LOCAL COHOMOLOGY OF MODULES OF COVARIANTS

MICHEL VAN DEN BERGH

ABSTRACT. Let G be a connected reductive algebraic group over an alge-
braically closed field of characteristic zero and let W, U two finite dimen-
sional representations of G. In this paper we compute the local cohomology of
U® SW)E provided a certain relatively weak technical condition is true.
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1. SUMMARY OF NOTATION

Meaning

a (split) connected reductive algebraic group
a basefield (usually of char. zero)

the sheaf of differential operators on X

the category of quasi-coherent D x-modules

the category of G-equivariant quasi-coherent Dx-modules
the holonomic module giving the intersection homology of Z

the relative De Rham complex of Y/ X
l-adic (not necessarily constructible) sheaves

the derived category of the constructible l-adic sheaves

the sheaf of sections of F with support in U
a certain map L' (F) — L, (m.F)

the adjoint map Rm(Rr'F) — F and various derived maps
classical functors associated with an application 7w

complexes over C
complexes over C with homotopy classes of maps
filtered complexes over C

filtered complexes over C with homotopy classes of maps

a certain category

a certain category

a certain category

a certain category

a certain category

a certain category

the forgetful functor C(7, A) — C(T,K(A))
the total complex of an object in C(7,.A)
certain functors C(7,A) — C(7, A)

a (split) maximal torus in G

the Weyl group of (G,T)

the roots of (G,T)

the characters of T'

the one-parameter subgroups of T’

the natural pairing between Y (T') and X (T)
a positive definite Wg-invariant form on Y (T')r
the norm corresponding to (, ) on Y(T)g

a Borel subgroup of G containing 7'

usually an element of Y (T')r

a finite dimensional representation of G

dim W

a basis for W with diagonal T-action

the weights corresponding to wy, ..., wq

the symmetric algebra of W over k

the spectrum of R (= W*)

a linear subspace of X associated to A

a linear subspace of X associated to A

a parabolic subgroup associated to A
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usually a root of G

the union of all X, for A e U

a polyhedral cone in Y (T)g associated to P

usually parabolic subgroups of G

the union of all X, for XA in Ap

locally closed subvarieties that form a stratification of PXp
the indexing set for the stratification of PXp

the parabolic subgroups of G, containing B

the length of the longest chain connecting @ to P in Q
the rank of the semi-simple part of G (equal to [(G/B))
those (P,Q) in @ x Q with P D Q

incidence numbers for the simplicial complex Q
incidence numbers for the simplicial complex R

an identification H"~}(|R|,Z) = Z

the unit ball in Y(T')g

AQ ncC

{ag,...,aqtUD

a CW-complex on C associated to =

the CW-complex induced on Cq by P

the interior of Pg

incidence numbers for P

an identification H4m e (Cqy,0Cq,Z) = 7

numbers related to a(p g),(r,q1

the projection G x9 X — G x@" X or a related map
perverse homology

certain objects in C'(X, Z;-mod)

codim (X, X)

an equivalence relation on Y (T')r

those elements of U equivalent under ~ to A
a special set of representatives for the quotient Cg/ ~
the positive roots of G

the simple roots of S

the Levy subgroup of Py associated to T'
the Weyl group of H)

the roots of H)y

the positive roots of Hy

the simple roots of H)

a certain subset of W,

a certain subset of Ap
a building block for the spectral sequence (5.7)

a combinatorial object

usually an element of P

usually an element of Wg

the length of w in Wg, with respect to S
a certain parabolic in G

the relative interior of o

a certain closed subset of Cp
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codim(GXy, X)

the monoid ring over M

the infinite series over M

> 77 ® M|

> 7{Z® M}

a synonym for X (T)g

the dominant part of P

the irreducible representation of G with highest weight x
the T equivariant Hilbert series of V/

the G equivariant Hilbert series of V'

half the sum of the positive roots

the vector bundle on G/Q-mod, associated to V' € @-mod
the projection P — P*T and various derived maps

the quotient of X by G
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2. INTRODUCTION

In this introduction and in part of this paper the base field will be C. Let G be a
connected reductive algebraic group and let W be a finite dimensional representa-
tion of G. Then G acts on the polynomial ring R = SW and the Hochster-Roberts
theorem [18] asserts that R is Cohen-Macaulay.

Now let U be an irreducible finite dimensional representation of G. It is well
known that (U ®c R)“ is not necessarily a Cohen-Macaulay R“-module. Indeed,
rather the opposite is true. Under rather weak conditions there are only a finite
number of U such that (U ®¢ R)¢ is Cohen-Macaulay [7]. A conjecture that gives
at least sufficient conditions for (U ® R)¢ to be Cohen-Macaulay was given in [24]
by Stanley. A large part of this conjecture was proved in [28]. However already the
torus case shows that the sufficient conditions given by this conjecture are usually
not necessary.

Hence the problem we will try to attack in this paper is to give precise conditions
for (U ® R)Y to be Cohen-Macaulay. To be more precise, let (R%)* be the positive
part of RY. We aim to calculate the local cohomology modules Hch)+ (U R)Y).
Unfortunately the methods in this paper do not allow us to work in complete gen-
erality, and we will have to impose a condition on the action of G on W (condition
(*) below). On the other hand we will show that this extra condition is relatively
mild.

If h = dim R then it is well known that (U® R)® is Cohen-Macaulay if and only
if Hipoy: (U@ R)9)=0,i=0,...,h— 1. It is also easy to see that Hipey+ (U®
R)Y) = (U ® HYR))® where I = rad R(RY)* [27]. Hence one can compute
Hipey+ (U® R)%) once one knows the G-structure of Hi(R).

Let X = Spec R = W*. Then I is the defining ideal of the G-unstable locus X
of X. Le.

X*={re X |oe Gz}
and of course Hi(R) = Hi.(X,Ox).

Let Dx be the sheaf of differential operators on Ox. Then HY. (X, Ox) carries
a Dx-module structure compatible with the G-action, and we propose to study the
structure of Hi.(X,Ox) as quasi-coherent (G, Dx)-module (see §3.1 for precise
definitions).

Now let T' C G be a maximal torus and let Y (7T') be the abelian group of one-
parameter subgroups of T'. For A\ € Y(T') define

Py={g€G| }il% A)gA(t) ™! exists }
X is a linear subspace of X and P, is a subgroup of X containing 7" and leaving

X, stable. It is well known that Py is a parabolic subgroup of G [22, Prop. 2.6].
The Hilbert-Mumford criterion yields

Xt = U GX,
€Y (T)
and there are natural projection maps
TPy,G - G ><PA X)\ — GX,\

The fact that Py is a parabolic subgroup of G implies that GX is closed.
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We now have introduced enough notation to state condition (*).

Condition (*) (1) If A, N e Y(T) such that X, 7& X then GX), 7& GXy.
(2) If A € Y(T) then there exist \' € Y/(T') with X, = X such that 7p, ¢ is
birational and small.

(Amap 7 : Y — X is said to be small if for all n. > 0, codim{y € Y | dim 71y >
n} > 2n).
Under condition (*), we can prove the following result.

Theorem 2.1. Assume that condition (*) holds. Then H%.(X,Ox), as an object

of (G, Dx)-qch has a finite filtration such that

(2.1)

gr H}u (X, OX) — @(w,/\) admissibleHn+dim T—codim(GXA,X)-l—l(w)—l(\I]w7/\, C)@E(GXA, X)

Here the L(GX ), X) are simple holonomic G-equivariant Dx -modules with regular
singularities, whose De Rham complex is the intersection homology complex of GX
(suitably shifted).

Frtdim T—codim(GX5, X)+H(w) =1y, | C) is a finite dimensional vector space with
trivial (G, Dx)-structure.

At this point there is a lot of unexplained notation in the statement of Theo-
rem 2.1. These notations will be introduced in subsequent sections, but to help the
reader we will give a summary at the end of this introduction. At this point we
suffice by saying that the direct sum runs over a certain finite subset of the product
of the Weyl group of G with Y (T)g.

To apply Theorem 2.1 one has to know the G-structure on £L(GX,X). This
is the subject of Theorem 7.3.7 below where an explicit formula is given for the
G-character of £L(GXy, X) (under condition (*)).

How restrictive is condition (*) ? We will give two stable criteria for condition
(*) to hold (Theorem 7.2.4 and Theorem 7.2.7 below). The first one says that (*)
holds if the irreducible subrepresentations of W occur with high enough multiplic-
ity. The second one, for simple groups, asserts that (*) holds if W has a simple
subrepresentation having a big highest weight, lying in the root lattice.

A combination of these two results shows that if GG is simple of adjoint type then
(*) is satisfied for all but a finite number of W.

Our results contain of course the case when G is a torus since then (*) is always
true. In particular Theorem 2.1 reduces to [29, Thm. 3.4.1].

In this paper we compute two more examples (see 7.4). If G = SI(V), dim V' = 2,
then (*) holds unless W = V, S?V. Then we recover the results in [26] and [9] from
Theorems 2.1 and 7.3.7.

If G =SV), dimV = 3, W = V™ then (*) holds if m > 3. In that case we
use Theorems 2.1 and 7.3.7 to determine when (U ® R)¢ is Cohen-Macaulay. It
is shown that (if m > 4) there are exactly (m — 3)? U’s for which this is the case,
whereas Stanley’s criterion would only predict (771—5)2&_

Now we give an outline of the proof of Theorem 2.1. In [28] a spectral se-
quence was constructed, using algebraic De Rham homology [16] which abuts to
Hi.(X,0x). However the terms in this spectral sequence are of rather complicated
nature, so it is difficult to draw conclusions.

A first observation is that this spectral sequence can be constructed in the more
flexible framework of D-modules and then we can use the methods of [29] for the
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torus case, to construct a more refined version with computable terms. However
while it was clear that in the torus case the resulting spectral sequence was degen-
erate ([29, Thm. 3.4.1]) this is not at all clear for the general case.

Therefore use the Riemann-Hilbert correspondence to translate our problem to
a problem about constructible sheaves. That is, we have to compute the perverse
homology of RT x«(X,C). Working in the framework of constructible sheaves has
the added advantage that this formalism is more flexible since we are not restricted
to smooth varieties.

Nevertheless it is still not clear why the resulting spectral sequence degenerates.
It is conceivable that this would follow from some form of Hodge theory, but we
have preferred to follow an alternative route (which is morally equivalent according
to [11]). We work in the l-adic derived category. In that case there is an extra
structure given by the Tate twists, and it turns out that the differentials in the
Es-term of the spectral sequence (5.7) are incompatible with it. Therefore they
have to be zero.

Where does condition (*) come in ? Actually in two places. Firstly, we have
to control somehow the perverse homology of Rmp, ¢«(Q; gy Py x,) (or equivalently
the homology of (7p, ¢1)+Ogy Py x, Wherei is the inclusion GX — X). Condition
(*) guarantees that this homology is a simple perverse sheaf (simple holonomic Dx-
module) whose support is GX ) [15]. This puts a sharp constraint on the differentials
in our spectral sequence.

Secondly, because the homology of (7p, ¢i)+ Ogxri x, is in one degree, we can
use Euler characteristics to compute its G-structure. This is the basis for the proof
of Theorem 7.3.7.

Now we summarize the undefined notations in the statement of Theorem 2.1.
Along the way we introduce some auxiliary notations which will come back in
subsequent sections.

Let X(T') be the character group of T and let wy,...,wy be a basis of W for
which the action of T is diagonal. Let aq,...aq € X(T) be the corresponding
weights. It is easy to see that X is a linear subspace of X, spanned by those w;
such that (A, a;) < 0 where (, ) is the natural pairing between X (T') and Y (T).
Py is the subgroup of G containing T' and having roots p such that (A p) > 0.
These descriptions still make sense for A € Y(T')g. Hence the notations X, Py will
also be used in this more general setting. It is still true that P, is parabolic and
P\ X)) = X,

Choose a Borel B containing 7. The roots of B will be the negative roots. ®,
&+, S will resp. be the roots, the positive roots and the simple roots of G. W¢g will
be the Weyl group of (G, T) and I(w) will be the length of w in Wg with respect
to S.

If A € Y(T)r then H) is the Levy subgroup of Py and Wy, ®,, <I>;\r and S are
respectively the Weyl group of H) (i.e. the stabilizer of A under the action of Wg
on Y(T)r), the roots of Hy (i.e. those roots such that (A, p) = 0), the positive roots
of Hy and the simple roots of Hj.

If P is parabolic subgroup of G then we define Ap = {A € Y(T)r | P» D P}.
If G is semi-simple then Ap is a simplicial cone in Y (T)g. We put Cp = ApNC
where C' is be the closed unit ball for a Wg-invariant norm on Y (7).

If A, N € Y(T)g then A ~ X if X, = X,. This defines a Wg-invariant equiva-
lence relation on Y(T)r. T U CY(T)r, A € Y(T)r then Uy = {N € U | N ~ A}
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We choose a set of representatives A C C'p for the equivalence classes Cp/~ in
such a way that if A € A then Py, D Py for all X' ~ A\, X € Cg. According to
lemma 6.1, and the discussion thereafter, this is possible.

If A€ Cp, we W, (ie. wh = A) then

AN =g |J  A4p
sESAﬁw*ld);\r
where Ps is the parabolic subgroup of G containing B and having s as a unique
simple root.
A pair (w, \) € Wg x A is called admissible if w € Wy and if (Ag)yNAY™ £ ¢,
For (w, \) admissible one defines

Uyr = (Cp\8C)A N AW — (C5\ 0C)\ N ALY

The author wishes to thank O. Gabber and M. Brion for some useful discussions.
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3. PRELIMINARIES

3.1. G-equivariant D-modules. If X is is a scheme over C, then we denote by
Ox-qch the category of quasi-coherent O x-modules.
We start with the following diagram of objects and maps

dU dg
— —
(3.1) GxGxXIGx XX
d2 dl
— —
do(g1,2) = gy ' do(g1, 92, %) = (g2, 97 ')
d1(91,$) =T dl(glag%x) = (gngax)
SO(‘T) = (6,56) dQ(gla‘gQa‘T) = (gl,.’L')

Definition 3.1.1. [3] A G-equivariant quasi-coherent Ox-module is a pair (F, )
where F € Ox-qch and 6 is an isomorphism djF — d§F in Ogxx-qch such that

50 o dy0 = dio

2
(3 ) 889 = id]:

The corresponding category is denoted by (G, Ox)-qch.

If there is no possibility for confusion we will simply write F for (F,0).

Functors compatible with (flat or smooth) base-change preserve G-equivariance,
since they preserve (3.2).

If X is a point then the category (G,Ox)-qch is equivalent with the category
or rational G-representations, that is vector spaces with a linear G-action, such
that each vector is contained in a finite dimensional G-representation (as algebraic
group).

Assume now that X is smooth. Let Dx be the sheaf of differential operators
on X and denote by Dx-qch the category of quasi-coherent Dx modules and by
DP(Dx-qch) the associated derived category. We will identify Dx-qch with its
essential image in D®(Dx-qch).

If : X — Y is a map between smooth schemes then 7* defines a func-
tor Dy-qch — Dx-qch and there is a formalism of direct and inverse images
m, 7y, ™, 7T between appropriate subcategories of D?(Dx-qch) and DP(Dy-qch)
for which we refer the reader to [5].

Assume now that Y is a closed subset of X, that X is smooth and that X and Y
are irreducible. An important object is £(Y, X) which is the holonomic Dx-module
whose De Rham complex is the intersection homology complex on Y (up to shift)
[10]. L(Y, X) is the unique simple quasi-coherent submodule of H;,Odlm(y’x) (X,0x)
whose support is Y.

A G-equivariant quasi-coherent D x-module is a pair (F, ) where F is in Dx-qch
and 0 : diF — d§F is in Dgxx-qch such that (3.1) holds. Note that this makes
sense since both djF and djF are in Dgx x-qch.

This implies that object in (G, Dx)-qch are compatible with standard functors,
since these commute with smooth base-change. We think in particular of 7%, H'm,,
Hir' for a G-equivariant map 7 and Hi. (X, —) for a G-equivariant closed subset Y’
of X. It also follows from the description above that £(Y,X) is in (G, Dx)-qch.

Object in (G, Dx )-qch are rather rigid, as is shown in the following proposition.
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Proposition 3.1.2. Assume that G is connected. Then the forgetful functor (G, Dx)-qch —
Dx-qch is fully faithful. Furthermore if M € (G,Dx)-qch and N C M in Dx-qch
then N € (G, Dx)-qch.

Proof . This is presumably well-known, but I have not been able to locate a refer-
ence.

The proof below is a straightforward adaptation of the proof of [20, (1.9.1)]. It
is based upon a generalization of [2, 4.2.5,4.2.6]. This generalization is deferred to
the appendix.

Let (M, ¢), (N, ) € (G, Dx)-qch and let f € Homp, (M, N). Then by A.1(1)
there is a ¢ € Homp, (M, N) such that djg = ¢ odjf o ¢~1. Le. the following
diagram is commutative.

dM —Y— AN

aif| o |
BEM —2s N
Restricting to the unit section yields f = g. Le. f € Hom g py)(M,N).
To show the second part of the Proposition, let M € (G, Dx)-qch and N/ C M in
Dx-qch. Then by A.1(2) there exist N/ C M in Dx-qch such that diN’ = ¢(djN).
Restricting to the unit section yields N/ = N. I.e. N is in (G, Dx)-qch.

Remark 3.1.3. Actually we will use Proposition 3.1.2 only in the case of regular
holonomic D-modules.

Proposition 3.1.2 and the foregoing discussion dispense us to a certain extent of
having to work with G-equivariant derived categories [3] (if G is connected).

That is, instead of directly computing in (G, Dx )-qch we work in Dx-qch (or in
DP(Dx-qch)) and in the end we know that we obtain G-equivariant sheaves, having
a unique G-structure.

Sometimes G-equivariant quasi-coherent Dx-modules are just too rigid. It is
then useful to have the following weaker notion available [6].

A weakly G-equivariant quasi-coherent Dx-module is a couple (M, ¢) with the
usual properties, except that ¢ should only be in OgXD x-qch. I.e. one only requires
that ¢ is Og-linear, instead of Dg-linear. The category of weakly G-equivariant
quasi-coherent Dx-modules is denoted by (G, Dx)-wqch. Again these categories
are stable under various natural functors.

The difference between (G, Dx )-qch and (G, Dx)-wqch maybe illustrated in the
case that X is a point and G connected. In that case (G,Dx)-qch is the cat-
egory of C-vector spaces, whereas (G,Dx)-wqch is the category of rational G-
representations.

3.2. The l-adic derived category. In this subsection X will be a scheme of finite
type over a field k£ and [ will be some integer, different from the characteristic of k.

In [12, §1.1.2] Deligne defined D%(X,Z;) (i.e. the derived category of l-adic
sheaves with bounded constructible homology) as

(3.3) 2 — projlim D%, (X, Z/1™)

where Db (X, Z/I™) is the full subcategory of D%(X,Z/I"™) consisting of complexes
of finite Tor-dimension.
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Deligne showed that if for any finite extension &’ of k the groups H*(Gal(k/k"), Z /1)
are finite then (3.3) yields a triangulated category equipped with a ¢-structure whose
heart is the category of constructible [-adic sheaves and hence one obtains a sat-
isfactory theory. Furthermore the formalism of variance on D%(—,Z;) is directly
derived from that of D%(—,Z/I™) by passage to the limit.

More recently people have given definitions of D?(X,Z;) which are valid in
greater generality. For example in [2] a definition by O. Gabber is mentioned,
which is unfortunately unpublished.

A published definition is that of Ekedahl [14] which we will follow in these notes.
It constructs D%(X,7;) as a triangulated subcategory of a derived category of an
abelian category having enough injectives. This will be very useful for us.

We will now outline Ekedahl’s construction in the least generality possible, and
we will also change notations in such a way that they are more convenient for us
in the sequel.

Denote by (Z;)x-mod the ringed topos of inverse systems of sheaves on X :
Fir— Fp «— -+ — F, « --- where F, is a sheaf of (Z/I")x-modules, and let
(Zy)x itself stand for the object (Z/l)x + (Z/I*)x < ---. ((Z;)x-mod is not to
be confused with the category of Z;-sheaves on X. This notion will never be used.)

Then D%(X,Z;) is a full triangulated subcategory of D((Z;)x-mod) consisting
of “normalized” complexes with bounded constructible homology (see loc. cit. for
precise definitions).

If 7: X — Y is a morphism of k-schemes of finite type then we have a pair of
adjoint functors

7y ¢ (Z1) x-mod — (Z;)y-mod
7 (Z;)y-mod — (Z;) x-mod

which may be computed termwise on the inverse systems. 7, and 7* give rise to
the corresponding functors on D((Z;).-mod) and D%(—,Z;).
There is another standard pair of adjoint functors

Rm : DY(X,7Z;) — Db(Y, Zy)
Rr': DY(Y,Z;) — D%(X,Z;)

which is constructed in [14].
For maps
FLxdu

where ¢ is a closed immersion and j is an open embedding there are functors
g1, s, 73,4 i*,i. between the appropriate categories (Z;)p-mod, (Z;)y-mod and
(Z;) x-mod which also may be computed termwise. These functors satisfy the com-
patibilities of [2, §1.4] and hence a theory of perverse sheaves in D%(X,Z;) may be
developed.

Suppose that 7: X — Y is a proper surjective map between k-schemes of finite
type. We say that 7 is a small resolution [15, §6.2] if 7 is birational, X is smooth
and for all n > 0, codim{y € Y | dim7~!(y) > n} > 2n. We will make essential
use of the following result.

Proposition 3.2.1. Let m: X — Y be a small resolution and put d = dimY . Then
Rr.(Qi)x[d] is a simple perverse sheaf on'Y which gives rise to the intersection
homology on'Y, associated to the local system (Qp)y .
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Proof . This is a purely formal result once one has a theory of perverse sheaves.
See loc. cit. for a proof in the topological case.

Now we introduce some supplementary notations which will be needed in the
next sections. )

If X is as above and U = X a locally closed embedding then for F e (Z1) x-mod
we denote i,i'F by I L (f) Since the left adjoint of the functor F is 7" which is
exact, 1" preserves 1nJectlves If i is a closed embedding then [ (]—' ) is simply the
sheaf of sectlons of F with support in ¢(U).

IfY c T C X are closed subsets of X such that U = T — Y then there is an
exact sequence

(34) 0—L,(F) = L.(F) = L,(F)
in (Z;)x-mod, which may be completed by 0 on the right if F is injective. Hence
(3.4) gives rise to triangles in D ((Z;) x-mod) and D%(X,Z;).

If we have a morphism of k-schemes 7 : X’ — X of finite type and closed subsets

T' C X', T C X such that 7(T") C T then for F € (Z;) x-mod there is obviously a
unique map, which we will denote by L' T T(]—' ), which makes the following diagram

commutative
Ll (F) —— mF
(3.5) lgT/,Tm lid
L (mF) —— mF

where the horizontal arrows are the natural injections. More generally if we have a
diagram

Y’ T X'
(3.6) l l lﬂ
Y T X

where the horizontal maps are closed immersions and we put U’ =T’ —Y', U =
T —Y, then there is a map L',  (F) which fits in the following diagram

Y/( f)
(3.7) | |Errr [ Eorot®
0 —— L (mF) —— L.(mF) —— L, (mF)

The definition uses the fact that #=1(U) N U’ is open in U’ and closed in 7= (U).

LU/ U(f) is the composition of the following maps m. ' (F) = m. L (F|X' —
r

Y') S m L gy (FIX =7 (V) = L, (m(F)IX~Y) =L (m.F).

From this description one deduces that I U’,U(]: ) depends only on the data
(U',U,X’, X, 7, F) and not on the particular choice of Y, Y', T, T".

If F is injective then the exact sequences in (3.7) may be completed with 0 on
the right and hence they induce morphisms of triangles in DT ((Z;)x-mod) and
D%(X, 7).

The following special case will be used in the following sections. Assume that
m: X' — X is proper of finite type. Then the adjointness of the functors Rm = R,

0o — ﬂ-*g F) —— F*LT/(]:) —_— F*LU,(

-Lwynu’,u
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and R7' induce a trace map for F € D%(X,7Z;), Try(F) : Rm.(Rn'F) — F. Usually
we just write Tr, if no confusion is possible. Now represent Rm'F and F by
injective complexes J- and I' in (Z;)x-mod and (Z;)x/-mod respectively. Then
Tr, is represented by a map (determined up to homotopy) m.J- — I, which we
will also denote by Tr.

Now suppose that we have a diagram of the form (3.6). Then we will also

r J v
denote by Trr the composition of maps 7. L ,(J") LU(])> L, (mJ) &»
L',,(I"). This map induces a map Try : Rm.RL , (RT'F) — RL (F) in D%(X,7Z),
independent of the choices we have made.

We will need the following lemma, which gives a direct construction of Tr, in

the case of closed immersion. (That is using the right hand side of (3.8)).

Lemma 3.2.2. Suppose that we have a diagram

T —— X'
I
T —— X

where the horizontal maps are closed immersions, ™ : X' — X s proper, of finite
type and F € D¥(X,Z;). Then there is a commutative diagram

Rm.Rj.Rj'Rx'F —— Rm.RL_,(Rr'F)
(3.8) lRi*(Trg(Ri!]:)) lTr,,
Ri,R'F  ——  RL.(¥)

Here the horizontal maps are the natural identifications. The left most vertical map
is defined via the identification RW*Rj*Rj!RTF!]: = Ri,RO.RO'Ri'F.

Proof . Let p: Rm.RL_, (RT'F) — RL_(F) be the map which makes (3.8) com-
mutative. Using the fact Tr is compatible with compositions of maps we can make
the following commutative diagram

Rm, (Trj (Rx' F))
—_—

Rrm.Rj.Rj'R7' RmR7©'F
(3.9) lRi*(Trﬂ(Ri!]:)) lTrw(f)
Ri.Ri'F ), F

Since Rj.Rj' = RQT,, Ri Ri' = R£T and since under these identifications, Tr;,

Tr; are given by the natural transformations RLT, — id, R£T — id, combining
(3.8) and (3.9) yields the following commutative diagram.

Rm.RL,,(Rt'F) —— Rm.Rn'F
(3.10) | [
L.F — F
Now Rm.RL_, (R7'F) clearly has support in 7" and the standard triangle (3.4)
RL (F) »F —RL,__(F) -

=X-T
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where Homi(Rﬂ*RgT, (R7'F), RL . (F)) =0 for i€ Z, shows that x is unique.
Since the definition of Tr, shows that putting g = Tr, makes (3.10) commuta-
tive. pu must be equal to Tr.

Remark 3.2.3. By replacing Rm, by Rm the above statements remain valid for
non-proper maps. This makes the discussion slightly more technical, and since it
is not needed for the sequel, we have chosen not to include it.
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4. ON THE CONSTRUCTION OF SINGLE COMPLEXES FROM DOUBLE COMPLEXES
WHEN MAPS ARE ONLY GIVEN UP TO HOMOTOPY

In this section we construct some machinery to deal with the technical problem
that the trace map, discussed in the previous section, is only determined up to
homotopy (unlike in the case of residual complexes, see [16]). Matters would be
greatly simplified if there were a canonical way to define a trace map on [-adic
shaves which is compatible with compositions of maps. Our approach here is a
generalization of [23]).

In the sequel Ap will stand for (Z;)7-mod and A will stand for the collection
of categories (Z;)«-mod. This is merely a hypothesis of convenience since for the
most part, an arbitrary abelian category fibered over Sch may be used. Restricting
to (Z;)-mod allows us to use without worries the formalism of inverse and direct
images, outlined in Section 3.2.

If C is an abelian category then C(C) is the category of complexes over C and
K(C) is the category of complexes modulo homotopy. CF(C) and KF(C) are the
corresponding categories of filtered complexes.

We will consider structures of the form

T = (Pe,S, (Xp)pGPv (Wp,q>p,q6P)

p<q
where

(1) P is a locally finite poset. Le.
Vpge Pil{re Pp<r<qjf<oo

2) e: P — Z is an order preserving map.

(2)

(3) S is a base scheme.

(4) The (X,), are S-schemes.

(5) mp,q : Xp — X4 are S-morphisms such that 7, , =id and 7y ,7p ¢ = T 1.

A subset Q C P is said to be catenary if for all p,q € Q, p < ¢ and all maximal
chains p =py < p1 < -+ < pp, = q with pg,--- ,p, € Q have the same length and
for such a maximal chain one has n = e(q) — e(p).

We will use 7 to define several categories.

4.1. C(T,K(A)).
Objects : ((Fp)per, (dp,q) Pp.qEP ) with
p<g,e(q)=e(p)+1
(1) (Fp)p complexes in C(Ax, ).
(2) {p| Fp # 0} is contained in a catenary subset of P.
(3) dp.q : Tp,geFp — Fy maps of complexes with the property that for p,q € P,

e(q) =e(p) +2
Z |dr g7, g+ (dp,r)

p<r<q
e(r)=e(p)+1

is homotopic to zero.
Morphisms : If F = ((F,),(dpgq)), G = ((G), (dp,q)) are in C(7T,K(A)) then

the elements of Hom(F,G) are represented by (fp.q)  pqep  where the (fpq)
p<aq,e(p)=e(q)
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are maps of complexes f, 4 : Tp g« Fp — G4 with the property that for p,q € P,
e(q) = e(p) + 1.

(4.1) Z dr.qTr,qx(fp,r) — Z framrge(dp,r)

p<r<q p<r<q
e(r)=e(p) e(r)=e(q)

is homotopic to zero.

42. C(T,A).
Objects :  ((Fp)pep, (dpﬁq)p,qu) with
p<q
(1) Fp a Z-graded object over Ax,. Le. formally F), = ®iczFpi, Fpi € Ax,.
(2) {p| Fp # 0} is contained in a catenary subset of P.
(3) dp.q : Tp,geFp — Fq graded maps of degree e(p) —e(q) +1 with the property
that for p,g e P, p <gq

Z drqTr,qx(dp,q) = 0
pITr=q
Morphisms : If F = ((F}),(dp,q)), G = ((Gp), (dp,q)) are in C(7T,A) then the
elements of Hom(F,G) are represented by maps (fp,q)p.qep where the (fp ) are

<
graded maps 7, ¢+ Fp — Gq of degree e(p) —e(q) with the S;gperty that for p,q € P,
P=q

Z drqTrqx (fp.r) = friqTrgs(dpr) =0
p<r<gq

Homotopy : Let F, G be as above and suppose that there are maps f = (fp,q4) :
F — Gin C(7,A). Then a homotopy between f and g is represented by (hp ¢)p<q
where the hy, ¢ : Tp ¢« Fp — G4 are graded maps of degree e(p) — e(¢g) — 1 such that

Jo.a = 9pq = Z PrqTr,gs(dp,r) + drogTr, g (Rp,r)

p<r<q

43. K(T,K(A)).

K(T,K(A)) is defined as C(7,K(A)) but now we suppose that the d,, are
homotopy classes and if f = (fp,4) represents a morphism, then again the f, , are
homotopy classes.

44. K(T,A).
K (T, A) has the same objects as C(7,.A), but know Homg 7 4)(F,G) is equal
to Home (7, 4)(F,G) modulo homotopy.

4.5. Functors. We will also define some functors between these categories. For :
C(T,A) — C(T,K(A)) (a forgetful functor, because it forgets some structure)
sends an object F = ((Fp), (dp.q) p.a ) € C(T,A) to For(F) = (Fp), (dpgq)  pa

p<q e(g)=e(p)+1
but now we consider F, as a complex with differential (—)*(®)d,, ,. Tt is easy to check
that For(F) lies in C(7, K(A)). The definition of For on maps is obvious.

Clearly, For factors to give a functor For : K(7, A) — K (7, K(A)), also denoted
by For.

Tot : C(7,A) — CF(A) is the functor, which associates to an object in C(7,.A)
its filtered total complex. Suppose that F = ((Fp), (dpq)) is in C(7,.A). Denote
the structure map of X, — S by m,. Then Tot(F), as a graded object, is given
by ®pepmp«Fp(—e(p)) and the differential Gy (dp,q) makes it into a complex, i.e.
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an object of C'(Ag). Furthermore Tot(F) is equipped with an ascending filtration,
defined as follows :

(42) F_k TOt(]:) = @e(p)Zkﬂ'p*]:(—e(p))

and gr Tot(F) is given by ©rez®e(p)—kTpsFp(—k) which leads to a spectral sequence
for the homology of Tot(F). (Of course, at this stage, not necessarily convergent.)

(4.3) EL ., ®cpy—uH" (mpFp) = H'"*(Tot F)

with differential d : E1,,, — E_, 1, given by D e(p)=u,e(q)=ut1 Tgxdp,q- An impor-
P<q
tant fact is that the E'-term of this spectral sequence only depends upon the image
of For(F) in K(7T,K(A)).
Tot obviously factors through a functor K(7,A) — KF(Ag) which we will
denote by Tot too.

Example 4.5.1. Consider 7 = (Z,id, X, (X, = X)pez, (7p,q = id)pq) Then C(7, K(A))
are complexes over K (A), whereas the elements of C(7,.4) may be considered as
double complexes with extra maps thrown in of degrees (2, —1), (3, —2), etc.... In
case A is a module category, this situation has been studied in [23]

Now let Co(7,K(A)) resp. Ko(7,K(A)) stand for the full subcategories of
C(T,K(A)) and K(7, K(A)) whose objects ((Fp)p, (dp,q)) have the property that
for all p < ¢, Hom}((AXq)(ﬁpyq*]:p,]:q) =0 for 7 < 0.

Similarly we define Cy(7, . A) and Ky(7,.A) as the full subcategories of C(7T,.A),
K(T,A) with objects ((Fp),(dp,q)) such that for all p < ¢ and for all i < 0,
Hom}((AXq)(ﬁpyq*]:p,fq) = 0. Here F, is made into a complex using differential
(—)e®)d,, ,. Clearly For~'(Co(T, K(A)) C Co(T, A).

The following result is crucial for us.

Theorem 4.5.2. For induces an equivalence between Ko(7, A) and Ko(7T, K(A)).

Proof . The proof of this result is standard. See e.g. [23, Section 2] or [2, Prop
3.2.9] for similar results.

4.6. Systems of support. Let 7 be as before and let Y = (Y}),ep a collection
of closed subsets Y, C X,, with the property that m, 4(Y,) C Y; for ¢ > p. Such an
Y will be called a compatible system of supports.

If F=((Fp),(dpgq)) € C(T,A) then we define
;Y(f) = (Lyp (‘Fp)vqu (dp.q) Ogypﬁyq (%))

Let T = (Tp)p, Y = (Y})p be compatible systems of supports where T}, C Y, for all

peEP. Wepit U =Y —T def (Y, — Tp)pep. Then we define

EU(f) = (£Up (fp)aqu (dp.q) 0 £Up,Uq (7))

and there is a “termwise” exact sequence
0—L.(F) =L (F) =L, (F)

in C(7,.A) which may be completed by 0 on the righthand side if all (F,), are
injective in each degree.
Now suppose that @ C P is a subset with the property that

(4.4) Vp,geQ.p<qVrePp<r<qg=reQ
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Define LQ (F) = ((F), (dp,q)) Where

o Fp ifpe@
P 0  otherwise
and similarly
g - dpg ifp,qge@
p-a 0 otherwise

Then clearly ;Q (F)eC(T,A).

Now let @1 C Q2 C P be subsets with the property that Vp € Q;,Vq € P,q >
p=q € Q;. Then Q = Q2 — @ has property (4.4) and there is an exact sequence
in C(7T,.A)

0L, (F) =L (F) = Ly(F) =0

Note that ;U and [ o may also be defined on maps, and hence are functors.
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5. SOME SPECTRAL SEQUENCES

5.1. Stratifications. This section summarizes the results in [28, Section 4], which
give a generalization to the classical stratifications of the unstable locus of a repre-
sentation. (See [17][19]). For the proofs we refer to loc. cit. They were stated for
an algebraically closed base field but it is clear that they remain valid in the case
we consider below.

Let k be a field of characteristic 0 and let G be a split connected reductive
group over k. Let T', B be resp. a split maximal torus in G and a Borel subgroup
containing 7. Denote by ® the set of roots of (G, T).

Let X(T),Y(T) stand for the groups of characters and one-parameter subgroups
of T. (, ) will be the natural pairing between Y (T') and X (T).

Let W¢ be the Weyl group of (G,T). We will choose a positive definite, Wg
invariant quadratic form ( , ) on Y(T)g. The corresponding norm will be denoted
by || ||. Y(T') will be partially ordered by putting A < X if || A < [|N]]

W will be a finite dimensional G-representation. We assume that W has a
basis ws, ..., wy for which the action of T" is diagonal, with corresponding weights
ag,...,oq € X(T).

Let R = SW and X = Spec R. The closed points of X correspond to the elements
of W* and hence X is a linear space spanned by the dual basis wy, ..., w}, on which
T acts with weights —aq, ..., —ayq.

For A € X(T) define

Xy={zeX| }in%)\(t)x =0}
Py={geG| }ir% A(t)gA(t) ™! exists}

Clearly PyX) = X). Furthermore, it follows from [22, Proposition 2.5] that Pj is
a parabolic subgroup of G.

It is easy to see that X is a linear subspace of X, spanned by those w; such
that (A, ;) < 0. Py is the subgroup of G containing T and having roots p € ®
such that (X, p) > 0. These descriptions still make sense for A € Y(T')g. Hence the
notations X, Py will also be used in this more general setting. It is still true that
P, is parabolic and Py X, = X,.

If A € Y(T')r then we define Y} to be the linear subspace of X, spanned by those
wi such that (A, a;) < —1. By going to the Lie algebra, we see that P\Y)\ = Y).
Also X =Y, for n > 0.

If U C Y(T)r then we define Xy = [,y Xa. If P is a parabolic subgroup of
G, containing T then

Ap = {)\G Y(T)]R | Py, D P}
Le.
Ap={AeY(T)r | (A, p) > 0 for all roots p of P}

Xp will be defined as X 4,. Using this notation, the Hilbert-Mumford criterion
may be written as

X"=GXp
The parabolic subgroups of GG, containing B form a combinatorial simplex and the

Ap, as defined above, are a standard geometric realization of this simplex.
If £ C X then the set

(5.1) {Ne A | ECY)}
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is closed convex and hence, if it is non-empty, it contains a unique minimal element.
We denote by B the set of elements of Ap that occur as minimal elements of set of
the form (5.1). B is always a finite set. If A € Ap and P is a parabolic subgroup of
G, containing B, then PY), PX) are closed in X. For A € B we define

Sp7,\ = PY, — U)\/</\PY,\/
xeB

Proposition 5.1.1. [28]
(1) Let C C B be a set with the property that A € C, N € B, X' < X implies

XN eC. Then
U Spx = U PY,
AeC AeC
(2) U)\GB Spxr=PXp
(3) I_f)\) )\/ S B; )\ 7é )\/ th@n SP7/\ M SP,)J = @
(4) Spx © U< pia S
(5) Let A\ € B and assume that P is a parabolic subgroup of G, containing B.

Then PSp,np,x = Sp,x and the natural map
P xPF Gp apa — Spa
1s settheoretically a bijection.

Remark 5.1.2. Using the methods of [28] it is easy to show that the map in 5.1.1(5)
is actually an isomorphism. However we don’t need this.

5.2. Some complexes and their properties. We keep the notations of section
5.1,

If P D @ are parabolic subgroups of GG, containing B and if there is a maximal
chain

Q=F~hcC---CcP,=P
then u will be denoted by I(P/Q). We put r = [(G/B), which is the rank of the
semi-simple part of G. Define

Q = {parabolic subgroups of G, containing B}

If Q,Q" € Q then we say that @’ is a face of Q if Q C @’. Note that this is a
change in convention with respect to [28]. The new convention is chosen in such a
way that Q' is a face of @ if and only if Ag is a face of Ag.

The faces of dimension n in Q are given by

 ={Q e Q[G/Q) =n+1}

Note that Q_; = {B}. Topologically B corresponds to the empty set which is by
convention the boundary of every element of Q.

The boundary maps 0 : ZQ, — ZQ,_; define incidence numbers ag g €
{£1,0}

Q) => ago
We will also have occasion to use the following abstract complex
R={(P,Q)€QxQ|P>Q}

where

Rn={(P,Q)eQxQ|I(P/Q)+n=r—1}
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We let (P, Q') be a face of (P,Q) if P D P D @ D @'. This makes R into a
abstract complex, whose corresponding topological space is an r — 1-dimensional
sphere. If we define a(p,g),(r,q"); B(Q,q), as follows

app (=) QB i (P'/P)=1,Q=Q

(5.2) dPQ).(P,Q) = § €Q",Q if Z(Q/QI) =1,P=PFP
0 otherwise
1Q/B)
(53) Boa =071

then these define incidence numbers for R, together with an identification of H"~1(|R|, Z)
with Z (the faces of maximal dimension in R are of the form (Q, Q), Q € Q).

Define C = {A € Y(T)r | [A\|| <1} and for @ € Q, Cg = CN Ag. We are going
to define some particular CW-complex on C.

Let FF C Y(T)gr be some convex polytope containing 0 in its interior and choose
a homeomorphism ¢ : F' — C with the property that ¢(0) = 0 and for all p € F,
@(p) lies on the halfray starting in 0 and going through p.

Let E = {a1,...,aq} U®P (the reason for this particular choice of = will become
clear later). Then the hyperplanes in Y (T)g defined by the elements of = cut F
up in pieces, and hence they define in a natural way the structure of a polyhedral
complex on F. The image under ¢ of this polyhedral complex will be a regular
CW-complex on C, which we will denote by P in the sequel (the elements of P
will be the closed cells). By convention we consider the empty set as a cell in P of
dimension —1 which is the boundary of every cell of dimension zero.

By our choice of ¢, and the fact that ® C Z, for all @ € Q, Cg will be a union
of cells and hence P induces a CW-complex on Cg, denoted by Pg.

We also define

Pg ={o € Pg | o Nrelint Cq # 0}

Proposition 5.2.1. We may find (0s0')o.0repy € {£1,0} and for all Q € Q,
(Bs)  oePo with the following properties

dim o=dim Cq

(1) ap o =0 unless o’ is a facet of o. In that case aq o € {£1}.

(2) If 0,0" € Pp then
Z Ao o' Ayl o = 0

o’'e€Pp
(3) Br € {£1}
(4) Let o € Py, dimo =dimCq — 1. Then
Bot @t o + Boy oy o =0
where the o, 05 are the two cells in Pg having o as a facet.
(5) Let 0 € Pg, dimo =dimAg and let Q' € Q, Q' C Q, (Q/Q') =1. Then
there is a unique o’ € Pg: with the property that o C do’. Furthermore
Aot ,0Be = Q@B
(Note that necessarily dim ¢’ = dim Ag/)
Proof . We will content ourselves by giving the definition of the a’s and the 3’s. The

proof that they have the required properties is standard (similar to the verifications
in [21, Chapter IV]).
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Denote by Cg; the union of cells in Pq of dimension less than or equal to n. To

simplify the notation, we also define C¢) = Cgim Co-1

Let i, stand for the natural inclusions of pairs (g,d0) C (C’g,Cg*l) where
dim o = n. Then the natural map
@ oerq Hn(0,00)Q > @qig. >> Hn(CH, CH)
dimo=n
is an isomorphism [21, Theorem 2.1, Ch. IV]. Choose base vectors e, in H, (o, do)
for o € Pp.
Then one defines Qig.(€r) = Bp' Qo o iox(€0r) Where O is the natural boundary
map
H,o(C,OF™Y) — Hya (C ', CF72)
Now let D = {\ € Cp | ||\|| = 1} and define C") = Udim cq<n C@- Let iq stand
for the inclusion
(Cq,0Co) — (C™ uD,c™Yy D)
where n = dim Cq.
C(™ U D is obtained from C("~Y U D by attaching n-cells of the form Cq. Hence

@D HulCo,dCq) =% H,(C™ UD,c" Y U D)
QeQ
dim Cqo=n

is an isomorphism and one may choose base vectors eq € H,(Cq, 9Cq) such that

Dig(eq) = @D aq.qorigi(eq’)
Q
where 0 is now the natural boundary map
H,(C™ uD,c"YUD)— H,_1(C"VuD,c"2yD)
Having chosen the eg we define 3, by

]Q* (6Q> = ®aﬂaia* (ea)
where jg is the inclusion (Cq,dCq) C (Cq,CY)

Analogous with o p gy, (pr o) We define a(, g),(o,q) for (0,Q), (o,Q") such that
o' Co,Q CQ,dimo—dimo’ +1(Q/Q) = 1.

aa,a’(_)l(Q/B) if dimeo’ — dimo = 1, Q = Q’

A(0,Q).(0",Q") = | 2Q".Q fi(Q/Q)=1,0=0
0 otherwise

5.3. The construction of the spectral sequences. We keep the notations of the

previous sections. In particular G, T, B, X, @, etc. .. will have their usual meaning.
Below we construct two spectral sequences abutting to P*VH%. (X, Z;). Only the

second one will be important to us afterwards. The first one is included because it

is a direct generalization of [28, Thm 5.2.1], and also because it represents a resting

point in the proof of the second one.
IfQ,Q € Q,Q C Q' then mg, ¢ will be the projection map G x? X — G x@ X,

Clearly 10y o/ (Z)gxar x = (Z)axax and Ry o (Z)gxar x = (Zi)gxex[2dimQ'/Q)(dim @/ Q).
The trace map (in D2(G x9" X, 7))

Tir, o : R1Q.anRig o (Z)axa x = Riq.a(Zi)axex[2dim Q' /Q)(dim Q'/Q) — (Zi)gye'x
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gives by twisting a map
(5.4)
RrQ.q+(Z)gxex [2dim G/QNdim G/Q) — (Zi) gyar x[2dim G/Q")(dim G/Q')

which we will denote by Trer,Q/ too.

As a convention we will denote other maps derived from Tr, oo DY functoriality
also by Trr, ,,. Noteworthy examples are maps induced on homology, perverse
homology and the constructions in section 3.2.

Theorem 5.3.1. There is a second quadrant spectral sequence, converging to pe”H;ﬂﬂ(X, )
with E*-term

(5.5) Eipq — @ PETquJFQdimG/Q(WQ,G*OLGXQXP)(ZI)GXQX(dimG/Q)
(P,Q)ERr—1—p

The differentials d : Elpq — E_pt14 are given by

(5.6) D ey roma.c(Trn, o)

where the sum runs over all pairs

((Pa Q)v (P/a Q/)) € 7—\)’7“717p X erp
such that (P, Q) is a face of (P',Q’).

Theorem 5.3.2. There is a second quadrant spectral sequence, converging to pe”H;ﬁJrq(X, Zy)
with E' term
(5.7)

Eipq . @ perqu+2dimG/Q(TrQ-,G*OEGXQXU)(Zl)GXQX(dim G/Q)
c€PR,QREQ,0CCQ\dC
dim c—dim T+1(Q/B)=—p

and the differentials d : Eipq — E_p114 are given by

@ (o', (0.0)TQ .G+ (Trmg o)

where the sum runs over all “permissible” pairs ((o, @), (0’,Q’)). Permissible means

that o C o', Q C Q', dimo’ —dimo 4+ 1(Q'/Q) = 1.

5.4. Proofs of Theorems 5.3.1 and 5.3.2. For Q € Q, let Ip be an injective
resolution of (Z;)gxex[2dimG/Q](dim G/Q) in (Z;)gxex-mod.
The trace map defined by (5.4) gives rise to a map (determined up to homotopy)

TQ.Qxlg = Igr
which we will also denote by Tr, 0.0
Lemma 5.4.1. Hole((Zz)GXer-mod)(ﬂ-QvQ'*IQ’IQ’) =0 fori<D0.
Proof . Rmg,q+« has amplitude [0,2dimQ’/Q]. Hence 7g o/+Ig has homology

in degrees [-2dim G/Q, —2dim G/Q'], whereas I has homology only in degree
—2dim G/Q’. This proves the lemma.
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We define now a poset S which, for technical reasons, is a union of three posets
S1, S2, S3 respectively defined by
S ={(0,Q)| Q€ Q,0€Pg,o¢ 0C}
S ={(Cp,Q) | P,QEQ,PDQ} (=R)
Ss ={(Cs,G)}
S is ordered as follows
U,Q) < (U,Q) +—= QcQ and U CcU’
We define e : S — Z by

dlmU-i—l(Q/B) —dimT if (U,Q) €S US,

e, Q) = {o it (U,Q) € S5

It is easy to see that e is order preserving. Furthermore S;, S2, S3 are catenary
subsets of S.

For (U,Q), (U', Q") € S we define X (1) as G x? X and m(y,q),1v.Q) 28 TQ,0 -
Gx9X - Gx9 X. Itis easily seen that

T=(S6X,(Xwe) (Twe),.w.e))
satisfies the conditions listed in the beginning of section 4.
Now we proceed by constructing certain objects D, E, F in Cy(7, K(Z;-mod)),

related by maps F %L D. According to Theorem 4.5.2 these may be lifted (up
to homotopy) to objects and maps

(5.8) FLELD

in C(7,Z;-mod). We will then construct a family of supports Y for 7 and we
will show that TotoL' applied to (5.8) yields quasi-isomorphims. The perverse
homology of (Tot ogy)(f)) will be P"VH%.. (X, Z;), whereas the spectral sequence
(4.3) applied to (TotoL' )(E) and (Toto L' )(F) will yield the spectral sequences
(5.5) and (5.7).

Now we proceed with the constructions. D will be ((Fv,@)), (dw,@),w,q@)))
where

s . Ig if (U,Q) € Ss
Q) = 0 otherwise

Since 83 is a singleton, d(y,q),w,q) is always zero.
E will be ((f(a@)), (d(U,Q),(U’,Q’))) where

s . IQ if (U,Q)ESQ
L.Q) = 0 otherwise

and dy,),w,q Will be zero unless (U, Q) = (Cp,Q), (U',Q") = (Cp, Q") where
(P,Q) is a facet of (P’,Q’). In that case d(y,q),w,0) = .0, (P,@) Tt
F will be ((F,0)), (dw,0),w’,q)) where

£ ) Ig if U,Q) e S
v = 0 otherwise

TQ,Q""
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and d(y,q),w,q) Will be zero unless (U,Q),(U",Q") € &, (U,Q) < (U',Q'),
e(U', Q") = e(U,Q) + 1. In that case d(,g),(w,q@) = Xw,Q),W,Q) Trrg, o

[ E — D will be a collection of maps (f(,q),(v",q")) Where fu,q),(w,q) is zero
unless (U, Q) = (Cq,Q), (U',Q") = (Cp,G). In that case fy,g),w @ is equal to

B.@ Trrg.q-
g : F — E will be a collection of maps (g(v,0),w,q’)) Where gw,q),(w,q is zero

unless (U, Q) = (0,Q), (U, Q") = (Cp,Q) where for some (P,Q) € R, 0 € Pp,
dimo = dim Cp. In that case g, q),w,q/) is given by Byldy,.

One may verify, using Proposition 5.2.1 and lemma 5.4.1 that D, E F, f, g lie
indeed in Cy(7, K(Z;-mod)).

As already said above, D.E,F, f, g will be liftings of D, E, F, f, g to C(7, Z;-mod)
under the functor For.

For (U,Q) € S define Y(U,Q) = G x@ QXy. Clearly W(U,Q),(U’,Q’)(}/(U,Q)) C
Yoy if (U,Q) < (U',Q") in S and hence Y = (Y(y,q)) is a T-compatible system
of supports in the sense of section 4.6. Furthermore,

v _ GXQXU if(U,Q)ESlLJSQ
Q) = xu if (U,Q) € Ss

Claim 1. (TotoL, )( f) is a quasi-isomorphism.

Proof . The proof is very similar to the proof of [28, Theorem 5.2.1]
Let C be a subset of B as in Proposition 5.1.1 and define

Te = USB,A: UYA
Aec AeC
For (U,Q) € S put Te,v,o = QIec N QXy. Then Ty, is a closed subset of X and
Ye = (G x9 Te,v,Q)w,0)es forms a T-compatible family of supports.
Our aim is now to show, by induction on |C| that (Tot O£YC)( f) is a quasi-
isomorphism. Obviously, the case we need is C = B and the case C = 0 is trivial.

To start the induction let A be a maximal element of C and put ' =C — \. Tt
follows form Proposition 5.1.1 that

QTc = | J Qva = [ Son
Aec Aec
Hence T¢,v,q is the disjoint union of T¢/ 17,¢ and Sg AxNQXy. Then Y def Yo—Yo =

(G x(Tevg — Tewve)we = (G x? (SoaNQXY))w.q)-
From the discussions in section 4.6 we obtain a commutative diagram in C(7 , Z;-mod)
with exact rows

0 —— L, (B) — L, (B) —— L, (B) —— 0
lgyc, %) l;yc %) lgn 5
0 —— L, O —— L, D) ——L, D) ——0

Hence, by induction, it is now sufficient to show that (Totogyx)( f) is a quasi-

isomorphism. To this end it is sufficient to show that this map induces an isomor-
phism between the E? terms of the spectral sequences associated to the natural

filtrations (4.2) on (Tot OEYA)(D) and (Tot OEYA)(E).
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The E;-term of the spectral sequence for (Tot o ;Yk)(]:f)) looks like

Eipq(E) . @(P,Q)en,p,1+qu+2dim G/Q(T‘-Q G*OFGXQ(SQ mXP))(Zl)GXQX(dim G/Q)

with differential similar to (5~6)
Similarly for (Tot o ;YA)(D) we have

(D) = {RqLSG,AXv 7 ifp=0

0 otherwise

1
B Pq

The maps induced on these E'-terms is zero everywhere, except in degrees p = 0
where it is a map

€ : Egy(B) = Eg,(D) : &(pger, 1 F.0 Trroc
(note that (P,Q) € R,—1 < P =Q).
Hence to show that LY)\ (f) induces an isomorphism on E?, we have to show that
the following complexes, for varying q, are exact.
(5.9)

Rq+2 dim G/Q(

d .
T DPQER 1, Q.6 L a0 uxpy) L) axax (dimG/Q)

im i 2
Rat2d G/Q(WQ Gx © FG><Q(SQ AUXP))(ZZ)GXQX(dIm ¢l =

= RY L, (X.Zi)

d
- @(P7Q)ERT—I>

This complex is similar to [28, eq. (21)] which was for algebraic De Rham homology.
The proof now proceeds as in loc. cit.

Claim 2. (TotoL, )(9) is a quasi-isomorphism.

Proof . We follow a method similar to the proof of Claim 1.
This time let C be a subset of R with the property that if (P,Q) € C then all
(P, Q") € R such that (P’,Q’) > (P, Q) are in C. Put

Sc={U0,Q)eS|VPeQ:UcCCp=(P,Q)eC}U{(Cp,G)}

Clearly if (U,Q) € S¢ and (U’,Q’) € S with (U’,Q") > (U, Q) then (U',Q’) € Sc.
Obviously Sg = S. Our aim is to show by induction on |C| that (Toto L, ogsc)(g)
is a quasi-isomorphism (using the notations of §3.6). This shows what we want
since TotoF oF = TotoF oF = TotoF

Let (P, QO) be a minimal element of C and put C'=C— (P, Qo).

Put also

Sipy,00) = {(U,Qo0) € S| Py is the maximal element of Q such that U C Cp, }

There are exact sequences in C (7, Z;-mod)
0 — £Sc/ (F) - £SC(F) 7 LS(P()!QU)(F) -0

lgsc, @) F‘Sc @ lgs(%%) @

0 —— I (B) — L (B) — I, (B —0

Again applying induction, it is now sufficient to show that (Tot o L, ol ))(g)
—<(Py,Qo
is a quasi-isomorphism.
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Now let I | (F)’ be obtained from £S<P0,Q0> (F) by replacing all dw,0),w",q"
where dimU’ — dimU # 0,1 by 0. Similarly let £S<P0,Q0>(g)l be obtained from
L o0 (g) by replacing all g(,q),w’,q) Where dimU # dim U’ by 0.

Then it follows from the definitions of F and g that £S(PU,Q0) (F) and £S(PU,Q0) ()

are still in C(7,.A), and yield identical images in C(7, K(A)) as ES(P . )(f) and
(P, Qo

r (g) under For.
=S(Py,Q0)
By Theorem 4.5.2 this means there are homotopy invertible maps ¢, ¢’ in

C(7T,Z;-mod) such that the diagram below is commutative up to homotopy
~ (z) ~
r FY —— T F
=S(py,Q0) ( ) =S5(Py.Q0) ( )

~\/

L (9) r
l_S(Po,QU) =S(Py,Q0)

~ ¢’ ~
I FY — T F
=S<PO,Q0>( ) =S<P0,Qo>( )

(@

Hence it is now sufficient to show that (Tot o L', )(L s ) (g)) is a quasi-isomorphism.
- —<(P0,Q0
Since now Tot is merely applying mg g+, and everything is sight is acyclic for

TQ,qx, we are reduced to showing the acyclicity of the simple complex, associated
to the following double complex

(5.10)
d d d
T @ EGXQUXU(GXQOX’IQO) - @ EGXQOXU(GXQOX’IQ“) -
cEPp cEPR
dim o’+l(Qg/OB):p71 dim aJrl(QoO/B):p
= Lgaoxy, (G x@ X Io)) — 0

Here d is given by @®o face of 0Qo,0'%07,c and € is given by @ﬁgimAQo where for
U, U € Ag,, U C U’ we have used the notation iy gy for the inclusion

G x? X, Ig,) =T (G x9 X, Io,)

EGXQUXU( :GXQUXU/

The proof of the exactness of (5.10) is exactly the same as that of [29, lemmas
3.2.2]
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6. CALCULATION OF THE SPECTRAL SEQUENCE (5.7) UNDER CONDITION (*)

In this section we keep the notations of the previous sections and we will assume
throughout that condition (*) holds. Under this hypothesis we will compute the E*
and the E2-terms of the spectral sequence (5.7) and we will show that it degenerates
at E2.

First we have to introduce some more notations. ey will be the codimension of
Xyin X. If A\, X € Y(T')g the we will say that A ~ X if X, = X . This equivalence
relation is clearly Wg-equivariant. If U C Y(T')g then Uy = {X € U | X ~ A}. Ux
is a locally closed subset of U and it is convex if U is convex.

Lemma 6.1. Let A € Cg. Then
P={geG|gXy=Xy}
is a parabolic subgroup of G and it is of the form Py for some X' € (Cp)a.

Proof . P is a parabolic since it contains B. Let Wp be the Weyl group of P.
Then WpX, = X, or Vw € Wp : wA ~ AX. Hence C, is Wp invariant. Put
N = ﬁ > wew, WA. Since Cy is convex N € Cy.

We claim that P = Py/. To this end, we have to show that for every root p of P
one has (N, p) > 0. But

Now assume that p is a root of the Levy subgroup of P. In that case Z’LUEWP wp =0
and hence (X, p) = 0.

On the other hand if p is a root of the unipotent part of P then all (wp)yew,
are roots of B. Since A € Cp this implies that (A, wp) > 0. Hence (X', p) > 0.

The fact that B C P = P) implies that A’ € Cg. Hence X' € Cp N C) = (Cp)a.

Clearly the parabolic Py constructed in the above lemma is the largest parabolic
in the set (P,)uec(cp),- Note that the existence of such a maximal element was not
entirely obvious.

We will choose a set of representants A C Cg for the equivalence classes Cg/ ~
in such a way that if A € A then P\ D P, for all p ~ A, p € Cp. According to
lemma 6.1 this is possible.

In the sequel we assume that the roots of B are the negative roots. ®, ®T, S will
resp. be the roots, the positive roots and the simple roots of G. If w € Wg then
I(w) is the length of w with respect to S.

If A € C then H) will be the Levy subgroup of Py. and we denote by Wy, ®,,
@;\r, Sy resp the Weyl group of H) (i.e. the stabilizer of A in W), the roots of H)
(i.e. those roots such that (A, p) = 0), the positive roots of Hy and the simple roots
of Hy. For @ € Q we let W, g be those elements of W, which map the positive
root of ) N Hy inside <I>;f. Note that is A = 0 then P\ = H) = G.

We need the following result. Let Q,Q’ € Q such that @ C Q' and let maps be
named as in the following diagram :

G/Q 2% G/Q

X X

Speck

Speck
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Note that Wy or C Wo,q.

Lemma 6.2. Leti € Nand Q,Q' € Q. Then R**'x,(Zi)c/q = 0 and R*'7,(Zi) G /q (i)
is a free Z;-module (with trivial Galois action) indexed by those elements of Wy ¢
having length dim G/Q — i.

Furthermore, for this basis, the trace map

m(Teny, o) ¢ REmZ(6) — R0 QY 7, (i — dim Q'/Q)

is induced by the map Wo g — Wo,or which is the identity on Wy, C Wh,0, and
zero elsewhere.

Proof . This is well know and easy to prove. See [4] as a classical reference for
the topological case. The point is that G/Q = U,,c, o, (BwQ/Q) and R*7.Z;(i)
is generated by the characteristic classes of the Bruhat cells Bw@/Q of dimension
dim G/Q — i.

The functorial properties of the trace map insure that these characteristic classes
are compatible with it.

The choice of the set = and the CW-complex P on C (see §4,2) guarantee that
for every o € Pp there exist a A € relint o such that X, = X, and then there is
a unique N € A, X ~ A. This shows that the spectral sequence (5.7) is build up
from the following basic building blocks.

E,(\(,])Q — perqu+2dimG/Q(7'rQ,G o LGXQXA)(@l)GXQX(dim G/Q)

where A € A, Q € 9, Q C Py. Note that we did switch to Q;-coefficients.
We will use maps as named in the following diagram :

TQ,Py e

e = [P)\] — P)\/Q

| |

T(X,Q),(X,Py)
T AT

GxQX, — s GxX

l“(A,Pw,G l“(m;)),c lﬂQ,G

X _ X _ X
Lemma 6.3. Assume that condition (*) holds. Then
(6.1)

0 if ¢ 2 dim G x™ X, mod 2

(q
A Q,\(*éq + %dimG xP X)) ®q, Bf\qég otherwise

) —
Q
where Gy is a simple perverse sheaf in D%(X,Qy) given by

v pdim Gx A X
Gy =PRI T T by e (Q) axra xy

and Bg\% 1s the Qp-vector space with basis

1 1 1
(6.2) {w e Wi |l(w):idimXAfgdimG/PA—iane,\}
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Proof . First of all note that 7 is a closed immersion of smooth varieties. Hence we
may invoke [1, XVI 3.8,3.10] to rewrite £, as

(6.3) E% = POVRIH? dimG/Qi%)\ﬂ'(/\,Q),G*(@l)GXQX)\ (dim G/Q — ey)

Here

R7(x,0),6+(Q)axex, = (Rmx py),ax © RT(x,0),00, ) Qi) axex
= (Bmx,py).6x © ) (RTQ, P+ (Q1)a/q)

Now by Deligne’s criterion [13, Thm 1.5]

dim Py /Q

(6.5) Rrgp(Q)aq= @D Rmgr(Q)aql-il
1=0

(6.4)

Since (G/Py )y, is simply connected, we may compute the righthand side of (6.5) in
a rational point. We choose e = [P,] for this rational point. We find that
2dim Py /Q
(6.6) 65 = P E'me.r.e(Q)r Q) Qo (@a/p,)[-i]
i=0
To simplify the notation a bit, we will put

AV = R¥7q py e (Qu) (i)

AS)Q may be identified with a Q; vector space with trivial Gal(k/k) action. Hence
we find
dim Py /Q
Rrgr-@)oie= D (A o @)e/r)(—)[-2i]
i=0
Substituting this in (6.4) yields

dim Py /Q
Rrngo@axax, = P (Brpr).c(@)axr x, o A(;,)Q)(—i)[—%]
1=0

Now by Proposition 3.2.1 and condition (¥*)
Gx = Ry py),cQidim G x ™ X,\]
is a simple perverse sheaf. Hence we find that

dim Py /Q
6.7) Rrpnge@axexy, =G @ | @ AVL(—i)[-2i — dim G x™ X,

A summand in (6.7) will not contribute to (6.3) unless
i= ol
where qb(Q) is the following magic number

A\ = —q+d1mG/Q —ex— —dunG < X

To make the notation less heavy, we put B( )Q A( 22 where * = qbf\q)Q if qﬁg\qg is
integral. Then combining (6.7) and (6.3) ylelds (6. 1)
According to lemma 6.2

B, = {w e Wyq | l(w) = dim P,/Q — ¢\'),}
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which yields (6.2).

Lemma 6.4. Assume condition (*), ¢ = ¢ = dim G x™ X, mod2 and k finitely
generated over Q. Then for Q,Q’' € Q, Q,Q’ C Py

(6.8) Hom s x,0,) (By . Byl ) = 0

unless A= XN, g =¢'. In that case

(6.9) Hom py (x ) (BN B\,

Furthermore the trace morphism for Q C @’

Rﬂ'Q/,G*(Trﬂ'Q,Q/) : E,(\(,Zég - E/(\(,Zéz’

corresponds, under the identification (6.2) to the natural projection
Wi = Wae
which is the identity on Wx q: C W @ and zero otherwise.

) = Homg, (B\'),, B\"),)

Proof . We use the fact that the G, are simple perverse sheaves, with support GX.
Le. Hom(Gx,Gy) = 0 if A # X using condition (*), and consequently (6.8) is true
if A # ). Hence assume A = \. Then
1 /
La—a)
Since we are over a finitely generated extension of Q, I'(Q;(—2 (¢—¢')) is zero unless
g = ¢ in which case it is Q;. This proves the first half of lemma 6.4.

) = Homg, (B{"),, B\"),) ®q, T'(Qy(

HomDE(X,Qz)(E(q) B AQ P

A,Q7 TAQ!

To prove the second half assume @ C @Q'. We remember that Bg\% was an
abbreviation for

(a)
R*Yamg.py o( Q) py o (03))
Since (bf\‘f)Q, = gbf\q,)Q — dim Q’/Q there is a trace map

(q) 26 ,
Rrq pyex(Trng, o) R2¢>"Q7TQ,PMe*(@l)P)\/Q(QSg\(Z,zQ) — R*xa WQ’,PA,e*(@l)P)\/Q’(ng\q,)Q/)
and by lemma 6.2 this map is precisely induced from the projection Wy o — Wh o--

We claim that this map corresponds to Eg% — Eg%,. This follows by following
the computations in the proof of lemma 6.3 using the usual properties of the trace
map such as lemma 3.2.2, compatibility with base change, and with compositions
of maps. The argument, which uses the maps indicated in the following diagram,
but notationally somewhat awkward.

PJ/Q —— G/Q «—— Gx9X, —— Gx9X

lﬂ'Q,Q/,e l

P/Q —— G/Q —— Gx?¥ X, —— Gx9¥X
(6.10) l l 0

e=[P\] —— G/P\ —— GxP Xy, —— Gxp X

Lemma 6.5. Assume condition (*).
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(1) The spectral sequence (5.7), with Q;-coefficients, degenerates at the E2-
term.
(2) The E'-term, with Q;-coefficients, has the form

1 1 .
Elpq = @ g,\(*iq + 5 dlmG XPA X,\) ®Ql Eipq,)\
AEA
where
0 if ¢ % dim G x™ X, mod 2

Eipq,)\ =1 0€PE,QEQ B% otherwise
relint cC(C\0C)
dim o—dim T+I(Q/B)=—p
Furthermore the differential d_pq : E
of the form

1 . . .
pqg — EZ i1, 08 induced from differ-

~ 1
entials on EZ

()
@ a(a’7Q/)a(07Q)p/\q,Q,Q/
where pg\'%@, stands now for the map B;‘f)Q — Bg\%,, obtained from the

natural projection Wi g — Wh o

Proof . We may assume that k is finitely generated over Q. The the lemma is a
direct combination of lemmas 6.3 and 6.4 and since Hom(Gx(—3¢ + 3 dim G x™
XA),QA/(f%q’ + %dimG xPr X)) =0 unless A =\, ¢ =¢.

Now Eipq,x may be simplified further.

Lemma 6.6.
1 _ 1
E*pq,A - @ E*pqyw)\

weEW
with
gl QU if g =dim Xy — dim G/ Py — 2l(w) + 2ex
—pg,w, A T .
0 otherwise

where U_p 0,5 5 the set
{(0,Q) |0 € PB,Q € Q,w € W, g,relinto C (Co\IC), dimo—dim T+I(Q/B) = —p}
The differential d_pq : E_pq — E_pi1,q induces differentials on QiU_p ., x given by
d(0,Q) = Y a0 Q)
(¢7,Q")

Here (o/,Q'") runs through U_p41,q,w,x with o C o', Q@ C Q', dim¢’ = dimo + 1,
(Q'/Q) =0, ordimo’ =dimo and [(Q'/Q) = 1.

Proof . This is immediate from lemma 6.5
Hence we have to compute the homology of
( QiU i, 2)
First we introduce a few lemmas which will be used afterwards.

Lemma 6.7. Let w € Wy, A € Cg. Then there exists a unique Q € Q, Q C Py
(denoted by Py » below) which is mazimal for the property w € Wi q.
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Proof . Let Q € Q, Q C P\, w € W,. Denote the simple and the positive roots
of @ by respectively Sg and @5. If S € X(T) write (S)T for the positive integer
linear combinations of S. Then &, = (S)" N ®,.

We have w € Wy g <= wd(, C &Y PON wSg C @Y <= So C Sxnw o],

g is seen as follows : assume wSg C @;\r. Then wCIDZS = (wSqg)T N®y C

(@)t Ny =dF.

It now follows that the maximal case is given by Sg = Sy Nw™1®T

For o € Pp denote by P, the largest element of Q such that relintoc C Ap, .
Lemma 6.8. Let A € Cg, w € W,. Let Ag”’)‘) = Ap — UseSmw*hbi Ap, where
we let Ps stand for the parabolic containing B and having s as a unique simple root.
Then Asgw’/\) has the property that

Vo € Pp: P, NPy, y=DB <= relinto C Ag”’)‘)
Proof . For U C Ap, V C X(T')r we denote
VU ={v eV |Vu e U, (u,v) =0}
and a similar definition for UV .
For P € Q let us denote by Sp the simple roots. By the proof of lemma 6.7
Spw)\ =5N wilfb;\r

Hence the condition

PN Pyy=B
may be reformulated as
(6.11) Sp, N (SxNw @) =10
Now Sp, = S§+7 and hence (6.11) may be rewritten as
(6.12) (Sxnw™ o)t =0

Let X' € relinto. By our construction of Pp (see §5.2) (6.12) is equivalent with
(SxNw e =0
Or
Nedp— | 4
SGSxﬁw*hbi

which shows what we want.

Now we are ready to state the main result of this section. Let us call a pair
(w,A) € Wg x A admissible if w € W), and if

(Ap) N AN £0
For (w, \) admissible, define
Wyr = (Cp\8C)A N AW — (C5\ 0C)\ N ALY

It is easy to see that (Cp \ 9C)x N A%w’/\) is can be written as the intersection of
an open and a closed set. This implies that U, 5 is closed in Y (T)g.

If A € A put fy = codimGX),. Note that under condition (*) fy = ey —
dim G/P)\
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Theorem 6.9. Assume that condition (*) holds. Then P*""H’%. (X, Q;[dim X]) is
filtered, with associated graded quotients

P ARy, Q) @, Ga(l(w) — f)
(w,\) admissible
Here Gy is the simple perverse sheaf

RW()\,P)\)7G*(QZGXP>\X)\ [dlm G XPA X,\])

Proof . According to lemma 6.6, we have to compute the homology of (Qils w2 )+
First of all, note that one may rewrite U_, ., x as

{(0,Q) | 0 € Pp,relinto C (Cp\IC)x,Q € Q,Q C PoNPy x,dimo—dim T+I(Q/B) = —p}

Now we may filter (Qils 1)« according to dimo and then the associated graded
complexes are direct sums of reduced cochain complexes of abstract complexes of
the form

{QeQ|BCQCP,NPyx}
Hence these are acyclic, unless P, N P, \ = B.
Hence (Qils,w,x)+« is quasi-isomorphic to its quotient complex (Quf] ,, 5). Where
U =10 €Pp|relinto C (Cp\IC)x, P, N Py = B,dimo —dimT = —p}
={o € Pp|relintoc C (Cp\IC)\N Ag”’)‘),dimo =dimT — p}

Hence if (Cp \ 0C)x N AW = () then U/

*

If (Cp\aC)xN Afgw’/\) # 0 then the homology of (QU, , 4)« is equal to

wA = ¢ and there is no homology

(6.13)  HIT=P((Cp\ 0C)A N AYN W, 1, Q) = B T-P-1(@,, Q)

in degree —p. (Here we have used that (Cp \ 9C)\ N Afgw’/\) is convex and hence
contractible.) According to lemma 6.5 and lemma 6.6, (6.13) gives a contribution
to grP™VH% . (X,Q;) of the form

1

1 o
(6.14) g,\(—gq + 5 dimG xP X)) @ g TP (@, \ Q)

where
g =dim X — dim G/ Py — 2l(w) + 2e)
and n = —p-+gq.
Then (6.14) may be rewritten as
QA(l(w) - fA) ® Hdimdeimefk+2l(w)+n71(\I/wy)\, Ql)
This yields the desired result.
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7. PROOFS AND EXAMPLES

In this section the ground field will be C. By the Lefschetz principle, the results
remain of course valid for any algebraically closed field of char. 0. We keep otherwise
the notations of the preceding sections.

7.1. The description of Hi.(X,0x) as (G,Dx)-module. We will apply the
results of the previous section to the computation of H%.. (X, Ox) when condition
(*) holds. Since X is affine we will silently identify H&%. (X, Ox) and H%. (X, Ox).
The main tool will of course be the Riemann-Hilbert correspondence, and we
will follow the notations of the standard reference [5]. In particular the De Rham-
functor DR(?) will be the ordinary De Rham-functor, suitably shifted in such a way
that it sends holonomic modules with regular singularities to perverse sheaves.

Proof. Proof of Theorem 2.1 First note that it was shown in §3.1 that H%. (X, Ox)
and L(GXy, X) are in (G, D)-qch. Then by Proposition 3.1.2 it suffices to prove
(2.1) without the G-structure. Let Dx-rhol be the category of holonomic Dx-
modules with regular singularities. Since

DR : D(Dx-rhol) — Db(X(C),C)
commutes with the usual cohomology operations [5, VIII, 14.5], it follows that
DR(H}.(X, Ox)) = " H. (X (C), C)[dim X]
There are functors
DX, Qi) — D(X(C), Qi) — D(X(C),C)

The first one is obtained from the morphism of toposes X (C) — X [2, §6.1.2][14,
§5] and the second one is extension of the coefficient field. One verifies that these
functors commute with the usual cohomology operations and hence that they com-
mute with perverse homology. Hence to compute P*VH%. (X (C),C) it suffices to
compute P*"VH%, (X, Q;), which is done in Theorem 6.9.

Since G x™ X, — GX, is small, the G, are intersection homology perverse
sheaves (Proposition 3.2.1). Hence via the Riemann-Hilbert correspondence, they
must correspond to L(GXy, X). O

7.2. When does condition (*) hold. In contrast to the torus case, (*) is not
always true, and furthermore it is easy to see that Theorem 2.1 is false if (*) does
not hold.

In this section we give some “stable” criteria for (*) to hold. The first one says
that (*) is true if the irreducible subrepresentations of W occur with high enough
multiplicities. The second one, for simple groups, asserts that (*) holds if W has
a simple subrepresentation, with a big highest weight which lies in addition in the
root lattice. As a corollary we obtain that if G is simple of adjoint type then (*) is
satisfied for all but a finite number of W.

We start with some preparatory lemmas.

Lemma 7.2.1. Suppose that A € A, w € Wq, wA ~ p with n in Ag. Then wA = A.

Proof . Since wXy = Xy» = X, is B-stable, BuX, = wX) or w 'BwX) = X,
which, by the definition of A (after lemma 6.1), implies w~! Bw C Py. Consequently
B C P, which is only possible if w stabilizes .
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Lemma 7.2.2. Let A € A and let 7 : G x™ X\ — GX), be the natural projection
map. Then 7 is one-one at x € GX) <—

T ¢ U G(X\NwXy)
wWEWG\ Wi

Proof . Assume that x € X, NwX) for some w € Wg \ W,. Choose a representant
of w in G, and denote it by w too. Then 7(w,w lz) = 2. Since w ¢ Wj,
(w,w™tx) # (1,2) and hence 7 is not one-one at

Conversely let x € X and suppose that 7 is not one-one at z. L.e. there exist
(9,y) € G x Xy, g & Py such that x = gy, i.e. g~lo € X).

Now there exist b1, be € B, w € W\ W, such that g = bywbs, i.e. b;lwflbl_lz S
Xy orz e B(X)NwX)y) CGXyNwX)). This shows what we want.

Lemma 7.2.3. Let A, p € A. Then GX\ C GX,, <= there is some w € Wg
such that
dim B(X NwX,,) = dim X

Proof . We use the following chain of equivalences

GX) CGX, <= X\ CGX, «— X\ C |J Buwx, <&

weEWaG
Jw € We : X\ N BwX,, dense in Xy <= Jw € Wg : dim B(X) NwX,) = dim X

To prove @ one uses that U, BwX, = GX, is closed. W follows from the fact

that the BwX,, are constructible.

Theorem 7.2.4. There is a number N, depending only on G with the property
that, if all irreducible subrepresentations of W have multiplicity > N then (*) is
true.

Proof . Assume that W = V,®™ @ ... @ V.9"m  the (V;); irreducible and distinct,
and let n = min(n;);.

Put W =Vi®---®V,. Below we will denote with a prime constructions that
that relate to W’ instead of to W. In particular one may define A’, but is easy to
see that A’ = A.

For G x™ X, — GX, to be a small resolution, it is clearly sufficient by lemma
7.2.2 that Yw € Wg \ Wh
(7.1) dim GX ) —dim G(X) NwX)y) > 2dim G/ Py
since dim G/ Py is the maximal dimension of a fiber of G xP Xy — GX,.

(7.1) is clearly implied by
(7.2) dim X —dim X NwX, > 3dim G
We will choose N in such a way that (7.2) is fulfilled if n > N.

First note that by lemma 7.2.1

dime\ — dime\ N wX; >1
Hence
dim X — X\ NwX, > n(dim X} — dim(X} NwX}))
>n
Therefore it suffices to take N = 3dim G + 1.
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Now let A, pp € A, A # p and assume GX\ = GX,. According to lemma 7.2.3
there exist w,w’ € Wg such that dim B(X) NwX,) = dim X, and dim B(X, N
w' X)) =dim X,.

In particular

dim X — dim(X) NwX,) < dimB
7.3
(73) dim X, — dim(X, Nw'X,) < dim B
Now we claim that either
(7.4) dim X} # dim(X} NwX,) or
' dim X, # dim(X,, N w'X})

Suppose that on the contrary both inequalities in (7.4) are equalities. Then X} =
wX ;L but by lemma 7.2.1 this implies A ~ u, which contradicts the hypotheses.

As above we now conclude
dim X — dim(X) NwX,,)
dim X, — dim(X, NwX})

which, if n > N, contradicts (7.3).

or

>n
(7.5) .

Now we start with the proof of the second stable criterion

Lemma 7.2.5. Let \,u € Y(T)r and assume that Ap, ¢ Ap,. Then there exist
p € ® such that (X, p) <0 and (i, p) > 0.

Proof . Assume that g € Ap, \ Ap,. Since
Ap, ={CeY(T)r |Vpe ®: (A p) 20=((,p) =0}
and a similar statement for Ap, , we find that
Vpe®:(\p) 20=(8,p)=0

and there exist a p' € ® such that (u,p’) > 0 but (5,p’) < 0 which implies
(A, p'y < 0. Hence p’ is the sought element of ®.

Lemma 7.2.6. Assume that W is a finite group and E is a finite dimensional
irreducible representation of W over R. Let ( , ) be a W-invariant positive definite
bilinear form on E. Then there exist and r > 0 such that for any X\ € E, (\,\) =1,
the convex hull of (WA\)wews contains a closed ball of radius r (with respect to the
distance given by (1, )).

Proof . Let S C E be the unit sphere and let B, stand for a closed ball of radius r.
Denote the convex hull of (wA),, by I'x. First note that for any A € E, 0 lies in the
relative interior of I'y since N = ﬁ >~ gX is G-invariant and since E is irreducible
this implies A’ = 0.
We now define a function
¢:S5—1[0,1]: A\ — max r
B,.CT

It is not hard to verify that ¢ is continuous and since .S is compact, ¢ has a minimum
which we call r. This is the r we want provided that it is not 0. Suppose that r = 0,
i.e. there is a A such that 0 lies on the boundary of I'y. Since 0 also lies in the
relative interior, this implies dimI'y < dim E. But this means that A generates a
subrepresentation of F, which contradicts our hypotheses.
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Below (, ) will be a Wg invariant form on X (T)gr and || || will be its corre-
sponding norm.

Theorem 7.2.7. Let G be simple. Then there exists a real number M, depending
only on G, with the property that, if W contains an irreducible representation with
highest weight x lying in the root lattice having the property that ||x|| > M, then
(G, W) satifies condition (*).

Proof . Let W, x be as in the statement of the theorem. We follow more or less the
strategy of the proof of Theorem 7.2.4. Let A € A.
For G x™ X\ — G X to be a small resolution it suffices that Yw € Wg \ W)

(7.6) dim X, — dim(Xy NwX,) > 3dim G

Take w € W \ Wh. Since wA # A there exist by lemma 7.2.5 a p’ € ® such that
(wA, p') >0, (A, p') <0. Put p=—p’. Hence those —np, n > 1 that are weights of
X will also be weights of X, but not of wX, = Xy.

Now the weights of X contain the integral linear combinations of roots lying in
the convex hull of wy. We apply now lemma 7.2.6 with £ = X(T)g and W = Wg
and we let r stand for the corresponding number defined in that lemma. We then
find that —np will be a weight of X for

I, < I

m m

where m is max,ca ||p||.
Le.

dim X — dnn(X,\ ﬁwX,\) > M -2
m
which implies (7.6) if ||x|| > w. Le. if we put M = w and we
assume that ||x|| > M then G x™ X — G X, will be a small resolution.

Let A\, pp € A, A # p and suppose GX\ = GX,,. Le. there exist w € Wg, v’ € Wg
with the property that

dim X = dim B(X NwX,)
dim X,, = dim B(X,, Nw'X})

Clearly, not both w € Wp, and w’ € W). Hence assume w & Wp,.
(7.7) implies that

(7.7)

dim X — dim(X) NwX,) < dimB

dim X,, — dim(X, Nw'X,) < dim B

If we would have that Ap, C Ap,, and Ap, C pr,u then Ap, = Ap,, which is
impossible since wu # p.

Hence we may for example assume that Ap, ¢ Ap,, which means that there
exists a p € ® such that (A, p) <0, {(wy, p) > 0. Le. as above dim X — dim(X N
wX,,) > BT _ 9 which is bigger than 3dim G > dim B if ||x|| > M. This contra-
dicts (7.7).

The case Ap, ¢ Ap, is similar.

(7.8)

Theorem 7.2.4 and Theorem 7.2.7 lead to the following corollary.

Corollary 7.2.8. If G is simple of adjoint type then there are only a finite number
of W such (*) is not satisfied.
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Proof . For a group of adjoint type all representations have their weights in the root
lattice. Suppose that W is such that condition (*) does not hold. By Theorems 7.2.4
and 7.2.7 the irreducible subrepresentations of W have both their multiplicities and
their highest weights bounded. Hence there are only a finite number of possibilities
for W.

For irreducible representations, not having their highest weight in the root lattice,
there is in general no boundedness result such as in Theorem 7.2.7. E.g. consider
the following example :

Example 7.2.9. Let G be the simply connected group of type By and let the simple
roots be a and (3 such that ||| > ||a||. Furthermore let W be the representation
with highest weight 3a + %6.

Then the weights of W, together with their multiplicities, are as follows.

A

® ®
1 2 2 1
e __ @ ® ®
® ® ® ® ® T e _
1 2 3 3 2 1
® ® ® ®
1 2 2 1
@ @

Identify X (T)g with Y(T)r using ( , ), let A be as indicated in the diagram and
let w be the reflection corresponding to a.

Then dim X, — dim(X, NwXy) = 1, and since X, N wX) is not B-invariant
(the weights are not stable under adding the roots of B), B(Xx NwX)) is dense
in X and hence G(X\ NwX)) is dense in GX. This implies by lemma 7.2.2 that
G xB X, — GX, is not even birational.

It is clear that this example may be generalized to yield arbitrary big irreducible
representations such that (*) does not hold. Similar examples may be constructed
for other classical groups.

7.3. Calculation of the character of £L(GX), X). To apply Theorem 2.1 effec-
tively, we need to know the G-structure on £L(GX, X). Throughout this subsection
we assume that (*) holds. Assume A € A.
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We will use the following diagram

Gx Xy — s axP X

| RS

GX, —— X
Lemma 7.3.1.
(7.9) (7TP>”G’L-)+OG><P>\X)\ >~ L(GXy, X)
in (G,Dx)-qch.

Proof . Since G x™ X\ — G X, is a small resolution by hypothesis, it follows from
the Riemann-Hilbert correspondence and [15, §6.2] that

(710) (WP)”GZ.)JFOGXPAX)\ = E(GX)\,X)
(7.9) now follows by Proposition 3.1.2.

Hence we have to compute the G-character of (7p, ¢i)+Ogyxrrx,- (There is a
slight abuse of terminology here since literally (7p, ¢i)+Ogy P x, is @ Ox-module,
but we consider it as an R = SW-module.)

We now use the following diagram

GxH»X —— G/P)\

J{Trpx,c lﬂpx,c

X . SpecC

Taking the fiber over [Py] € G/Py induces an equivalence between (G, Og/ p, )-qch
and the category of rational Py-representations. Below we denote the inverse of
this functor by~

. ; e
Since 14+ Ogyrrx, = Herx,

(7.11) fe(mpy 01)+(Oaxrax,) = Tpy o+ (HY, (X, Ox))

Here we consider H (X, Ox) as a graded (rational) Py-representation, equipped

with its natural grading, and hence Hy (X, Ox) is a Og/,p,-module.

(G xPx X, Oy ry x), We obtain

A

Now we have to introduce some notation. If M is an additive monoid then we
denote by Z[M] the “monoid ring” of M. Le. the elements of Z[M] are given by

(7.12) > am[m]  (finite sum)
meM
with [m][m'] = [m+m/]. By Z{M} we denote the abelian group of sums of the form

(7.12), except that we do not require the sums to be finite. Z{M} is in an obvious
way a Z[M]-module, but it is not a ring. Provided that one is careful, elements of
Z{M } may sometimes be interpreted as fractions over Z[M]. See [8, §1] for a more
precise statement.

Below we will use the notation €™ for [m)].

We will also need Z[Z & M| and Z{Z & M}. In that case, for ¢ a variable, we
will put [n®m] = t"e™ and we will use the more traditional notations Z[¢][M] and

Z{t}{M}.
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Put P = X(T)r and let P be the dominant weights in P with respect to B.
If x € P*T lies in the weight lattice then we denote by V(x) the corresponding
irreducible G-module.

Definition 7.3.2. A rational T-representation is (7-)bounded if its irreducible
components occur with finite multiplicity.
If V' is bounded then
Vir = Z mult, V.eX

xeX(T)
defines an element of Z{P}. Similarly, if V' is in addition a rational G-module then
[V]G = Z mlﬂtV(X) V.eX
XEP++n

weight lattice

defines an element of Z{PTT}.

If V. = @©nezVi is a graded rational T-representation such that each V,, is
bounded then

Hr(Vit) =Y [Valrt"eX € Z{t}{P}
tez

is the T-equivariant Hilbert series. The G-equivariant Hilbert series is defined in
the same way, and defines an element of Z{t}{P*+}.

We will also consider the projection p : P — P where

() z ifzePtt
z) =
P 0 otherwise

and we extend p to maps Z{P} — Z{P* 1}, Z{t}{P} — Z{t}{P* "} which we will
also denote by p.
Example 7.3.3. If A\ € X(T)g then the homogeneous components of H, (X, Ox)

are bounded T-representations (this follows from [29]). Note that this is false in
general if we replace X, by an arbitrary T-invariant linear subspace of X.

Definition 7.3.4. Let Q € Q, and let M be a G-equivariant quasi-coherent O¢ /-
module. Then we say that M is bounded if the fiber Mg (which is a rational
Q-representation) is T-bounded.

If M is bounded then for i € N the [H (G/Q, M)]g are defined. More generally,
bounded modules are stable under inverse images, higher direct images and, in
short, all other constructions we use below. We leave it to the reader to check this.

Now let @ € Q and consider the following maps

G/B 2% G/Q

lﬂ'B,G lﬂ'Q,G

Spec C ——— SpecC
Lemma 7.3.5. Let M € (G,Dg/q)-wqch and assume that M is bounded. Then
(7)dimQ/B
Wel

> () [Rimga Mg =

%

Z(*)i[RiWB,GJrWZQ,BM)]G

where Wq is the Weyl group of Q.
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Proof . This is basically the Leray spectral sequence, which yields
(7.13)
Z(*)i[RiﬂB,GM&,BM]G = Z(*)i” [R'mq.cv (R 7B, sM)la

i,j
=Y (- [Ring.c+ M@0, 750+ 0c/8))a
i

It now follows from the Riemann-Hilbert correspondence [5], [4] and the fact that

flag varieties are simply connected

o O®|{WEWG‘I(1U)ZJ/2}| lfj is even
7.14 RIZdmQ/Brp 0 Oq/p =13 ¢/@
(7.14) BREEEE T ¢ if j is odd

The action of G on the righthand side of (7.14) is the obvious one. This follows
from Proposition 3.1.2
Hence substitution of (7.14) in the righthand side of (7.13) gives

> (2) T [Rimg.at M@0y, R0+ Oc/pla = (—) "™ P IWo| Y (=) [Ring.a+ M)la
ij i
Combining this with (7.13) gives what we want.

Now let p be half the sum of the positive roots of G.

Lemma 7.3.6. Let V be a rational B-representation, bounded as T -representation.
Then

(7.15) Y (VIH(G/B, V) =p ( > ()l(w)ewﬁ_ﬁw[V]T>

i weWg

Proof . Since the action of B on V is locally finite, and by additivity of Euler
characteristic, we may assume that V' is one-dimensional, i.e. a character y of T.
In that case (7.15) follows directly from Bott’s theorem.

We are now ready to prove the principal result of this section.

Theorem 7.3.7. Assume that condition (*) holds. Consider L(GXx,X) as a
graded R-module. Then
(7.16)

Ha(L(GXx, X), 1) = (2) 5/ Pp (S2()emn=7) 37 whr (HE, (X, 0x),1)
wEWa /Wi

Proof . Using lemma 7.3.1, (7.11) and lemma 7.3.5 it suffices to compute
(7.17) > () He(R'mpc (H (X, 0x))31)
where we now consider H)e& (X,0x) as a rational B-representation. We have to
_\dim Py /B
in (7.17).

Wi
Now by the formula for direct images for projections in [5, VI, 5.3.1]

RiTrB,G-i- (H?A (X7 OX)_) = [ G/B(QG/B ®0G/B H?A (Xa Ox )_)

remember that we have dropped a factor (
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Hence by an Euler characteristic type argument

(7.18)
(7.17) =Y (=) TG/ By (H (G/B, QL ®06, 5 HY (X, 0x)),1)
%,
= (=) MG/ BH G (H (G/B, (M (g/b)" ®c HR, (X, 0x))), 1)
%,
=p | Y (=) dmEIBewr=py N (g /b)* | pwHe (HR, (X, Ox),t)
Now o

D (YN g/o) e =[] 1—e)

J pEDPT
—e P H (ep/2 _ 6—9/2)
pEDT
— e P Z (_)l(w)ewﬁ
wEWg

Substituting this in (7.18) yields

p(()dimG/B(Z()l(”)ewpp) > wHr(HR, (X, Ox),t)>
w weWg

(—)dim Px/B

Reintroducing the dropped factor N

w € Wy, HY, (X, Ox) is w-stable.)

yields (7.16). (We have used that for

7.4. Some examples. Below we will discuss some applications and examples of
Theorems 2.1 and 7.3.7. If a reductive group G acts on a variety Y then we say
that y € Y is G-stable if y has closed orbit and finite stabilizer.

Example 7.4.1. Here we compute the contribution of the term in (2.1) corre-
sponding to A = 0. We assume that X has a G-stable point.

First we have to identify those w € Wg for which (w,0) is admissible. Clearly
(Ap)o =0and 0 € Ag”’)‘) < SNw '®t = (lemma 6.8). This will happen
only if w = wy, the longest element in Wg. Hence only (wy,0) is admissible and
\ijl,O = (Z), or
C ifi=-1

0 otherwise

gi(quz,OaC) = {

Therefore, if (*) holds, A = 0 will contribute H{g)'*(X,0x) = H{F""(R) to
H%.(X,0x) where n +dimT —dim X + 2l(w;) —1=—-lorn=dimX —dimG =

dim X /G = dim R®.

Example 7.4.2. Now let G = Sly, i.e. G = SI(V), dimV = 2. In that case (*)
holds, unless W is, up to trivial representations, equal to V or S2V, i.e. if and only
if W = W* has no G-stable point.

Assume now that (*) does indeed hold. We may identify X (T)r 2 R 2 Y (T)g
such that (, ) is multiplication. Let w be the fundamental weight of G. Te. V =
V(w). We will assume that w is identified with +1 in R. Using our identification
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of X(T)r and Y (T')gr we may clearly assume that A = {0, —w} and we have to find
the admissible pairs (w, A) in Wg x A. The only case not covered by example 7.4.1
is that of (id, —w).

Now (Ap)_w = Reg, ®_, = @ and hence by lemma 6.8, A%d’_w) = Ap = Rey.
Hence Uigq,_,, = {0,—1}, i.e. a set of two points. Consequently

C ifi=0
0 otherwise

gi(\yid,—wa(c) = {

and we obtain a contribution L(GX_,,, X) to H%.(X, Ox) where n+dim T — f_,,+
21(id) —1=0o0orn= f_,. Le. H"(X,Ox) will only be non-zero if n = dim X /G
orifn=f_, =codim(GX_,, X).

He(L(GX )y, X),t) may be computed by (7.16). We obtain
(7.19)

He(L(GXx, X), 1) = p ((e*% ~1) (HT(ngjw (X,0x),t) + Hr(HE (X, (’)X),t)))
However from the description of the weights of H}?A (X, Ox) given in [29] one easily
sees that (7.19) simplifies to

HG(‘C(GX)\vX)at) = (6—20.) - 1)HT(H§(7 (X7 OX)7t>

Hence again using [29], we recover the results of [26] and [9].

Example 7.4.3. Now we assume G = SL(V), dimV = 3. Here it is impossible
to treat every W, since, unlike in the case of Sla, each representation is essentially
different. Therefore, we restrict ourselves to a particular case, namely W = V™. It
is easily verified that condition (*) holds if m > 3, which we assume.

Choose B and T. We may identify X (T)g = R? = Y (T)g in a Wg-equivariant
way, with the additional property that ( , ) becomes the ordinary scalar product
on R2.

Let wy 2 be the fundamental weights of G and assume that V(w;) = V. Via the
above identification, we consider wy > also as elements of Y (T)g. Then it is easy to
see that we may take for A : {0,—w1, —ws}. Let s1,82 € Wg be the fundamental
reflections on X (T')g, which fix respectively w; and wy. Then W_,, = {id, s1},
waz = {ld7 52}.

Again we have to determine the admissible pairs. Excluding A = 0, which
was covered by example 7.4.1, there are 4 possibilities to consider : (id, —w1),
(81, —w1), (id, —w2) and (s2, —w2). A straightforward computation shows that these
are all admissible, but Wigq _,, ¥s, —w, are acyclic. On the other hand, ¥,, _,, is
homotopic to a set of two points, whereas Wiq,—, is homeomorphic to a circle.

Hence we will have a contribution £(GX_.,,X) in H%.(X,Ox) where n +
dimT — f_,, +2l(s1) =1 =0o0rn = f_,, —3 = 2m — 5 and a contribution
L(GX_y,, X) in HY.(X,0x) where n + dimT — f_,, +2l(id) -1 =1orn =
few, =m —2.

One noteworthy feature of this example is that although X* =GX_,,, GX_,,
plays a role in the description of H%. (X, ). Le. not only the irreducible compo-
nents of X* count (as one perhaps, very naively, could hope for).

To complete the description of H., (X, Ox) we have to determine the characters
of LIGX_,,,X) and L(GX_,,X). This we do next using (7.16) and the descrip-
tions of the weights of Hx, (X, Ox) given in [29]. Unfortunately the computations
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are somewhat complicated and we needed a computer to obtain the following re-
sults.

HG(,C(GXfwl,X), t) =p Z P, (a, b, C)e(b+c+m)w1+(afb)w2tfafb+cf2m

a>—2,b>—1
c>—2

where

(7.20) Pi(a,b,c) = slatc+tm+2)(a—b+1)(c+b+m+1)x

(m —1)(m—2)?
()00 )

and
He (ﬁ(GX,u& , )()7 t) =p Z P, (a7 b, c)e(c—b)w1+(m+a+b)w2t—a+b+c—m

where

(7.21) Py(a,b,c) = at+c+m+2)(c—b+1)(a+b+m+1)x

a+m—1\/(b+m—-2\/c+m—1
()0

Hence the representations that occur in £(GX_,,,, X) will have highest weights of
the form zwi + yws where x = b+ ¢+ m, y = a — b with the properties a > —2,
b>-1,¢>-2a+c+m+2#0,a—b+1#0,c+b+m+1#0,b+c+m >0,
a—b>0.

Of course, these conditions are highly redundant. A minimal subset is given by
b>—1,c> -2, a > b which gives the constraints x > m — 3 and y > 0.

A similar computation shows that the representations in L(GX_,,,X) have
highest weights of the form zw; + yws where this time x > 0, y > m — 3.

We may now summarize our results as follows. Let x be a character of G with
corresponding highest weight xw; + ywa, x > 0, y > 0. Then

(m—1)(m — 2)2(

m—2 ify>m-—3
depthRY =< 2m —5 ife>m—3,y<m—3
3m—8 ifz<m-3,y<m-—3

Now we recall that Stanley’s criterion [24] says that Rg is Cohen-Macaulay if x is
“critical”. This conjecture was almost completely proved in [28]. Using [28, Prop.
1.4] it is easily seen that x is critical for (G,W) if x +y+4 < m.
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The results in this example may be summarized in the following figure (which is
for m = 5).

y=0 dominant weights #=0

Cohen-Macaulay
region

() =roots
& =weights
o O
critical _ _ - =~
weights
Q O

I.e. we see that, in contrast with the case G = Sl,, Stanley’s criterion is not very
precise.
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APPENDIX A. A THEOREM ABOUT D-MODULES

In this appendix we prove a theorem about D-modules, which is a generalization
of [2, 4.2.5,4.2.6]. Tt is presumably well-known but I have been unable to locate a
reference. As usual we let the base field be C. 7 : Y — X will be a smooth map of
smooth quasi-projective varieties over C.

Theorem A.1. Assume that the fibers of m are non-empty and connected of con-
stant dimension d. Then

(1) The functor ™ : Dx-qch — Dy -qch is fully faithful.
(2) Suppose M € Dx-qch and N C 7*M in D-qch. Then there exists (a
unique) N C M in Dx-qch such that m™*N = N".

Proof . Let M € Dx-qch and let Q'Y/X (M) be the relative De Rham complex.
Then using the fact that 7 is locally the product of an etale map and a projec-
tion, one shows that W*HO(Q'Y/X (m*M)) carries a Dx-module structure, and the
canonical map

(A1) M HW*HO(Q‘Y/X(W*M))

is Dx-linear (of course this is entirely classical). (A.1) is the map which for U € X
open identifies the elements of M(U) with the relative horizontal sections of 7* M
on 7~ Y(U).

We claim that (A.1) is an isomorphism. This easily implies (1) since then 7* M
is generated by its relative horizontal sections, and a Dy-linear map must respect
these.

Our claim does not depend on the D x-modules structure of M, so we may as well
assume that M € Ox-qch. Since M is the direct limit of coherent Ox-modules,
we may furthermore assume that M is coherent.

Our situation is local for the etale topology on X so we may assume that m
has a section e. Restricting to e yields a retraction of (A.1) and therefore (A.1) is
injective.

To prove surjectivity we have to show that if two relative horizontal sections
of 7* M are equal on e then they are equal everywhere. Suppose that this is not
the case. By taking differences we may assume that we have a non-zero relative
horizontal section f of m,M, which is zero on e.

Assume that N is a submodule of M. Then there is an exact sequence

0 — mH(Qyx (T"N)) = T H (Qy x (1" M)) — . H (Qy (7 (M/N))

This shows that f either has non-zero image in m. H(Qy (7" (M/N))), or lies
in W*HO(Q'Y/X(W*N)). By repeatedly applying this, and by shrinking X, we may
assume that X is irreducible and that M is a torsion free Ox-module. But then
M injects in the localization at the generic point of X. Hence we may assume that
X = Spec F', with F' a field. Then M is a finite dimensional vector space over F'
and hence we may assume that M is one-dimensional, that is 7*M = Oy. Since
Y is connected the horizontal sections of Oy are the contstants, and hence they
cannot be zero on e.

To prove (2) let M, N’ be as in the statement of (2). N, if it exists is unique be-
cause of the faithfulness of 7. We put N' = m, H(Qy x (V) — m. H*(Qy/x (7*M)) =
M, and we claim that the natural map 7*N — AN’ is an isomorphism.
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Again this claim does not refer to the Dx-module structure on M and we may
therefore assume that M is a quasicoherent Ox-module, and N/ C 7* M a quasi-
coherent Dy x-module (Dy, x is the sheaf of algebras, generated by Oy and Ty, x).

Since M is a union of coherent Ox-modules, we may furthermore assume that
M itself is coherent, which is what we will do.

Assume first that X = Spec F', F' a field. Then M is a finite dimensional vector
space and hence 7*M = (’)?/9" for some n. Now Oy is a simple Dy-module, and
hence N/ = O;‘?m for some m < n. This proves our claim in this special case.

Let X now be arbitrary again. We use the following observation. Suppose there
is an exact sequence on X

(A.2) 0—>M11>M£>M2—>0
and an exact diagram, where the vertical arrow are inclusions

B

™
0O —— ™M) —— 7™M —— ™My —— 0

I I I

0—— N —— N —— N} ——0

Then, if the claim is true for ] and N3, it is also true for .
To see this write V| = 7*N7, M} = 7* Ny with N7 € M1, Mo C Ma.

We construct a new exact diagram as follows

—_— < — O
jIZ
< — o

—

0 ——— N —— 7"M ——— T"M3 —— 0

dl I I

0 — 7N —— N —— 7Ny —— 0

I I

0 0

Here of course M3z = M/N;. Now U = 7* M, where My = Ms/N3. Then
N = n*ker(M — My,). This proves the observation.

Hence assume that we have a counter example to (2) where X is of minimal
dimension. By using the above observation repeatedly and by shrinking X we may
assume that X is irreducible and that M is torsion free of rank one.

Let 1 be the generic point of X. By our discussion for the case X a point, it
follows that 7*N, — N} is an isomorphism. If N7 = 0 then there is nothing to
prove, so we assume that A/’ # 0. Then N # 0 since 7* M contains no submodules
with smaller support.

Hence A # 0. But then M /N has strictly smaller support than X and hence,
by hypothesis, (2) is true for N’ /7*N. Then the following diagram shows that (2)
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is also true for AV, yielding a contradiction.
0 N M ——— 7 (MJN) —— 0

dl I I

0 N N —— N/TN —— 0

49
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