q′Q
′

If r′ > 0 then Q′ is a combinatorial simplex. Hence the reduced chain
complex

(12) 0→ ZQ′r′−1
∂′→ · · · ∂

′
→ ZQ′−1 → 0

will be acyclic. Note however that if r′ = 0 then (12) is not acyclic.
We will need one more abstract complex. Define

R = {(P,Q) ∈ Q×Q | Q ⊂ P}

Rn = {(P,Q) ∈ R | l(P/Q) + n = r − 1}
We let (P,Q) be a face of (P ′, Q′) if P ⊃ P ′, Q ⊂ Q′. This makes R
into an abstract complex whose corresponding topological space is a
r − 1-dimensional sphere.
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We now define numbers α(P,Q),(P ′,Q′), βQ as follows :

(13) α(P,Q),(P ′,Q′) =

 αP ′,P (−)l(Q/B) if l(P ′/P ) = 1, Q = Q′

αQ,Q′ if l(Q/Q′) = 1, P = P ′

0 otherwise

(14) βQ = (−)d
l(Q/B)

2 e

Lemma 5.1.1.

(1) Let (P,Q) ∈ Rn, (P ′′, Q′′) ∈ Rn−2 such that (P ′′, Q′′) is a face
of (P,Q). Assume that (P ′1, Q

′
1), (P ′2, Q

′
2) ∈ Rn−1 are the two

faces of (P,Q) having (P ′′, Q′′) as a face. Then

α(P,Q),(P ′1,Q
′
1)α(P ′1,Q

′
1),(P ′′,Q′′) + α(P,Q),(P ′2,Q

′
2)α(P ′2,Q

′
2),(P ′′,Q′′) = 0

(2) Assume that (P,Q) ∈ Rr−2. Then

βQα(Q,Q),(P,Q) + βPα(P,P ),(P,Q) = 0

Proof. This follows by inspection. �

5.2. A spectral sequence. In this section G, B, T , X will have the
same meaning as in section 4. l(G/B) will still be denoted by r.

We will construct a spectral sequence that will allow us to bound
H i
Xu(X,OX). To this end we use algebraic De Rham homology with

base scheme X. This idea is inspired by lemma 3.1.
If P2 ⊃ P1 are parabolic subgroups of G then πP1

P2
will be used for the

canonical maps G/P1 → G/P2, G×P1 X → G×P2 X. If T1 ⊂ G×P1 X,
T2 ⊂ G ×P2 X are subschemes such that πP1

P2
(T1) ⊂ T2 then the map

T1 → T2, which is the restriction of πP1
P2

will still be denoted by πP1
P2

.
If we are in the more general situation of (6)

(15)
Y1 ↪→ T1 ↪→ G×P1 X
↓ ↓ ↓ πP1

P2

Y2 ↪→ T2 ↪→ G×P2 X

where U2 = T2 − Y2, U1 = T1 − Y1. Then

πP1
P2∗ : HDR

i (U1/X)→ HDR
i (U2/X)

and the corresponding trace maps are defined as in section 4.

Theorem 5.2.1. There is a second quadrant spectral sequence

(16) E1
−p,q : ⊕(P,Q)∈Rr−1−pH

DR
−q (G×Q XP/X)⇒ H−p+qXu (X,OX)

The differentials d : E1
−p,q → E1

−p+1,q are given by

(17) ⊕α(P ′,Q′),(P,Q)π
Q
Q′∗
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where the sum runs over all pairs

((P,Q), (P ′, Q′)) ∈ Rr−1−p ×Rr−p

The proof of this theorem will be based on lemma 5.2.2 below.
Let C be a subset of B as in prop. 4.9 and define

T =
⋃
λ∈C

SB,λ =
⋃
λ∈C

Yλ

For P , Q ∈ Q put,

TP,Q = QT ∩QXP

E.
P,Q = Γ

G×QTP,Q
(E(Ω.

G×QX/X)[2dimG/Q])

TP,Q is a closed subset of X (lemma 4.7) and πQG∗E
.
P,Q is a complex of

flasque sheaves on X whose homology in degree q is

(18) HDR
−q (G×Q TP,Q/X)

Now we construct maps of complexes

⊕(P,Q)∈Rr−1−pπ
Q
G∗E

.
P,Q

d→ ⊕(P,Q)∈Rr−pπ
Q
G∗E

.
P,Q

as follows : If (P,Q) ∈ Rr−1−p, (P ′, Q′) ∈ Rr−p, Q ⊂ Q′, P ⊃ P ′

then the canonical map πQQ′ : G ×Q X → G ×Q′ X restricts to a map

G×Q TP,Q → G×Q′ TP ′,Q′ and hence there is a trace map

TrπQ
Q′

: πQQ′∗E
.
P,Q → E.

P ′,Q′

Applying the functor πQ
′

G∗ yields a map

πQ
′

G∗(TrπQ
Q′

) : πQG∗E
.
P,Q → πQ

′

G∗E
.
P ′,Q′

Then d is given by

(19) ⊕α(P ′,Q′),(P,Q)π
Q′

G∗(TrπQ
Q′

)

where the sum runs over all pairs

((P,Q), (P ′, Q′)) ∈ Rr−1−p ×Rr−p

We also construct a map

⊕(Q,Q)∈Rr−1π
Q
G∗E

.
Q,Q

ε→ E.
B,G

as

(20) ⊕(Q,Q)∈Rr−1βQTrπQG
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Lemma 5.2.2. With notations as above, there is a double complex
(21)

· · · d→ ⊕(P,Q)∈Rr−1−pπ
Q
G∗E

.
P,Q

d→ ⊕(P,Q)∈Rr−pπ
Q
G∗E

.
P,Q

d→ · · · ε→ E.
B,G → 0

whose associated complex is exact.

Proof. That (21) is a double complex follows from (4) and lemma 5.1.1.
The rest of the proof will be by induction |C|, the case C = ∅ being

trivial.
Assume that λ is a maximal element of C and define T ′ = T − SB,λ,

T ′P,Q = QT ′ ∩QXP . It is clear from prop. 4.9 that TP,Q is the disjoint

union of T ′P,Q and SQ,λ ∩QXP . Let i : G×Q (X − T ′P,Q) ↪→ G×QX be
the open immersion and define

E.
P,Q,λ = i∗ΓG×Q(SQ,λ∩QXP )

(E(Ω.
G×Q(X−T ′P,Q)/X)[2dimG/Q])

Furthermore let E ′.P,Q be defined as E.
P,Q, but using T ′P,Q instead of

TP,Q.
Then, by induction, the lemma is true for E ′.P,Q. Furthermore there

are exact sequences of complexes

0→ E ′.P,Q → E.
P,Q → E.

P,Q,λ → 0

Hence it is sufficient to show that the complex, obtained from the
double complex
(22)

· · · d→ ⊕(P,Q)∈Rr−1−pπ
Q
G∗E

.
P,Q,λ

d→ ⊕(P,Q)∈Rr−pπ
Q
G∗E

.
P,Q,λ

d→ · · · ε→ E.
B,G,λ → 0

is exact.
Here d and ε are defined by (19) and (20). However we have to use

the more general definition of the trace map, as in (15).
To show that (22) gives rise to an exact sequence, it is sufficient to

show that it induces exact sequences on homology. I.e. we have to show
that the complexes

· · · d→ ⊕(P,Q)∈Rr−1−pH
DR
−q (G×Q (SQ,λ ∩XP )/X)

d→

⊕(P,Q)∈Rr−pH
DR
−q (G×Q (SQ,λ ∩XP )/X)

d→

(23) · · · ε→ HDR
−q (SG,λ/X)→ 0

are exact. (We have used that QXP = XP if Q ⊂ P .)
d is still defined as in (17) and ε is given by

⊕(P,Q)∈Rr−1βQπ
Q
G∗
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πPλ∩QQ defines settheoretically a bijection (prop. 4.12)

G×Pλ∩Q SPλ∩Q,λ → G×Q SQ,λ
and by restricting πPλ∩QQ to the inverse image of G×QXP we obtain a
bijection

G×Pλ∩Q (SPλ∩Q,λ ∩XP )→ G×Q (SQ,λ ∩XP )

Hence πPλ∩QQ∗ induces an isomorphism (lemma 3.2)

HDR
−q (G×Pλ∩Q (SPλ∩Q,λ ∩XP )/X)→ HDR

−q (G×Q (SQ,λ ∩XP )/X)

We may therefore replace (23) by a complex

· · · d→ ⊕(P,Q)∈Rr−1−pH
DR
−q (G×Pλ∩Q (SPλ∩Q,λ ∩XP )/X)

d→

⊕(P,Q)∈Rr−pH
DR
−q (G×Pλ∩Q (SPλ∩Q,λ ∩XP )/X)

d→

(24) · · · ε→ HDR
−q (G×Pλ SPλ,λ/X)

d is now given by a sum

⊕α(P ′,Q′),(P,Q)π
Pλ∩Q
Pλ∩Q′∗

and ε is given by

⊕βQπPλ∩QPλ∗

(24) has a subcomplex given by
(25)

· · · d→ ⊕ (P,Q)∈Rr−1−p
P⊂Pλ

HDR
−q (G×Pλ∩Q(SPλ∩Q∩XP )/X)

d→ · · · ε→ HDR
−q (G×PλSPλ/X)→ 0

We claim that this subcomplex is exact. If P ⊂ Pλ then SPλ∩Q,λ ⊂ XP

according to lemma 4.8.
Hence the complex (25) may be written as :

(26)

· · · d→ ⊕ (P,Q)∈Rr−1−p
P⊂Pλ

HDR
−q (G×Pλ∩QSPλ∩Q/X)

d→ · · · ε→ HDR
−q (G×PλSPλ/X)→ 0

We may filter (26) according to R = Pλ ∩ Q. As associated quotients
we obtain complexes

(Z . ε→ Z)⊗HDR
−q (G×R SR,λ/X)

if R = Pλ and
Z . ⊗HDR

−q (G×R SR,λ/X)

otherwise.
Here Z . in degree −p is ZU (R)

p where

U (R)
p = {(P,Q) ∈ Rr−1−p | P ⊂ Pλ, Pλ ∩Q = R}
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which may be simplified to

U (R)
p = {(P,R) ∈ Q×Q | R ⊂ P ⊂ Pλ}

It is now easy to see that Z . is isomorphic to a complex of the form
(12). Hence it is acyclic, unless R = Pλ. In that case the complex

Z . → Z is the complex 0→ Z ±1→ Z→ 0 and hence it is also exact.
To show that (25) is exact, it is sufficient that the complex below,

which is the quotient of the complexes (24) and (25), is exact.

(27) · · · d→ ⊕ (P,Q)∈Rr−1−p
P 6⊂Pλ

HDR
−q (G×Pλ∩Q (SPλ∩Q ∩XP )/X)

d→ · · ·

We now filter (27) according to R = Pλ ∩ Q and P . The associated
quotient complexes are

Z ′. ⊗HDR
−q (G×R (SR,λ ∩XP )/X)

Z ′. in degree −p is ZU ′(P,R)
p , where

U ′(P,R)
p = {(P,Q) ∈ Rr−1−p | Q ∩ Pλ = R}

There is a unique, maximal Rλ ∈ Q, with the property that Rλ ∩Pλ =
R. Hence

U ′(P,R)
p = {(P,Q) ∈ Q×Q | R ⊂ Q ⊂ P ∩Rλ}

Therefore Z ′. is isomorphic to the dual of a complex of the form (12).
If P 6⊂ Pλ then it is easy to show that R 6= Rλ ∩ P . We conclude that
Z ′. is acyclic. �

Proof. of Theorem 5.2.1 This is now standard. Assume C = B and
hence T = XB. Also TP,Q = XP if Q ⊂ P . Consider the double
complex

· · · d→ ⊕(P,Q)∈Rr−1−pπ
Q
G∗E

.
P,Q

d→ ⊕(P,Q)∈Rr−pπ
Q
G∗E

.
P,Q

d→ · · ·
The homology of its columns is HDR

−q (G×QXP/X) whilst it follows from

lemma 5.2.2 that its total homology isHDR
p−q(GXB/X) = H−p+qXu

(X,OX).
This implies the existence of the spectral sequence (16). �
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6. The proofs

In this section we will give the proofs of Theorem 1.2 and Theorem
1.3. The proofs of these theorems consist of a series of lemmas. It
should be stressed that the lemmas are certainly not the strongest
possible. We also prove Prop. 1.4.

Throughout this section G, B, R, d, X, Φ, · · · will have the same
meaning as in section 4. We also put h = dimRG. P , Q will be
parabolic subgroups of G, containing B, such that Q ⊂ P .

The roots of B will be the negative roots and Φ+ will be the set of
positive roots.

Lemma 6.1. Let β ∈ N. Any G-representation occurring in Hβ
Xu(X,OX)

occurs in some
HDR
−γ (G×Q XP/X)

where

(28) γ ≤ β + l(G/B)

Proof. This follows immediately from Theorem 5.2.1. �

Lemma 6.2. Any G-representation occurring in HDR
−γ (G ×Q XP/X)

occurs in some

Hδ
G×QXP (G×Q X,∧δ′ΩG×QX/X)

where

(29) δ ≤ γ + 2dimG/B

Proof. From the spectral sequence for hyper cohomology

E1
pq : Hq

G×QXP
(G×Q X,∧pΩG×QX/X)⇒ HDR

−p−q+2dimG/Q(G×Q XP/X)

we deduce that

(30) −γ = −δ − δ′ + 2dimG/Q

Furthermore ∧δ′ΩG×QX/X = 0 unless

(31) 0 ≤ δ′ ≤ dimG/Q

Combining (30) and (31) yields

δ ≤ γ + 2dimG/Q

which implies (29). �

Lemma 6.3. πBQ induces an isomorphism
(32)

Hδ
G×BXP (G×B X, πB∗Q ∧δ

′
ΩG×QX/X) ∼= Hδ

G×QXP (G×QX,∧δ′ΩG×QX/X)



22MICHEL VAN DEN BERGH UNIVERSITY OF ANTWERP (UIA) UNIVERSITEITSPLEIN 1 2610 WILRIJK BELGIUM

Proof. The fibers of πBQ : G×B X → G×Q X are isomorphic to Q/B.
If H is a Levy subgroup of Q then Q/B ∼= H/B ∩H. Hence it follows
from Bott’s theorem that H i(Q/B,OQ/B) = 0 for i > 0. This implies
that RiπBQ∗OG×BX = 0 for i > 0. (32) follows from this last fact in a
standard way. �

Lemma 6.4. Any G-representation occurring in

Hδ
G×BXP (G×B X, πB∗Q ∧δ

′
ΩG×QX/X)

occurs in some

Hε′(G/B, πB∗Q ∧δ
′
ΩG/Q ⊗OG/B H

ε
XP

(X,OX )̃)

where

(33) ε ≤ δ

Proof. There is a composite functor spectral sequence

E2
pq : Hp(Hq

G×BXP
(G×BX, πB∗Q ∧δ

′
ΩG×QX/X))⇒ Hp+q

G×BXP
(G×BX, πB∗Q ∧δ

′
ΩG×QX/X)

Furthermore it is easy to see that

Hq
G×BXP

(G×B X, πB∗Q ∧δ
′
ΩG×QX/X)

∼= Hq
G×BXP

(G×B X, πB∗Q ∧δ
′
ΩG/Q ⊗OG/B OG×BX)

∼= πB∗Q ∧δ
′
ΩG/Q ⊗OG/B H

q
G×BXP

(G×B X,OG×BX)

∼= πB∗Q ∧δ
′
ΩG/Q ⊗OG/B H

q
XP

(X,OX )̃

It follows from these facts that

δ = ε+ ε′

But clearly ε′ ≥ 0. �

In the sequel, let ρ be half the sum of the positive roots.

Lemma 6.5. Any representation occurring in

(34) Hε′(G/B, πB∗Q ∧δ
′
ΩG/Q ⊗OG/B H

ε
XP

(X,OX )̃)

has a highest weight of the form

(35) χhi = w(χ1 + ρ)− ρ
where w ∈ WG, χ1 ∈ X(T ) and χ1 is of the form

χ1 =
∑
ρ∈S

ρ+ χ2

with S ⊂ −Φ+ and χ2 ∈ X(T ) a character, occurring in Hε
XP

(X,OX).
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Proof. Let [e] ∈ G/B be the class of the unit element. Then, by Bott’s
theorem, any representation occurring in (34) must have a highest
weight of the form (35) where χ1 occurs in

(πB∗Q ∧δ
′
ΩG/Q)[e] ⊗k Hε

XP
(X,OX)

Furthermore (πB∗Q ∧δ
′
ΩG/Q)[e] = (∧δ′g/q)∗ where g and q are the Lie

algebras of G and Q.
But any character occurring in (∧δ′g/q)∗ will be of the form

∑
ρ∈S ρ

for some S ⊂ −Φ+. �

Now we have to recall some facts and definitions from [9].
If λ ∈ Y (T )R then we define dλ = codimXλ, if λ, µ ∈ Y (T )R then

λ ∼ µ if Xλ = Xµ. Finally, if U ⊂ Y (T )R then Uλ = {µ ∈ U | µ ∼ λ}

Lemma 6.6. Assume that U is a closed bounded convex subset of
Y (T )R, having dimension s. Then there is a T -equivariant filtration
on H i

XU
(X,OX) such that

grH i
XU

(X,OX) = ⊕λ∈(U−∂U)/∼H̃
i+s−dλ−1(Φ

(U)
λ )⊗Hdλ

Xλ
(X,OX)

where

Φ
(U)
λ = Uλ − Uλ

Proof. The proof is identical to that of [9, Th. 3.4.1]. In loc. cit. this
lemma was proved under the assumption that U is the unit ball, but
this fact was not used. �

Lemma 6.7. Every T -character occurring in Hε
XP

(X,OX) occurs in

some Hdλ
Xλ

(X,OX) where λ ∈ Y (T ). If we assume in addition that X

has a T -stable point and that the character only occurs in Hdλ
Xλ

(X,OX)
when λ = 0 then

(36) ε = d− dimZ(G)

Proof. The first part of this lemma follows from applying lemma 6.6 to
U = {λ ∈ Y (T )R | ‖λ‖ ≤ 1} ∩ AP .

Assume that the hypothesis for the second part are fulfilled. First
note that λ = 0 does not occur on the boundary of U if and only if
P = G. In that case dimU = dimAG = dimZ(G). Also d0 = d and if

X has a stable point then Φ
(U)
0 = ∅. We obtain that

ε+ dimZ(G)− d− 1 = −1

which implies (36). �

The following corollary summarizes the lemmas 6.1-6.7.
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Corollary 6.8. Assume that X has a stable point. Then every irre-
ducible G-representation occurring H i

Xu(X,OX) has a highest weight
of the form

(37) χhi = χ′ +
∑
ρ∈S′

ρ

with S ′ ⊂ Φ and χ′ a T -character occurring in some Hdλ
Xλ

(X,OX) where
λ ∈ Y (T ).

If for every such decomposition of χhi, χ
′ only occurs in Hdλ

Xλ
(X,OX)

when λ = 0 then i ≥ h.

Proof. It follows from lemmas 6.5, 6.7 that

(38) χhi = w(
∑
ρ∈S

ρ+ χ2 + ρ)− ρ

where w ∈ WG, S ⊂ −Φ+ and χ2 occurs in some Hdλ
Xλ

(X,OX) with
λ ∈ Y (T ).

Put χ′ = wχ2. We may rewrite (38) as

χhi = χ′ + w(
∑
ρ∈S

ρ+ ρ− w−1ρ)

It is clear that ρ − w−1ρ is a sum of positive roots. Since S ⊂ −Φ+,
this proves (37).

If χ′ only occurs in Hdλ
Xλ

(X,OX) if λ = 0 then χ2 has the same
property. The second half of the lemma now follows by combining
(28),(29),(33),(36) together with

dimG = dimZ(G) + 2 dimG/B + l(G/B)

and the fact that if X has a stable point then

h = d− dimG

�

Proof. of Theorem 1.2 Assume that RG
χ is not Cohen-Macaulay.

Then according to lemma 1.5 there must be a representation with char-
acter χ in H i

Xu(X,OX) where i < h. Then it follows from cor. 6.8 that
there is a decomposition

χhi = χ′ +
∑
ρ∈S

ρ

where χ′ occurs in some Hdλ
Xλ

(X,OX) with λ 6= 0.
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It follows from the hypothesis that χ′ is good with respect to (T,W ).
On the other hand [9, cor. 3.3.2] implies that a good character cannot

occur in Hdλ
Xλ

(X,OX) where λ 6= 0. This is a contradiction. �

Lemma 6.9. Assume that X has a T -stable point and let χ be a T -
character, strongly critical for (T,W ). Then χ is good for (T,W ).

Proof. By definition there are ui ∈] − 1, 0] such that χ =
∑

i uiαi.
Assume that the lemma is false, i.e. there exists some λ ∈ Y (T )− {0}
such that χ is not good for (T,W, λ). Then it is possible to write χ as

(39) χ =
d∑
i=1

aiαi

where the (ai)i are integers with the property that ai < 0 if i ∈ Iλ and
ai ≥ 0 otherwise (recall that Iλ was defined by (2)).

It follows from the fact that X has a T -stable point that there exists
an i ∈ Iλ such that 〈λ, αi〉 > 0.

(39) implies

〈λ, χ〉 ≤ −
∑
i∈Iλ

〈λ, αi〉

On the other hand

〈λ, χ〉 =
∑
i∈Iλ

ui〈λ, αi〉+
∑
i 6∈Iλ

ui〈λ, αi〉(40)

> −
∑
i∈Iλ

〈λ, αi〉(41)

which is a contradiction. �

Proof. of Theorem 1.3.1 This is now a direct consequence of Theorem
1.2 and lemma 6.9. �

Lemma 6.10. Assume that for any λ ∈ Y (T ) − {0}, |Iλ| ≥ 2. Let
χ ∈ X(T ) be critical for (T,W ). Then χ is good for (T,W ).

Proof. Note that the hypotheses imply that X has a T -stable point.
Assume that the lemma is false. I.e. there is a λ ∈ Y (T ) − {0}

together with integers (ai)i such that

χ =
∑
i

aiαi

where ai < 0 iff i ∈ Iλ.
By definition it is possible to write χ =

∑
i uiαi, ui ≤ 0 in such a

way that if there are integers bi ≥ ui with the property that χ =
∑
biαi

then bi ≥ 0.
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Take j ∈ Iλ. Then it follows that for any integer b, uj ≤ b < 0,
χ− bαj is not in the semigroup generated by (αi)i 6=j.

However, from the fact that |Iλ| ≥ 2 for any λ 6= 0, it follows that
the cone in X(T )R spanned by (αi)i 6=j is X(T )R. It is then an easy
exercise to show that the semigroup generated by (αi)i 6=j is actually a
group.

This implies that aj < uj since χ − ajαj is in the group generated
by (αi)i 6=j.

Now we have (using the fact that there is an i ∈ Iλ such that 〈λ, αi〉 >
0)

〈λ, χ〉 =
∑
i∈Iλ

ui〈λ, αi〉+
∑
i 6∈Iλ

ui〈λ, αi〉(42)

>
∑
i∈Iλ

ai〈λ, αi〉+
∑
i 6∈Iλ

ai〈λ, αi〉(43)

= 〈λ, χ〉(44)

which is a contradiction. �

Lemma 6.10 cannot be improved, as the following example shows :

Example 6.11. Let G = T be a two dimensional torus. Then we
identify X(T )R ∼= Y (T )R ∼= R2 in such a way that the pairing 〈 , 〉
is given by the usual inner product on R2 : 〈(x1, y1), (x2, y2)〉 = x1x2 +
y1y2.

Let α1 = (−1, 1), α2 = (0, 1), α3 = (1, 1), α4 = (2,−3) and χ =
−α1−α2 = (1,−2). Then χ is not good for (T,W ) (take λ = (−2, 1)).

However

χ = (−5

4
)α1 + (−1

2
)α2 + (−1

4
)α3

which easily shows that χ is critical for (T,W ).

Proof. of Theorem 1.3.2 Assume that the result is false. According
to Theorem 1.2 and lemma 6.10 there must be a T -invariant linear
subspace of codimension one in X having no T -stable point. Since X
has a G-stable point this linear subspace must be G-invariant. This
contradicts the hypothesis. �

Lemma 6.12. Assume that for any λ ∈ Y (T )− {0}, |Iλ| ≥ 2 and for
every j ∈ {1, . . . , d}, αj is in the group generated by (αi)i 6=j.

Let χ be in the group generated by (αi)i. If χ is critical for (T,W )
then χ is strongly critical for (T,W ).

Proof. Assume that χ is critical and write χ =
∑
uiαi, ui ≤ 0 in such a

way that if there are integers bi ≥ ui with the property that χ =
∑
biαi

then bi ≥ 0.
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We may assume that there is some j such that uj ≤ −1 for otherwise
the lemma is trivial.

It follows from the definition of critical that χ + αj is not in the
semigroup generated by (αi)i 6=j and it follows as in lemma 6.10 that
this semigroup is actually a group.

Furthermore, by hypothesis, it is possible to find integers (ci)i such
that χ =

∑
ciαi. Hence (1 + cj)αj is not in the group generated by

(αi)i 6=j. This is a contradiction. �

Proof. of proposition 1.4 We want to apply lemma 6.12. From the
fact that G is semisimple it follows that any G-invariant subspace of
codimension one in X has a stable point. It is easy to see that this
implies that for all λ ∈ Y (T )− {0}, |Iλ| ≥ 2.

Furthermore it is well known, and easy to prove, that the only WG-
invariant weight of a semisimple group is the trivial weight.

Let αj be a weight of W . If αj = 0 then αj is always in
∑

i 6=j Zαi.
Assume that αj 6= 0 and let W ′ be its stabilizer. Then∑

w∈WG/W ′
wαj

is WG-invariant and hence 0. Hence αj is in
∑

i 6=j Zαi.
Let χ|T =

∑l
i=1 χi. From the fact that RG 6= {0} it follows that

χi ∈
∑

i Zαi and it is also a standard fact that Φ ⊂
∑

i Zαi if not all
αi are trivial (which is excluded by the fact that X has a stable point).

Hence by lemma 6.12 all χi −
∑

ρ∈S ρ (i = 1, . . . , l, S ⊂ Φ) will be

strongly critical for (T,W ). This implies that χ is strongly critical for
(G,W ). �
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