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Abstract. If G is a reductive algebraic group acting rationally on a smooth

affine variety X then it is generally believed that D(X)G has properties very

similar to those of enveloping algebras of semisimple Lie algebras. In this paper
we show that this is indeed the case when G is a torus and X = kr × (k∗)s.

We give a precise description of the primitive ideals in D(X)G and we study in
detail the ring theoretical and homological properties of the minimal primitive

quotients of D(X)G. The latter are of the form D(X)G/(g − χ(g)) where

g = Lie(G), χ ∈ g∗ and g − χ(g) is the set of all v − χ(v) with v ∈ g. They
occur as rings of twisted differential operators on toric varieties.

As a side result we prove that if G is a torus acting rationally on a smooth

affine variety then D(X//G) is a simple ring.
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1. Introduction

Throughout this paper k will be an algebraically closed base field of characteristic
zero. Let G be a connected reductive group acting on a smooth affine variety X.
Of considerable interest is the ring of invariant differential operators D(X)G. For
example if X = G/K is a symmetric space then Harish-Chandra studied D(X)G

in order to gain insight into various function spaces attached to X.
Recently Knop [10] succeeded in generalizing one of the most fundamental results

of Harish-Chandra. That is, he was able to give a precise description of the center of
D(X)G. In particular he shows that it is always a polynomial ring. If one considers
the action of G × G → G then this yields the Harish-Chandra isomorphism for
U(g), g = Lie(G). So this result by Knop, together with explicit computations in
specific cases, suggests that D(X)G should have properties very similar to those of
enveloping algebras. In this paper we show that this is the case when G is a torus.

There are other reasons for studying D(X)G. If Y is a non-smooth variety then
usually D(Y ) is very badly behaved [4]. However when Y = X//G it is a general
feeling that D(Y ) should have various nice properties. More precisely, one can
make the following conjecture

Conjecture 1.1. (f) D(X//G) is finitely generated and noetherian.
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(s) D(X//G) is a simple ring.

The restriction homomorphism D(X)G → D(X//G) defines an algebra map
which in many cases is surjective and has kernel (D(X)g)G [18][22]. If this is true
then conjecture 1.1(f) follows trivially. In this way one can prove 1.1(f) for tori and
for classical representations of classical groups [14][18]. More generally 1.1(f) is true
whenever W is “big enough” in an appropriate, but somewhat technical sense.

In contrast with 1.1(f), not much is known about 1.1(s), see [14][28][31]. Never-
theless conjecture 1.1(s) is important since it implies the Hochster-Roberts Theorem
[28]. It is clear that a detailed understanding of D(X)G might be instrumental in
proving this conjecture in general.

There is an obvious generalization to covariants. If χ is an irreducible character
of G then we denote by OX,χ the isotypical component of OX associated to χ,
considered as a coherent sheaf of OX//G-modules. Then there is again a restriction
map D(X)G → D(OX,χ) which is surjective in most cases [22]. Since the simplicity
of D(OX,χ) (or even of the image of D(X)G) implies that OX,χ is Cohen-Macaulay,
an understanding of D(X)G may shed new light upon the Cohen-Macaulayness
problem for modules of covariants [24][30].

In the current paper we prove conjecture 1.1(s) for tori. That is, we prove (see
§7.5) :

Theorem A. Assume that G is a torus, acting rationally on a smooth affine variety
X. Then D(X//G) is simple.

When G is a torus there is yet another motivation for studying D(X)G. If Y is a
toric variety then it is shown in [19] that there exist r, s such that for X = kr×(k∗)s

and for any invertible sheaf L on Y there is a surjective map

D(X)G → D(L)

whose kernel is generated by

g− χ(g) def= {v − χ(v) | v ∈ g}
where χ is a character of G, depending on L.

Let us now summarize the other results in this paper. With the case of a toric
variety in mind, these are stated for X = kr × (k∗)s. This is an important special
case, and the Luna Slice Theorem makes it often possible to reduce the general case
to it. This is in fact the strategy we follow to prove Theorem A above.

If X = kr × (k∗)s, n = r + s then

(1.1) D(X) = k[x1, . . . , xr, x
±1
r+1, . . . , x

±1
n , ∂1, . . . , ∂n]

where ∂i = ∂
∂xi

. In the rest of this introduction, and also in most of the paper, we
denote this ring simply by A.

One easily shows that the center of AG is given by (the image of) the symmetric
algebra of g. Hence every character χ ∈ g∗ gives rise to a corresponding central
quotient

Bχ = AG/(g− χ(g))
where g − χ(g) is a defined above. The Bχ may be considered as analogs of the
minimal primitive quotients of enveloping algebras.

In this paper we give a fairly exhaustive description of the properties of Bχ.
That is, we exhibit
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(1) when Bχ is simple;
(2) when Bχ has finite global dimension;
(3) the various classical dimensions associated to Bχ : Krull-dimension, GK-

dimension, injective dimension and homological dimension;
(4) the lattice of primitive ideals in Bχ and the corresponding primitive quo-

tients;
(5) the category of finite dimensional representations of Bχ.

At this point, to get the flavor of our results, the reader is advised to consult §11.
In that section we explicitly work out the example given by the rings of twisted
differential operators on the first Hirzebruch surface.

To study Bχ we have been using systematically methods that have been intro-
duced in the case of enveloping algebras. Our first task was to obtain an analog of
Duflo’s theorem. To this end we consider the abelian Lie algebra t ⊂ AG given by
kπ1 + · · ·+ kπn where πi = xi∂i. We view t as an analog of the Cartan subalgebra
of a semisimple Lie algebra. In particular with every α ∈ t∗ we associate a simple
AG-module L(α). Then one of our results states that an analog of Duflo’s theorem
is true (see §7.3) :

Theorem B. Every primitive ideal in AG is the annihilator of some L(α).

This result makes it possible to study the primitive ideals in AG (or equivalently
in Bχ) by purely combinatorial means. The following theorem is an extract of
Theorem 7.3.1.

Theorem C. (1) Bχ has only a finite number of primitive ideals.
(2) Every primitive ideal in AG is generated by its intersection with the sym-

metric algebra of t.

To study other properties of Bχ we introduce an analog of the translation prin-
ciple. That is we exhibit certain Bχ-Bχ

′
-bimodules, denoted by Bχ,χ

′
which define

a Morita context between Bχ and Bχ
′
. In the event that Bχ

′,χBχ,χ
′

= Bχ
′

we
write χ→ χ′. This defines a transitive relation on g∗. If χ→ χ′ and χ′ → χ then
Bχ and Bχ

′
are Morita equivalent. In the enveloping algebra case χ → χ′ would

mean that the central character χ′ is more singular than the central character χ.
If we think of → as ≥ then we can define the properties of minimality and

maximality for elements of g∗. This yields the following result

Theorem D. (1) Bχ is simple if and only if χ is minimal.
(2) Bχ has finite global dimension if and only if χ is maximal.

The reader will undoubtly recognize the corresponding statements for enveloping
algebras. See for example [9].

As indicated above we also study the various dimensions attached to Bχ. For
Krull-dimension and GK-dimension this is relatively easy and follows from standard
results in ring theory. The case of injective dimension is slightly harder. We use
a method introduced by Levasseur in [12]. This method is based upon a beautiful
result of Joseph and Gabber [11, Thm 9.11] stating that if M is a finitely generated
module over an enveloping algebra U over an algebraic Lie algebra then the following
inequality holds

2 GKdimM ≥ GKdim(U/AnnM)
Again we give an analog of this result for AG. Unfortunately we have only been
able to do this when M is simple.
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Theorem E. Assume that M is a simple AG-module. Then

2 GKdimM ≥ GKdim(AG/ dimM)

When we started out writing this paper we noticed that that most of the basic
results can actually be proved in greater generality. So given a finte dimensional
abelian Lie algebra t we study in §3 and §4 a class of associative algebras A equipped
with a Lie algebra homomorphism φ : t → A, such that the following conditions
hold

(A1) A is a semi-simple t module for the adjoint action of t on A.
(A2) The non-zero weight spaces in A are generated by one element over the

symmetric algebra of t.
The reader can easily verify that if A is the right hand side of (1.1) then A, AG

and Bχ all satisfy these properties. However there are many more rings for which
(A1)(A2) holds. Consider for example the analogs of U(sl2) studied by S.P. Smith
in [23]. These are algebras A = k[H,E, F ] with relations

[H,E] = E, [H,F ] = −F, [E,F ] = f(H)

where f is a fixed polynomial in one variable.
Such an algebra contains a certain central element Ω that can be considered as

an analog of the Casimir element. For t we take kH+kΩ. Then (A1) and (A2) hold
and as a consequence we can recover the results in [3][8][23][33] on these algebras.
We also prove a few new results such as Prop. 5.4.1 and Cor. 5.4.3.

We close this introduction by mentioning a few things that are not covered in
this paper. First of all Theorems C(1), D and E can be stated without reference to
our specific hypotheses on X, so they should be generalized accordingly. When G
a torus this is probably a fairly simple consequence of the Luna Slice Theorem. If
G is a general reductive group then everything is wide open.

Furthermore there are some applications specific for toric varieties. Most notably
the Bernstein-Beilinson theorem (“localization”). The naive generalization of this
result fails [26], but it is still possible to obtain fairly precise information on the
category D-modules on a smooth toric variety, starting from a ring of twisted global
differential operators.

2. Notations and conventions

Most notations are introduced locally. The few global notations we use are given
below.

If I is an ideal in a commutative ring R then V (I) stands for the closed subscheme
SpecR/I of SpecR. Conversely if V is a closed subscheme of SpecR then I(V )
denotes the corresponding ideal.

If X is an object graded by a group G then for g ∈ G, Xg will be the part of
degree g in X and X(g) will be X, but with the grading shifted by g.

If G is a torus then X(G), Y (G) denote respectively the character group of G
and the group of one-parameters of G. By X(G)Q, Y (G)Q we denote the same
groups but tensored by Q.

We also mention our slightly unconventional way of defining the path algebra of a
quiver. That is, we write a path a−→ b−→ as ba. This has the effect that representations
of quivers correspond to left modules over their path algebras.

Throughout this paper “iff” will mean “if and only if”.
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3. A certain class of rings

In this section we discuss a certain class of rings whose modules and homological
properties may sometimes be described by combinatorial means. Examples will be
given in subsequent sections. Here we discuss things in greater generality than is
needed afterwards, in the hope that the results may be useful elsewhere.

3.1. Generalities. Let k be an algebraically closed base field of characteristic zero
and let let A be a k-algebra. Let t be a finite dimensional abelian Lie algebra and
let φ : t → A be a map of k-vector spaces whose image consists of commuting
elements. Put D = St, the symmetric algebra of t. We identify SpecD with t∗. We
also extend φ to a k-algebra map D → A, also denoted by φ. In the sequel when
we consider the induced D-action on A-modules, we will usually suppress φ in the
notation.

Let t act on A by the adjoint action. That is π ∈ t acts as [φ(π),−]. Throughout
we make the following assumptions.

(A1) A is a semi-simple t-module.
(A2) The non-zero weight spaces in A are generated on the left (and hence on

the right) by one element over D.

Remark 3.1.1. In the above setting we could of course replace t by its image in
A. However in the sequel we will also be interested in quotients of A in which the
image of t will be different. Therefore we prefer to keep t as a separate entity.

From (A1) we obtain a weight space decomposition

A =
⊕
α∈t∗

Aα

which is easily seen to be a t∗-grading. Furthermore, every two sided ideal of A is
graded for this grading. Note that (A2) implies that D maps onto A0.

We will denote the category of t∗-graded (left) A-modules by A-Gr. Let M be
in A-Gr. That is M =

⊕
α∈t∗Mα. We define a right action of D on M by

(3.1) mπ = (π − α(π))m

for π ∈ t, α ∈ t∗, m ∈Mα.
This definition makes M into a graded A-D-bimodule. The following results are

easily proved.

Proposition 3.1.2. (1) Eq. (3.1) defines an equivalence between A-Gr and the
full subcategory of A-D-mod consisting of those modules which are semi-
simple for the induced adjoint action of t.

(2) If M,N ∈ A-Gr then the induced D-D-bimodule structure on HomA-Gr(M,N)
is central. In particular if M = N then D is mapped to the center of
EndA-Gr(M).

If α ∈ t∗ then we denote by mα the corresponding maximal ideal in D.

Definition 3.1.3. Let p ≥ 1. Then O(p) is the full subcategory of A-mod consisting
of those objects which are quotients of

⊕
α∈t∗(D/m

p
α) as left D-modules. We also

put O(∞) =
⋃
p≥1O(p).

The following is clear.

Proposition 3.1.4. O(∞) contains the category of finite-dimensional A-representations.
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Remark 3.1.5. One should think of O(1) as a kind of O-category by analogy with
the usual definition in the case that A is the enveloping algebra of a semi-simple
Lie algebra and t is a Cartan subalgebra (note that this situation is not covered by
our assumptions (A1)(A2)). However there are some differences. According to the
definition in [5] objects in O are assumed to be finitely generated and to be locally
finite for the action a fixed Borel subalgebra containing t. However the assumption
of finite generation is not very essential, and in general there will be no good analog
of a Borel subalgebra.

If M ∈ O(p) then M =
⊕

α∈t∗Mα where

(3.2) Mα = {x ∈M | mp
αx = 0}

It is easy to verify that this defines a t∗-grading on M , compatible with the t∗-
grading on A defined above. Furthermore if M,N ∈ O(p) then

HomA-mod(M,N) = HomA-Gr(M,N)

Hence O(p) may be considered as a full subcategory of A-Gr, but one should note
that O(p) is in general not stable under the shift functor M 7→M(α), α ∈ t∗.

Since O(∞) =
⋃
pO(p), all these considerations carry over to O(∞).

Remark 3.1.6. The fact that O(p) ⊂ A-Gr may lead to some confusion since now
some objects will be equipped with two natural gradings. This is for example the
case with M = A/Amα. On the one hand it is a quotient of A by a graded left
ideal, so it inherits the grading on A. On the other hand M is in O(1) so it is
graded by (3.2). It is easy to see that these two gradings are different. For M they
are still related by a shift but this is not true in general as one sees by considering
the module A/Amα ⊕A/Amβ with α 6= β.

Fortunately it will usually be clear from the context which grading is being used.
We accept as a rule that objects which are in O(p) for some p are graded by (3.2),
unless otherwise specified.

If M ∈ A-Gr then we define the support of M as

SuppM = {α ∈ t∗ |Mα 6= 0}
It is easy to see that if M ∈ O(p) then SuppM ⊂ V (kerφ) ⊂ SpecD = t∗.

We define for α ∈ V (kerφ)

M (p)(α) = A/Amp
α

Clearly M (p)(α) ∈ O(p).

Proposition 3.1.7. Let α1, α2, α3, α ∈ V (kerφ)
(1) Let M ∈ O(p). Then

HomA(M (p)(α),M) = Mα

(2) M (p)(α) is projective in O(p).
(3) M (p)(α) has a unique simple quotient, denoted by L(α), which depends only

on α, and not on p, and which lies in O(1).
(4) All simple objects in O(p) are of the form L(α).
(5) One has dimM (1)(α)α1 ≤ 1 and dimL(α)α1 ≤ 1.
(6) The following are equivalent

(a) L(α1) ∼= L(α2)
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(b) SuppL(α1) ∩ SuppL(α2) 6= ∅.
(c) M (p)(α1) ∼= M (p)(α2)

(7) One has identifications

Hom(M (p)(α1),M (p)(α2)) = (A/Amp
α2

)α1

= Aα1−α2/Aα1−α2m
p
α2

(8) The composition

Hom(M (p)(α2),M (p)(α3))×Hom(M (p)(α1),M (p)(α2))→ Hom(M (p)(α1),M (p)(α3))

corresponds under the identification given by (7) to

Aα2−α3/Aα2−α3m
p
α3
×Aα1−α2/Aα1−α2m

p
α2
→ Aα1−α3/Aα1−α3m

p
α3

: (ā, b̄) 7→ ba

(9) The natural map
D → End(M (p)(α))

given by Proposition 3.1.2(2), corresponds under the identification given
by (7)

End(M (p)(α)) = A0/A0m
p
α

to
t→ A0/A0m

p
α : π 7→ φ(π − α(π))

Proof. (1) Sending f to f(1̄) defines an identification between

HomA(A/Amp
α,M)

and
{x ∈M | mp

αx = 0}
which is precisely Mα.

(2) It follows from (1) that the functor Hom(M (p)(α),−) is exact. This implies
that M (p)(α) is projective.

(3) We have to show that M (p)(α) has a unique maximal submodule. This
amounts to showing that the sum of all proper submodules of M (p)(α)
is a proper submodule. Now M (p)(α)α = A0/A0m

p
α. Hence M (p)(α) is

generated in degree α. This means that if M ⊂ M (p)(α) is a submodule
then M is a proper submodule if and only if Mα is a proper submodule.
Now A0/A0m

p
α is a quotient of D/mp

α which is local. Hence the sum of
proper submodules of M (p)(α)α is proper. This proves the existence of
L(α).

We have furthermore a surjective map M (p)(α) → M (1)(α). Hence the
unique simple quotient of M (1)(α) is also the unique simple quotient of
M (p)(α). This shows that L(α) does not depend upon p.

(4) Let X be a simple object in O(p). Then there is some α such that Xα 6= 0.
By (1) this means that there is a non-zero map M (p)(α)→ X. Since X is
simple this map is surjective. But then by (3), X = L(α).

(5) The result for M (1)(α) follows from assumption (A2) and for L(α) from the
fact that L(α) is a quotient of M (1)(α).

(6) It follows from (2) and (3) that M (p)(α) is a projective cover of L(α) in
O(p). Hence (6a) iff (6c).

The proof of (6a) iff (6b) is similar to the proof of (4). Assume that α ∈
SuppL(α1)∩SuppL(α2). Then according to (1), there are surjective maps
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M (p)(α) → L(α1), M (p)(α) → L(α2). By (3) this implies that L(α1) ∼=
L(α2).

(7) This follows from (1).
(8) If b ∈ Aα1−α2 then the corresponding map A/Amp

α1
→ A/Amp

α2
is given

by ā 7→ ab. This implies (8).
(9) Let a ∈ A0. Then under the identification given by (7), a corresponds to

the map

(3.3) A/Amp
α → A/Amp

α : b̄ 7→ ba

Now let π ∈ t. Then π corresponds to

A/Amp
α → A/Amp

α : b̄ 7→ b̄ · π
where as usual the right D-module structure on A/Amp

α is given by (3.1).
That is if b̄ ∈ (A/Amp

α)α1 = Aα1−α/Aα1−αm
p
α then

b̄ · π = (π − α1(π))b̄ = (π − α1(π))b = b(π + (α1(π)− α(π))− α1(π))

= b(π − α(π))

Comparing this with (3.3) yields (9). �

If α, β ∈ V (kerφ) then we put α ⇐⇒ β iff L(α) ∼= L(β) (or equivalently, iff
β ∈ SuppL(α)).

Lemma 3.1.8. If M ∈ O(p) then SuppM is a union of equivalence classes for
⇐⇒ .

Proof. Assume that Mα 6= 0. Then by Proposition 3.1.7(1) there is a non-zero map
M (p)(α) → M . Let N be the image of this map. Then by Proposition 3.1.7(3)
N has L(α) as a quotient. Hence L(α) is a subquotient of M . This proves the
lemma. �

From Proposition 3.1.7(5) it follows that submodules of M (1)(α) may be de-
scribed by subsets of SuppM (1)(α). To describe such subsets we introduce a new
relation. If α, β, γ ∈ V (kerφ) then we put β ⇒

α
γ iff Aγ−βM

(1)(α)β 6= 0. Then we
have the following.

Lemma 3.1.9. Let α, β, γ ∈ V (kerφ).
(1) ⇒

α
is a transitive relation on V (kerφ).

(2) β ⇒
α
γ implies β, γ ∈ SuppM (1)(α) and γ − β ∈ SuppA

(3) One has β ⇒
α
γ iff Aγ−βAβ−α 6⊂ Aγ−αmα.

(4) Submodules of M (1)(α) correspond to ⇒
α

closed subsets of SuppM (1)(α).

(5) One has β ⇒
α
γ and γ ⇒

α
β if and only if β ⇐⇒ γ and β, γ ∈ SuppM (1)(α).

(6) One has β ⇐⇒ γ iff Aβ−γAγ−β 6⊂ mβA0.

Proof. (1)-(4) are immediate, so we concentrate on (5). Suppose first that β ⇐⇒
γ. By lemma 3.1.8, any submodule containing M (1)(α)β , must contain M (1)(α)γ .
Hence β ⇒

α
γ, and γ ⇒

α
β holds by symmetry.

Assume now β ⇒
α
γ and γ ⇒

α
β. Then by (2) β, γ ∈ SuppM (1)(α). Hence

by Prop. 3.1.7(1) there are non-zero maps M (1)(β) → M (1)(α) and M (1)(γ) →
M (1)(α) whose image is the same. Hence by Proposition 3.1.7(3), L(β) = L(γ).
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Now we prove (6). It follows from (2)(5) that β ⇐⇒ γ iff γ ⇒
β
β. The latter is

equivalent with Aβ−γAγ−β 6⊂ mβA0 by (3). �

The following technical result shows that the ⇐⇒ relation gives us some infor-
mation about two sided ideals.

Proposition 3.1.10. Assume that I is a two-sided ideal in A. Then V (I0), con-
sidered as a subset of V (kerφ), is a union of equivalence classes for ⇐⇒ .

Proof. Let α ∈ V (I0) and put M = A/(Amα + I). Then Mα 6= 0 and furthermore
I0 annihilates M . Thus α ∈ SuppM ⊂ V (I0). We then conclude by lemma 3.1.8
that V (I0) contains the equivalence class of α. �

3.2. Primitive ideals. In this section we want to describe, under certain hypothe-
ses, the primitive ideals of the rings we have introduced in §3.1. However we first
prove the following technical result which holds in a somewhat greater generality.

Lemma 3.2.1. Assume that A = ⊕α∈GAα is a k-algebra graded by a group G.
Assume furthermore that

(1) A is graded prime and graded left noetherian.
(2) A0 is commutative and finitely generated over k.
(3) For all α ∈ G there exists uα ∈ Aα such that

Aα = uαA0 = A0uα

Then
⋂
m∈Ω(A0)Am = 0, where Ω(A0) denotes the set of maximal ideals

of A0.

Proof. In the proof we use some elementary notions from the theory of GK-dimension.
We refer the reader to [11] for background.

Step 1. First of all we show that all (Aα)α∈G are homogeneous A0-modules, and
have the same dimension (we recall that a module M of GK-dimension t is homo-
geneous if it has no submodules of GK-dimension strictly smaller than t).

Assume that GKdimA0 = t. For all α ∈ G let Iα be the maximal left submodule
of Aα of GKdim < t.

If x ∈ A0 then Iαx ⊂ Iα, and hence Iα is a A0-bimodule. Furthermore Iα is obvi-
ously the maximal right submodule ofAα having GKdim < t. Also GKdim(IαAβ) =
GKdim(Iαuβ) < t and hence IαAβ ⊂ Iα+β . Similarly AβIα ⊂ Iα+β . Therefore
I =

⊕
α∈G Iα is a graded two sided ideal in A.

Let J be the right annihilator of I. We claim that J0 6= 0. Since A is graded left
noetherian one has I = Ax1 + · · ·+Axn where xi ∈ Iαi . Then J0 =

⋂
i AnnA0(xi).

Now GKdim(A0/AnnA0(xi)) < t, and hence
⋂
i AnnA0(xi) 6= 0, since by hypothe-

sis, A0 has dimension t.
So now IJ = 0 and, since A is graded prime, we obtain I = 0.

Step 2. Now we show that A0 is semi-prime, and all (Aα)α∈G are isomorphic to
semi-prime quotients of A0 (as a left and as a right module). We need the following
sublemma

Sublemma . Assume that R,S are commutative finitely generated k-algebras.
Suppose furthermore that R,S are of the same dimension and homogeneous as
modules over themselves. Let φ : R → S be a surjective map. Then φ(radR) =
radS where rad(−) denotes the nil radical.
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Proof. If P is a minimal prime ideal of S then φ−1(P ) is a prime ideal in R such
that R/φ−1(P ) ∼= S/P . Hence GKdimR/φ−1(P ) = GKdimS/P = GKdimS =
GKdimR and therefore φ−1(P ) is a minimal prime of R. Hence radR ⊂ φ−1(radS)
which implies φ(radR) ⊂ radS. So by dividing out radR, we may assume that R
is semi-prime.

Now assume that t ∈ R is regular, that is, not contained in any minimal prime.
Suppose that φ(t) is contained in a minimal prime P of S. Then t ∈ φ−1(P ) which
is a contradiction by what we have said in the previous paragraph. Hence φ(t) is
regular. Let R′, S′ be resp. the localizations of R and S at all regular elements of
R. Since R′ is semi-prime and artinian, R′ is a direct sum of fields. But then the
same holds for for S′. Since S ⊂ S′ it follows that S′ is semi-prime and we are
done. �

For α ∈ G denote by Xα, Yα ⊂ A0 resp. the left and the right annihilator of
uα. Put Bα = A0/Xα, Cα = A0/Yα. We consider Aα as Bα − Cα-bimodule which
is left and right free of rank one. Putting buα = uαθ(b) defines an isomorphism
between Bα and Cα. Let δ : A0 → Bα, ε : A0 → Cα be the quotient maps.

In the following computation the sublemma is used several times.

(radA0)Aα = δ(radA0)Aα = (radBα)Aα = Aαθ(radBα) = Aα(radCα) =

Aαε(radA0) = Aα(radA0)

Hence (radA0)A = A(radA0) is a two sided ideal in A which is obviously nilpotent.
Since A is graded prime this implies that radA0 = 0. By the sublemma we deduce
that Bα, Cα are semi-prime. Hence Aα is left and right isomorphic to a semi-prime
quotient of A0.

Step 3. The conclusion
⋂
Am = 0 now follows easily from step 2 and the nullstel-

lensatz. �

Now we use again the notation of §3.1. So A,D, φ, t, . . . will have their usual
meaning, in particular A satisfies (A1)(A2).

If α ∈ V (kerφ) then we denote by 〈α〉 the equivalence class for ⇐⇒ associated
to α. We also put J(α) = AnnA L(α). This is a primitive ideal in A. IfR ⊂ V (kerφ)
then by R̄ we denote the Zariski-closure of R.

Proposition 3.2.2. (1) J(α)0 is semi-prime and V (J(α)0) = 〈α〉.
(2) Assume that for all β ∈ SuppA one has I

(
(〈α〉+ β) ∩ 〈α〉

)
= I

(
〈α〉+ β

)
+

I
(
〈α〉
)

. Then for all β ∈ SuppA one has J(α)β = J(α)0Aβ + AβJ(α)0.
In particular J(α) is generated in degree zero.

Proof. Let us write J(α) =
⊕

β∈SuppA φ(Iβ)uβ where Iβ is an ideal in D. Then we
may take

Iβ = {x ∈ D | ∀γ ∈ t∗ : xuβL(α)γ = 0}
Now uβL(α)γ is zero unless γ ∈ 〈α〉, γ + β ∈ 〈α〉 and in that case it is equal to
L(α)γ+β . Hence

Iβ = {x ∈ D | ∀γ ∈ 〈α〉 ∩ (〈α〉 − β) : x ∈ mγ+β}
= {x ∈ D | ∀δ ∈ (〈α〉+ β) ∩ 〈α〉 : x ∈ mδ}

= I
(

(〈α〉+ β) ∩ 〈α〉
)
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Now (1) follows by substituting β = 0.
Furthermore J(α)β contains I0uβ+uβI0 and uβI0 = I ′0uβ where I ′0 = I

(
〈α〉+ β

)
.

By hypotheses Iβ = I
(

(〈α〉+ β) ∩ 〈α〉
)

is equal to I0+I ′0 = I
(
〈α〉
)

+I
(
〈α〉+ β

)
which shows that J(α)β = J(α)0uβ + uβJ(α)0. �

Corollary 3.2.3. If L(α) is finite dimensional then J(α) is generated in degree
zero.

The following theorem, whose formulation is unfortunately somewhat technical,
is the main result of this section.

Theorem 3.2.4. Assume that

(1) A is graded left noetherian.
(2) The length of M (1)(α) is bounded, independently of α.
(3) There are only a finite number of different 〈α〉 where α runs through V (kerφ).
(4) For all α ∈ V (kerφ) and for all β in SuppA one has I

(
〈α〉+ β

)
+

I
(
〈α〉
)

= I
(

(〈α〉+ β) ∩ 〈α〉
)

.

Then

(1) every prime ideal in A is of the form J(α) for some α ∈ V (kerφ). Hence
in particular it is primitive;

(2) there is a one-one correspondence between the regions 〈α〉, α ∈ V (kerφ)
and the primitive ideals in A. The correspondence is given by associating
J(α) to α ∈ V (kerφ).

Proof. (2) is a direct consequence of (1) and Proposition 3.2.2. So we prove (1).
Without loss of generality we may assume that A is prime and that we have

to show that J(α) = 0 for some α ∈ V (kerφ). By lemma 3.2.1 we know that
0 =

⋂
α AnnAM (1)(α). By hypotheses the length of M (1)(α) is uniformly bounded,

say by N . Hence there is some product

J(α1) · · · J(αn) ⊂ AnnAM (1)(α)

where n ≤ N . So one has

(3.4) 0 =
⋂
i∈I

J(α1,i) · · · J(αni,i)

where I is some index set and ni ≤ N . By Proposition 3.2.2 J(α) is determined
by 〈α〉, so by hypotheses there are only a finite number of different J(α)’s. This
implies that I in (3.4) may be taken to be finite. But then (3.4) is only possible if
some J(αi,j) is zero. �

Remark 3.2.5. Let g be the solvable Lie algebra with basis t, y such that [t, y] = y.
Let A = U(g), graded by y-degree. Then it is easily checked that hypotheses (2)
and (3) of Theorem 3.2.4 and its conclusion all fail to hold. Likewise Theorems B
and C from the introduction are false for A.

3.3. Simplicity. A,D, φ, t will be as before. A satisfies (A1)(A2).
In this section we prove the following criterion for simplicity of A.
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Proposition 3.3.1. Assume that A is a domain and that SuppA is a group. Then
A is simple if and only if the equivalence classes for ⇐⇒ are Zariski dense in
V (kerφ).

Proof. Assume first that A is simple. Then for all α ∈ V (kerφ) one has J(α) = 0.
Hence by Proposition 3.2.2 : 〈α〉 = V (kerφ).

Now we prove the converse. Thus we assume that all equivalence classes for ⇐⇒
are Zariski dense in V (kerφ). Assume that I ⊂ A is a non-trivial two-sided ideal.
We recall that I is automatically graded. Thus some Iα 6= 0 and so I0 ⊃ A−αIα 6= 0.
Assume α ∈ V (I0). Then by Proposition 3.1.10, V (kerφ) = 〈α〉 ⊂ V (I0), which is
impossible. �

Remark 3.3.2. The hypotheses of Proposition 3.3.1 are somewhat unsatisfactory
since they are not preserved under taking quotients. At the cost of using hypotheses
which may be more difficult to verify one may obtain a simplicity result from
Theorem 3.2.4. Indeed if the hypotheses (1)(2)(4) hold in that theorem, and (3) is
replaced by

(3’) All 〈α〉 are Zariski dense in V (kerφ).
then A is simple because A has no primitive ideals.

3.4. Integrality. A,D, φ, t will be as before. A satisfies (A1)(A2).

Proposition 3.4.1. Assume that
(1) A0 is a domain;
(2) ∀α ∈ SuppA : Aα is (left or right) free over A0;
(3) for all β, γ ∈ SuppA there exists α ∈ t∗ such that α+ γ ∈ 〈α〉, α+ β + γ ∈
〈α〉.

Then A is a domain.

Proof. From (A2) it is easy to see that Aα is left and right free, generated by an
element uα. Putting auα = uαθα(a) defines an automorphism θα of A0. It is now
easy to see that A is a domain if for all β, γ ∈ SuppA one has uβuγ 6= 0. Hence
suppose uβuγ = 0. By (3) : uβuγL(α)α = uβL(α)α+γ = L(α)α+β+γ which yields a
contradiction. �

3.5. Homological properties. We assume that A, φ,D, t, · · · have their usual
meaning and in particular A satisfies (A1)(A2). The following finiteness property,
which is easily proved, will be implicitly used many times.

Proposition 3.5.1. Let M,N be objects in O(p), finitely generated as A-modules.
Then

(1) All (Mα)α∈t∗ are finite dimensional over k.
(2) HomA(M,N) is a finite dimensional k-vector space.

In this section we let S ⊂ t stand for an abelian group containing SuppA . The
full subcategory of A-Gr of those modules whose support lies in S will be denoted
by A-gr.

In this section we fix Λ ∈ t∗/S and we denote by O(p)
Λ the full subcategory of

O(p)
Λ of objects whose support lies in Λ. Of course O(∞)

Λ =
⋃
O(p)

Λ .
Clearly if M1 ∈ O(p)

Λ1
, M2 ∈ O(p)

Λ2
, Λ1 6= Λ2 then HomA(M1,M2) = 0. So in some

sense O(p) =
⊕

ΛO(p).
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One easily sees that M (p)(α), L(α) lie in O(p)
Λ iff α ∈ Λ. Furthermore O(p)

Λ is
non-trivial iff Λ ∩ V (kerφ) 6= ∅.

If O(p)
Λ contains only a finite number of simples, then its objects may be described

combinatorially.

Proposition 3.5.2. Assume that O(p)
Λ contains only a finite number of non-isomorphic

simple objects L(α1), . . . , L(αd) (or equivalently “⇐⇒ ” has only a finite number
of equivalence classes in Λ ∩ V (kerφ)).

Put M (p)
Λ = M (p)(α1)⊕ · · · ⊕M (p)(αd). Then the functor

F (p) : M 7→ HomA(M (p)
Λ ,M)

defines an equivalence between O(p)
Λ and the category of left-modules over the finite-

dimensional algebra
H

(p)
Λ = End(M (p)

Λ )opp

Under this equivalence, finitely generated modules in A-mod correspond to finite
dimensional representations of H(p)

Λ .
The functors F (p) are compatible in the sense that F (p) | O(p−1)

Λ = F (p−1).

Proof. M (p) is a faithfully projective generator. The result now follows from [2,
Ch. II, Thm. 1.3] �

In the rest of this section we assume that the hypotheses of Proposition 3.5.2 are
fulfilled. That is, we assume

(A3) O(1)
Λ contains a finite number of simples given by L(α1), . . . , L(αd).

Using Proposition 3.1.7(8), we may give an explicit form for H(p)
Λ

H
(p)
Λ =

 End(M (p)(α1)) Hom(M (p)(α2),M (p)(α1)) · · ·
Hom(M (p)(α1),M (p)(α2)) End(M (p)(α2)) · · ·

...
...

. . .


opp

=

 End(M (p)(α1))opp Hom(M (p)(α1),M (p)(α2)) · · ·
Hom(M (p)(α2),M (p)(α1)) End(M (p)(α2))opp · · ·

...
...

. . .


=

 A0/A0m
p
α1

Aα1−α2/Aα1−α2m
p
α2
· · ·

Aα2−α1/Aα2−α1m
p
α1

A0/A0m
p
α2

· · ·
...

...
. . .

(3.5)

where the multiplication in (3.5) is the natural one.
Similarly we find for M ∈ O(p)

Λ

(3.6) F (p)(M) =

Mα1

...
Mαd


where the action of (3.5) on (3.6) is again the natural one.

We also deduce from 3.1.7(9) that the natural map

ψ : D → H
(p)
Λ
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(from Proposition 3.1.2(2)) is given by

(3.7) π 7→


φ(π − α1(π))

φ(π − α2(π))
. . .

φ(π − αd(π))


for π ∈ t∗.

Let

(3.8) HΛ =


A0 Aα1−α2 · · ·

Aα2−α1 A0 · · ·
...

...
. . .

A0


with a map ψ : D → HΛ given by

(3.9) π 7→

φ(π − α1(π))
. . .

φ(π − αd(π))


for π ∈ t∗. Then it is easy to see that the image of D in HΛ is central. Furthermore
one easily computes that

H
(p)
Λ = D/mp

0 ⊗D HΛ

Remark 3.5.3. There is a slight abuse of notation here since HΛ does not only
depend on Λ, but also on the particular choice of α1, α2, . . . , αd. This is not the
case for H(p)

Λ .

SendingM ∈ O(p) toM⊗DD/mp−1
0 defines a functorO(p)

Λ → O(p−1)
Λ which sends

M
(p)
Λ to M (p−1)

Λ . Therefore we obtain an algebra homomorphism H
(p)
Λ → H

(p−1)
Λ

which is easily seen to coincide with the natural map

D/mp
0 ⊗D HΛ → D/mp−1

0 ⊗HΛ

We define
H

(∞)
Λ = lim←−

p
H

(p)
Λ

Hence H(∞)
Λ is the completion of HΛ at the ideal m0.

Corollary 3.5.4. HΛ (H(∞)
Λ ) is finitely generated as a module over D (D̂m0). In

particular HΛ (H(∞)
Λ ) is left and right Noetherian.

Proof. This follows from the explicit descriptions of HΛ and H(∞)
Λ given above. �

Lemma 3.5.5. H(∞)
Λ is independent of the choice of α1, . . . , αd.

Proof. Choose β1, . . . , βd in such a way that for i = 1, . . . , d : αi ⇐⇒ βi and put
P (p) = M (p)(β1)⊕ · · ·M (p)(βd). Choose isomorphisms φ(1)

i : M (1)(αi)→M (1)(βi).
SinceM (p)(αi) is projective inO(p), the canonical maps Hom(M (p)(αi),M (p)(βi))→
Hom(M (p−1)(αi),M (p−1)(βi)) are surjective. Therefore we may lift φ(1)

i to com-
patible maps φ(p)

i : M (p)(αi) → M (p)(βi). It follows that φ(p)
i is compatible with

the surjections M (p)(αi) → L(αi), M (p)(βi) → L(βi) ∼= L(αi). Hence φ
(p)
i is
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an isomorphism for all i and for all p. Hence there are compatible isomorphisms
End(P (p)) → End(M (p)

Λ ) which yield an isomorphism between the corresponding
inverse limits. �

Proposition 3.5.6. Let F (∞) : O(∞)
Λ → H

(∞)
Λ -mod be defined by F (∞) | O(p)

Λ =
F (p). Then F (∞) defines an equivalence between the full subcategory of finitely
generated objects of O(∞)

Λ and the category of finite dimensional H(∞)
Λ -modules.

Proof. This follows from Proposition 3.5.2. �

In the rest of this section α will be a fixed element of Λ, unless otherwise specified.
Let M ∈ A-gr. Using the right action of D on M as defined by (3.1) it makes sense
to write M/Mmp

α = M ⊗D D/mp
α. Using the fact that M has by definition its

weights in S we see that M/Mmp
α ∈ O

(p)
Λ . Hence we may define the following

functor
F (∞)
α : A-gr→ H

(∞)
Λ -mod : M 7→ lim←−

p
F (p)(M/Mmp

α)

Since

F (p)(M/Mmp
α) =

(M/Mmp
α)α1

...
(M/Mmp

α)αd

 =

Mα1−α/Mα1−αm
p
α

...
Mαd−α/Mαd−αm

p
α

 =

Mα1−α/m
p
α1
Mα1−α

...
Mαd−α/m

p
αd
Mαd−α


we obtain a more convenient description of F (∞)

α (M) as the completion of the left
HΛ-module.

(3.10) Fα(M) =

Mα1−α
...

Mαd−α


at the ideal m0 of D (which maps to HΛ as given by (3.9)). This description yields
the following proposition :

Proposition 3.5.7. The functor F (∞)
α sends finitely generated modules in A-gr to

finitely generated H(∞)
Λ -modules and furthermore F (∞)

α is exact on such modules.

We also obtain

D/mp
0 ⊗D F (∞)

α (M) = F (p)(M/Mmp
α)

By generalizing this to maps we obtain that the following diagram of functors is
commutative

(3.11)

A-gr
F (∞)
α−−−−→ H

(∞)
Λy−⊗DD/mpα yD/mp0⊗−

O(p)
Λ

F (p)

−−−−→ H
(p)
Λ -mod

F
(∞)
α is a functor, so for M,N ∈ A-gr there is a natural map

(3.12) HomA-gr(M,N)→ Hom
H

(∞)
Λ

(F (∞)
α (M), F (∞)

α (N))

By Proposition 3.1.2 the left hand side of (3.12) is a central D-bimodule.
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For all α ∈ t∗ let D̂α denote the completion of D at the maximal ideal mα. Then
D̂0 maps to the center of H(p)

Λ and hence the right hand side is in a natural way a
central D̂0-bimodule.

Proposition 3.5.8. Assume that A is graded left noetherian and that M,N are
finitely generated objects in A-gr. Then

(1) The map in (3.12) is continuous if we equip the left hand side with the
mα-adic topology, and the right hand side with the m0-adic topology.

(2) Completing the map (3.12) with respect to the above topologies yields an iso-
morphism between HomA-gr(M,N)⊗DD̂α and Hom

H
(∞)
Λ

(F (∞)
α (M), F (∞)

α (N))

Proof. For l ≥ 0 let

Kl = {f ∈ HomA-gr(M,N) | f(M) ⊂ Nml
α}

Then (Kl)l defines a filtration on HomA-gr(M,N) which is cofinal with the mα-adic
filtration. To see this write M as a quotient of a finitely generated graded free
A-module F . Then HomA-gr(M,N) embeds in HomA-gr(F,N) and

Kl = HomA-gr(M,N) ∩HomA-gr(F,Nml
α)

= HomA-gr(M,N) ∩HomA-gr(F,N)ml
α

It now suffices to invoke the Artin-Rees lemma for D.
Similarly if we put

Ll = {f ∈ Hom
H

(∞)
Λ

(F (∞)
α (M), F (∞)

α (N)) | f(F (∞)
α (M)) ⊂ ml

0F
(∞)(N)}

then this filtration on Hom
H

(∞)
Λ

(F (∞)
α (M), F (∞)

α (N)) is cofinal with the m0-adic
filtration.

The commutative diagram of functors (3.11) yields a commutative diagram

HomA-gr(M,N)
F (∞)
α−−−−→ Hom

H
(∞)
Λ

(F (∞)
α (M), F (∞)

α (N))y y
HomA(M/Mmp

α, N/Nm
p
α) F (p)

−−−−→ Hom
H

(p)
Λ

(F (p)(M/Mmp
α), F (p)(N/Nmp

α))

One easily sees that Kp is the kernel of the leftmost vertical map, whereas Lp is
the kernel of the rightmost vertical map. Hence F (∞)

α (Kl) ⊂ Ll and therefore F (∞)
α

is continuous.
Since M/Mmp

α, N/Nmp
α ∈ O

(p)
Λ , we know that F (p) is an isomorphism for all p.

Hence it suffices to show that the induced maps

HomA-gr(M,N )̂→ lim←−
p

Hom(M/Mmp
α, N/Nm

p
α)

and

Hom
H

(∞)
Λ

(F (∞)
α (M), F (∞)

α (N))→ lim←−
p

Hom
H

(p)
Λ

(F (p)(M/Mmp
α), F (p)(N/Nmp

α))

are isomorphisms. The first isomorphism follows easily by replacing M with a
presentation F1 → F0 where the F ’s are finitely generated graded free A-modules.
It then suffices to look at the case M = A(s); s ∈ S, which is trivial. The second
isomorphism is proved in a similar way. �
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Proposition 3.5.9. Assume that A is graded left Noetherian. Then F
(∞)
α sends

finitely generated graded projectives to projectives.

Proof. Since F (∞)
α is compatible with direct sums, it suffices to show that F (∞)

α (A(s)),
s ∈ S is projective.

Now F
(∞)
α (A(s)) = lim←−

p
F (p)(M (p)(α − s)), and, as in the proof of lemma 3.5.5

there exists some αi and compatible isomorphisms M (p)(αi)→M (p)(α− s) which
yield an isomorphism between lim←−

p
F

(p)
α (M (p)(αi)) and Fα(A(s)).

Let e(p)
i ∈ H

(p)
Λ be the projection M

(p)
Λ on M (p)(αi) and put ei = lim←− e

(p)
i .

Then F (p)
α (M (p)(αi)) = H

(p)
Λ e

(p)
i and correspondingly lim←−

p
F

(p)
α (M (p)(αi)) = H

(∞)
Λ ei

which is projective. �

Corollary 3.5.10. Assume that A is graded left Noetherian. Let M,N be finitely
generated objects in A-gr. Then there is a natural isomorphism

(3.13) ExtiA-gr(M,N)⊗D D̂α
∼= Exti

H
(∞)
Λ

(F (∞)
α (M), F (∞)

α (N)))

Proof. One replaces M by a resolution P ·, consisting of finitely generated graded
projective modules. Then by Proposition 3.5.7 and 3.5.9 F (∞)

α (P ·) is a projective
resolution of Fα(M), and (3.13) easily follows. �

Corollary 3.5.11. Assume that A is graded left Noetherian.

(1) One has gl dimH
(∞)
Λ ≤ gr. gl dimA.

(2) Assume that for all Γ ∈ t∗/S there exist only a finite number of non-
isomorphic simples in O(1)

Γ . Then

gr. gl dimA = max
Γ

gl dimH
(∞)
Γ

Proof. (1) Let q = gr. gl dimA. Since H(∞)
Λ is finite as a module over a com-

mutative ring, it suffices to show that if X,Y are simple H
(∞)
Λ -modules

then

(3.14) Extm
H

(∞)
Λ

(X,Y ) = 0

for m > q.
Now there exist i, j such that

F (1)(L(αi)) = X

F (1)(L(αj)) = Y

Let as before α ∈ Λ. Obviously L(αi)(α) ∈ A-gr (L(αi) is shifted by
α ∈ t∗). Furthermore L(αi)(α)mα = 0 (we recall once again that the right
D-action is determined by the grading).

Therefore

F (∞)
α (L(αi)(α)) = F (1)(L(αi)) = X

F (∞)
α (L(αj)(α)) = F (1)(L(αj)) = Y

The result now follows from cor. 3.5.10
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(2) Let n = maxΓ gl dimH
(∞)
Γ . It follows from (1) that gr. gl dimA ≥ n. So

we only have to prove the opposite inequality. By cor. 3.5.10 we have for
all finitely generated M,N ∈ A-gr and all α ∈ V (kerφ) that

ExtmA-gr(M,N)⊗D D̂α = 0

for m > n. Hence ExtmA-gr(M,N) = 0 for m > n and the conclusion
follows. �

Remark 3.5.12. It follows from [20, A.II.8.2] that if A is graded by a torsion free
abelian group of rank n then

gr. gl dimA ≤ gl dimA ≤ gr. gl dimA+ n

So in this way corollary 3.5.11 yields a criterion for A to have finite global dimension,
but the exact value of this global dimension remains unclear. Nevertheless we
conjecture that under reasonable extra hypotheses our rings will have the property
that gl dimA = gr. gl dimA.

4. Some constructions

In this section we keep the notations of §3. We study the behavior of the ring
A under some standard ring theoretical constructions. These will be used when
we apply the results obtained so far to rings of differential operators. Since some
of the constructions below may appear unmotivated, the reader is advised to skim
this section, and to come back to it later, when needed.

To stress the dependency of our objects on the ring A we will sometimes use
the notations tA, φA, O(p)

Λ,A, H(p)
Λ,A, etc. . . . We assume that such notations are self

explanatory.
We recall that S(or SA) ⊂ t is an abelian group containing SuppA.

4.1. Tensor products. Let (tA, φA, A), (tB , φB , B) be as in §3 (in particular they
satisfy (A1)(A2)). We put C = A ⊗k B, tC = tA ⊕ tB and we define φC : tC → C
by φC | tA = φA ⊗ 1, φC | tB = 1⊗ φB . It is clear that (tC , φC , C), again satisfies
(A1)(A2).

Below we will write α ∈ t∗C as a couple (α1, α2), where α1 ∈ t∗A, α2 ∈ t∗B .

Proposition 4.1.1. Let α, β, γ ∈ t∗C . Then
(1) M (1)(α) = M (1)(α1)⊗kM (1)(α2);
(2) L(α) = L(α1)⊗k L(α2);
(3) one has β ⇒

α
γ iff β1 ⇒

α1
γ1 and β2 ⇒

α2
γ2;

(4) similarly β ⇐⇒ γ iff β1 ⇐⇒ γ1 and β2 ⇐⇒ γ2;
(5) Put SC = SA ⊕ SB. Choose Λ ∈ t∗C/SC . Then Λ = Λ1 ⊕ Λ2 where

Λ1 ∈ t∗A/SA, Λ2 ∈ t∗B/SB. Assume that Λ1, Λ2 satisfy (A3) (of section
3.5). Then HΛ = HΛ1 ⊗ HΛ2 and consequently H

(∞)
Λ = H

(∞)
Λ1
⊗̂k H(∞)

Λ2

where ⊗̂ denotes the completed tensor product.

Proof. (1) This is clear from the definition.
(2) There is a map M (1)(α) ∼= M (1)(α1) ⊗k M (1)(α2) → L(α1) ⊗k L(α2). Ac-

cording to Proposition 3.1.7(3) this implies the existence of a non-zero map
L(α1) ⊗k L(α2) → L(α), hence it suffices to show that L(α1) ⊗k L(α2)
is simple. Since L(α1) ⊗k L(α2) is in O(1), any non-trivial submodule
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M ⊂ L(α1) ⊗k L(α2) is automatically graded and hence some Mβ is non-
zero. Therefore it suffices to show that L(α1) ⊗ L(α2) is generated by
L(α1)β1 ⊗ L(α2)β2 , which is clear.

(3) We use the criterion from Lemma 3.1.9. That is, β ⇒
α
γ iff Cγ−βCβ−α

has non-zero image in Cγ−α/Cγ−αmα. This is equivalent with the image
of Aγ1−β1Aβ1−α1 ⊗Bγ2−β2Bβ2−α2 being non-zero in Aγ1−α1/Aγ1−α1mα1 ⊗
Bγ2−α2/Bγ2−α2mα2 , which in turn is equivalent with β1 ⇒

α1
γ1 and β2 ⇒

α2
γ2.

(4) This follows from (2), or from (3).
(5) If the simple objects in O(1)

Λ1
and O(1)

Λ2
are respectively L(α1), . . . , L(αd) and

L(β1), . . . , L(βe) then by (4) the simples inO(1)
Λ are L(α1, β1), . . . , L(αd, βe).

The formula for HΛ now follows from the fact that C(αi,βj) = Aαi ⊗ Bβj ,
and the formula for H(∞)

Λ follows by completing. �

4.2. Quotients. We assume that (t, φ,A) satisfies (A1)(A2). Let c ∈ t be such
that φ(c) is a central element in A. This is equivalent with SuppA ⊂ V (c). We
assume that S is chosen in such a way that SuppA ⊂ S ⊂ V (c).

Let a = c−λ, where λ ∈ k. Then B = A/(φ(a)) also satisfies (A1)(A2). Clearly
V (kerφB) = V (kerφ) ∩ V (a). If we choose a Λ ∈ t∗/S which lies in V (a) then
O(p)

Λ,B ⊂ O
(p)
Λ,A and O(1)

Λ,B = O(1)
Λ,A. Hence the simple objects in O(p)

Λ,B and O(p)
Λ,A are

the same, but the projective objects change.
If α ∈ V (kerφB) then it is easy to see that β ⇒

α,A
γ iff β ⇒

α,B
γ and similarly

β ⇐⇒
A

γ iff β ⇐⇒
B

γ.

Proposition 4.2.1. Assume that Λ ∈ t∗/S lies in V (a) and furthermore that (A3)
is satisfied for Λ. Then

(4.1) H
(p)
Λ,B = H

(p)
Λ,A/(ψ(c))

where ψ : D → H
(p)
Λ,A is the map given by (3.7). In (4.1) it is permissible to put

p =∞.

Proof. The case p =∞ follows by taking direct limits, so we assume that p is finite.
By (3.5) H(p)

Λ,B has the formĀα1,α1/(a)Āα1,α1 Āα1,α2/(a)Āα1,α2 · · ·
Āα2,α1/(a)Āα2,α1 Āα2,α2/(a)Āα2,α2 · · ·

...
...

. . .


where Āαi,αj stands for Aαi−αj/Aαi−αjm

p
αj . It is now sufficient to prove that

for i = 1, . . . , d one has φ(c − αi(c)) = φ(a) (cf. the definition of ψ in (3.7)), or
equivalently αi(c) = λ. This follows immediately from the fact that by hypothesis
αi ∈ V (kerφB) ⊂ V (a). �

4.3. Subrings. Assume that (t, φ,A) satisfies (A1)(A2) and let SB be a subgroup
of SA. Put B =

⊕
α∈SB Aα.

Proposition 4.3.1. Let Λ ∈ t∗/SA, Γ ∈ t∗/SB, Γ ⊂ Λ and α, β, γ ∈ Γ. Then
(1) One has β ⇒

α,A
γ iff β ⇒

α,B
γ.

(2) Similarly β ⇐⇒
A

γ iff β ⇐⇒
B

γ.
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(3) Assume that Λ satisfies (A3), with simple modules L(α1)A, . . . , L(αd)A.
We number the αi so that 〈αi〉 ∩ Γ = ∅ iff i > u and choose βi ∈ 〈αi〉 ∩ Γ,
1 ≤ i ≤ u. Then the simple objects in O(1)

Γ have the form L(βi)B, 1 ≤ i ≤ u.
Also SuppL(βi)B = SuppL(αi)A ∩ Γ.

Let e(p)
Λ,Γ ∈ H

(p)
Λ be the projection map

d⊕
i=1

M (p)(αi)A →
u⊕
j=1

M (p)(βj)B

Then

(4.2) H
(p)
Γ = e

(p)
Λ,ΓH

(p)
Λ e

(p)
Λ,Γ

Furthermore if we put e(∞)
Λ,Γ = lim←−

p
e

(p)
Λ,Γ then (4.2) holds with p =∞.

Proof. (1)(2) and the first part of (3) are clear, so we prove the second part of (3).
It is also clear that we may assume p finite.

One uses the following fact

(4.3) HomB(M (p)(α)B ,M (p)(β)B) = HomA(M (p)(α)A,M (p)(β)A)

Using remark 3.5.3 we may assume α1, . . . , αu ∈ Γ. ThenH(p)
Λ = EndA(⊕di=1M(αi)A)

and H
(p)
Γ = EndB(⊕ui=1M(αi)B). Then (4.2) follows from (4.3). �

4.4. Morita equivalence and the → relation. Now we discuss a construction
which is a combination of §4.2 and §4.3. Assume that (t, φ,A) satisfy (A1)(A2).
Assume g ⊂ t is a subspace. For χ ∈ g∗ we put

Bχ = Ag/(g− χ(g))

where

Ag = {a ∈ A | ∀π ∈ g : [φ(π), a] = 0}

=
⊕

α∈V (g)

Aα

and

(4.4) g− χ(g) = {π − χ(π) | π ∈ g}

Note that g− χ(g) is contained in the center of Ag.
Let SB = {α ∈ SA | α(g) = 0}. By combining the results of §4.2,§4.3 we

immediately have the following

Proposition 4.4.1. (1) Let α, β ∈ V (g− χ(g)). Then α ⇐⇒
A

β iff α ⇐⇒
Bχ

β.

(2) Let Λ ∈ t∗/SA, Γ ∈ t∗/SB, Γ ⊂ Λ∩V (g−χ(g)) and assume that Λ satisfies
(A3). Then

H
(p)
Γ = (e(p)

Λ,ΓH
(p)
Λ e

(p)
Λ,Γ)/(ψ(g))

where e(p)
Λ,Γ is as in Proposition 4.3.1(3). Furthermore, as in that proposi-

tion, it is permissible to put p =∞.
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The various Bχ are related by a Morita context, see [15, §3.6] for background.
If χ, χ′ ∈ g∗ then we put

Bχ,χ
′

= Ag
χ−χ′/(g− χ(g))Ag

χ−χ′

where

Ag
χ−χ′ = {a ∈ A | ∀π ∈ g : [φ(π), a] = (χ− χ′)(π)(a)}

=
⊕

α∈V (g−(χ−χ′)(g))

Aα

It is clear that Bχ,χ
′

is a Bχ − Bχ′ -bimodule. Furthermore the multiplication on
A defines a Morita context of the form

(4.5)
(
Bχ Bχ,χ

′

Bχ
′,χ Bχ

′

)
We say that χ and χ′ are comparable if in (4.5) one has Bχ,χ

′
Bχ
′,χ 6= 0.

Proposition 4.4.2. If all Bχ are prime then comparability is an equivalence rela-
tion on g∗.

Proof. Reflexivity This is clear.
Symmetry Assume that Bχ,χ

′
Bχ
′,χ 6= 0. Then by (semi)primeness

Bχ,χ
′
Bχ
′,χBχ,χ

′
Bχ
′,χ 6= 0

This implies Bχ
′,χBχ,χ

′ 6= 0. So symmetry holds.
Transitivity To prove transitivity we use the “triple Morita context”

(4.6)

 Bχ Bχ,χ
′

Bχ,χ
′′

Bχ
′,χ Bχ

′
Bχ
′,χ′′

Bχ
′′,χ Bχ

′′,χ′ Bχ
′′


Assume Bχ,χ

′
Bχ
′,χ 6= 0, Bχ

′,χ′′Bχ
′′,χ′ 6= 0. We claim that

(4.7) Bχ,χ
′
Bχ
′,χ′′Bχ

′′,χ′Bχ
′,χ 6= 0

Suppose on the contrary that the left-hand side of (4.7) yields zero. Then

Bχ
′,χBχ,χ

′
Bχ
′,χ′′Bχ

′′,χ′Bχ
′,χBχ,χ

′
= 0

Now by symmetry of comparability, Bχ
′,χBχ,χ

′
is a non-zero ideal in Bχ

′
. Further-

more Bχ
′,χ′′Bχ

′′,χ′ is by hypotheses a non-zero ideal in Bχ
′
. Then primeness of

Bχ
′

yields a contradiction.
Hence (4.7) holds. Since we have Bχ,χ

′
Bχ
′,χ′′ ⊂ Bχ,χ′′ and Bχ

′′,χ′Bχ
′,χ ⊂ Bχ′′,χ

we obtain Bχ,χ
′′
Bχ
′′,χ 6= 0 which is what we had to prove. �

Remark 4.4.3. If Bχ, Bχ
′

are prime and χ is comparable to χ′ then (4.5) is a so-
called “prime Morita context” (see [15, §3.6]). This implies that various properties
of Bχ and Bχ

′
are related. In particular the quotient rings of Bχ and Bχ

′
(if they

exist) are Morita equivalent.

If in the Morita context (4.5) we have that Bχ
′,χBχ,χ

′
= Bχ

′
then we will write

χ → χ′. An argument as in the proof of Proposition 4.4.2 shows that this is a
transitive relation. Furthermore if χ→ χ′ and χ′ → χ then Bχ and Bχ

′
are Morita

equivalent.
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Theorem 4.4.4. One has χ → χ′ iff for all α ∈ V (kerφ) one has that 〈α〉A ∩
V (g− χ′(g)) 6= ∅ implies 〈α〉A ∩ V (g− χ(g)) 6= ∅.

Proof. The proof consists of a chain of equivalences

χ→ χ′

iff
∑

γ∈V (g−(χ−χ′)(g))

A−γAγ + (g− χ′(g))A0 = A0

iff ∀α ∈ V (g− χ′(g)) ∩ V (kerφ) : ∃γ ∈ V (g− (χ− χ′)(g)) : A−γAγ 6⊂ Amα

iff ∀α ∈ V (g− χ′(g)) ∩ V (kerφ) : ∃γ ∈ V (g−(χ− χ′)(g)) : α+ γ ∈ V (kerφ)
and α+ γ ⇐⇒

A
α

iff ∀α ∈ V (kerφ) : 〈α〉A ∩ V (g− χ′(g)) 6= ∅ ⇒ 〈α〉A ∩ V (g− χ(g)) 6= ∅

The third equivalence follows from lemma 3.1.9(6). �

If J is an ideal in Bχ then we set

J̃ = {x ∈ Bχ
′
| Bχ,χ

′
xBχ

′,χ ⊂ J}

Clearly J̃ = Bχ
′

iff Bχ,χ
′
Bχ
′,χ ⊂ J . Also by [15, Thm 3.6.2, Prop. 3.6.5(ii)] J 7→ J̃

yields a 1-1, order preserving correspondence between the primitive ideals of Bχ

not containing Bχ,χ
′
Bχ
′,χ and those of Bχ

′
not containing Bχ

′,χBχ,χ
′
.

If M ∈ O(1)
A then let us define Mχ by ⊕α∈V (g−χ(g))Mα. This is a Bχ-module

which is simple if M is simple. Furthermore
(
Mχ

Mχ′

)
is a left module over (4.5) and

if M is simple and Mχ,Mχ′ 6= 0 then Bχ
′,χMχ = Mχ′ , Bχ,χ

′
Mχ′ = Mχ. This

allows us to prove the following result.

Proposition 4.4.5. Let α ∈ V (g− χ(g)). Then

J̃(α)Bχ =

{
J(β)Bχ′ if β ∈ V (g− χ′(g)) ∩ 〈α〉A
Bχ
′

if V (g− χ′(g)) ∩ 〈α〉A = ∅

Proof. We have

L(α)χ
′

A =

{
L(β)Bχ′ if β ∈ V (g− χ′(g)) ∩ 〈α〉A
0 if V (g− χ′(g)) ∩ 〈α〉A = ∅

To simplify the notations we put J = J(α)Bχ , L = L(α)χA = L(α)Bχ and J ′ =
J(β)Bχ′ , L

′ = L(β)Bχ′ (if the latter two are defined).

Case 1. V (g − χ′(g)) ∩ 〈α〉A 6= ∅. Then
(
L
L′
)

is a module over (4.5). Clearly
Bχ,χ

′
J ′Bχ

′,χL = 0 and hence J ′ ⊂ J̃ .
To prove the opposite inclusion we note that Bχ,χ

′
J̃Bχ

′,χL = 0. Since Bχ
′,χL =

L′, Bχ,χ
′
L′ = L we must necessarily have J̃L′ = 0 which is equivalent to J̃ ⊂ J ′.

Case 2. V (g − χ′(g)) ∩ 〈α〉A = ∅. Now ( L0 ) is a module over (4.5). Hence
Bχ,χ

′
Bχ
′,χL = 0 and thus J̃ = Bχ

′
. �
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4.5. Some quotients by two sided ideals. Let (t, φ,A) be as before. We prove
the following result which will be used afterwards.

Proposition 4.5.1. Assume that J ⊂ A is a two sided ideal with the following
properties

(1) ∀α ∈ t∗ : Jα = J0Aα +AαJ0

(2) There exists a subspace g ⊂ t and χ1, . . . , χp ∈ g such that

J0 = φ((g− χ1(g)) ∩ · · · ∩ (g− χp(g)))

where for S ⊂ A, (S) denotes the ideal generated by S.
Then there is an isomorphism between A/J and

Bχ1 Bχ1,χ2

Bχ2,χ1 Bχ2

. . .
Bχp


where Bχi,χj is as defined in §4.4.

Proof. Let (ei)i=1,...,p ∈ D be representatives for a maximal set of orthogonal idem-
potents in D/(g − χ1(g)) ∩ · · · ∩ (g − χp(g)). Thus ei, as a function on t∗ has the
property that ei | V (g− χj(g)) = δij .

To make the next computation we choose a basis (πi)i=1,...,n for t and we use
this basis to identify t∗ with kn. Then ei is a polynomial ei(π1, . . . πn). Let a ∈ Aα
where α ∈ V (g− (χi − χj)(g)). Then

eiaej = aei(π1 + α1, . . . , πn + αn)ej
Now we claim that

ei(π1 + α1, . . . , πn + αn)ej ∼= ej mod φ−1(J0)

To see this one has to show that for k = 1, . . . , p

ei(π1 + α1, . . . , πn + αn)ej | V (g− χk(g)) = δjk

If j 6= k then this is clear and for j = k, it follows from ei | V (g− χi(g)) = 1.
Thus we have shown that in A/J one has for a ∈ Ag

χi−χj

(4.8) aej = eiaej = eia

(the last equality follows by symmetry).
Now let εij : Ag

χi−χj → ēi(A/J)ēj be defined by a 7→ ēiāēj . Then (4.8) implies
that

(4.9) εij(a)εjk(b) = εik(ab)

Let α ∈ t∗. We will analyze ēi(A/J)αēj more closely. We have (A/J)α = Aα/IAα
where

I = [(g− (χ1 +α|g)(g))∩ · · · ∩ (g− (χp +α|g)(g))] + [(g−χ1(g))∩ · · · ∩ (g−χp(g))]

Hence

ēi(Aα/IAα) =

{
Aα/(g− χi(g))Aα if χi − α |g∈ {χ1, . . . , χp}
0 otherwise

So assume χi − α|g ∈ {χ1, . . . , χp}. Then

ēi(Aα/IAα)ēj = Aα/(g− χi(g))Aαēj = Aα/Aα(g− (χi − α|g)(g))ēj
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which yields

ēi(A/J)αēj =

{
Aα/(g− χi(g))Aα if α|g = χi − χj
0 otherwise

So εij is surjective, and the kernel is equal to (g− χi(g)) | Ag
χi−χj . In other words,

εij defines an isomorphism between Bχi,χj and ēi(A/J)ēj . This together with (4.9)
proves the proposition. �

5. The algebras introduced by S.P. Smith

The machinery introduced in §3 is geared towards the study of rings of differential
operators on toric varieties and quotients under torus actions. However there are
many more examples. A non-trivial example is given by the analogues of U(sl2)
introduced by S.P. Smith in [23]. These are defined as follows. Let A = k[H,E, F ]
where

[H,E] = E, [H,F ] = −F, [E,F ] = f(H)
where f is a fixed polynomial in one variable.

According to [23, Prop. 1.5], the center of A is generated by the “Casimir ele-
ment”

Ω = EF + FE +
1
2

(u(H + 1) + u(H))

where u ∈ k[x] is such that

(5.1)
1
2

(u(x+ 1)− u(x)) = f(x)

If we put t = kH + kΩ and D = k[H,Ω] then t acts semi-simply on A, with weight
space decomposition

A = · · · ⊕DF 2 ⊕DF ⊕D ⊕DE ⊕DE2 ⊕ · · ·
Using the material in §3 one can now recover, without too much work, most of
the results in [23]. Of course this will not be our aim below. Instead we hope to
make clear that a systematic study of the ⇐⇒ relation makes possible a unified
treatment of otherwise disparate results. In particular we give a new proof of a result
by Bavula [3] and Hodges [6] which computes the global dimension of A. Finally
we also give a description of the category of finite dimensional representations of
A. We believe this result is new.

Throughout we identify t = kH ⊕ kΩ and its dual t∗ with k2 in the natural way.
Thus an element α ∈ t∗ will be written as (α1, α2) with α1, α2 ∈ k.

5.1. The ⇐⇒ relation. The following identities are easily proved by induction.

EFn =
1
2
Fn−1(Ω− u(H − n+ 1)), for n ≥ 1

FEn =
1
2
En−1(Ω− u(H + n)), for n ≥ 1

(5.2)

Fix α ∈ t∗. Using (5.2) we may now describe the ⇒
α

-relation (which was defined

just before lemma 3.1.9). To simplify the notation we write α+ n for (α1 + n, α2)
if n ∈ Z.

All basic instances of the ⇒
α

-relation are described by the following four cases :
for n ≥ 1
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(1) α+ n⇒
α
α+ n− 1 iff α2 − u(α1 + n) 6= 0;

(2) α− n⇒
α
α− n+ 1 iff α2 − u(α1 − n+ 1) 6= 0;

and for n ≥ 0

(3) α+ n⇒
α
α+ n+ 1;

(4) α− n⇒
α
α− n− 1.

We denote by r1, . . . , rt the roots (without repetition) of α2 − u(x) that are con-
gruent to α1 mod Z, ordered in ascending order (this makes sense!).

Let i ∈ {0, . . . , t} be such that ri ≤ α1 < ri+1, where for convenience we assume
that r0 = α1 −∞, rt+1 = α1 +∞.

Then (1)(2)(3)(4) may be translated as follows : for β, γ ∈ t∗ : β ⇒
α
γ iff

α2 = β2 = γ2, α1
∼= β1

∼= γ1 mod Z and

(1) For j ≤ i : rj−1 ≤ β1 < rj ⇒ γ1 < rj .
(2) For j ≥ i+ 2 : rj−1 ≤ β1 < rj ⇒ γ1 ≥ rj−1

We deduce that the equivalence class for ⇐⇒ of α is given by

(5.3) 〈α〉 = {β ∈ t∗ | β2 = α2, β1
∼= α1 mod Z, ri ≤ β1 < ri+1}

and thus 〈α〉 = k × {α2} iff i = 0, t. In the other cases 〈α〉 equals 〈α〉, which is of
the form “finite set”× {α2}

5.2. The category O(∞). To study modules over A we now compute H(∞)
Λ where

Λ = α+ SuppA = {β | β2 = α2, β1
∼= α1 mod Z}.

We recall that H(∞)
Λ is the completion of HΛ at the ideal (H,Ω) where HΛ is

defined by (3.8).
We choose ε0 < ε1 < · · · < εt in such a way that (εi, α2), i = 0, . . . , t are

representatives for the equivalence classes of ⇐⇒ in Λ and we put δi = εi− εi−1 ∈
Z, i = 1, . . . , t. Then HΛ is given by

D DF δ1 DF δ1+δ2 · · ·
DEδ1 D DF δ2 · · ·

DEδ1+δ2 DEδ2 D · · ·
...

...
...

. . .


and the map ψ : D → HΛ is given by

H 7→

H − ε0 . . .
H − εt


Ω 7→

Ω− α2

. . .
Ω− α2


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We consider the quiver

(5.4) m
Ω0

mH0

r -
X1

�
Y1 m

Ω1

mH1

r -
X2

�
Y2 m

Ω2

mH2

r
m

Ωt−1

m
Ht−1

r -
Xt

�
Yt m

Ωt

mHt

r· · ·

subject to the relations

XiYi =
(

1
2

)δi δi−1∏
j=0

(Ωi + α2 − u(Hi + εi − j)(5.5)

YiXi =
(

1
2

)δi δi∏
j=1

(Ωi−1 + α2 − u(Hi−1 + εi−1 + j)(5.6)

HiXi = XiHi−1(5.7)

Hi−1Yi = YiHi(5.8)

ΩiXi = XiΩi−1(5.9)

Ωi−1Yi = YiΩi(5.10)

(we have used the convention that a path a−→ b−→ is written as ba.)
Then there is an isomorphism from the path algebra of this quiver to HΛ sending

Hi (resp. Ωi) to the diagonal matrix with H − εi (resp. Ω − α2) in the (i + 1)’st
position and zeroes elsewhere, and Xi (resp. Yi) to the matrix with i’th entry Eδi
(resp. F δi) on the subdiagonal (resp. super-diagonal) and zeroes elsewhere.

For example when t = 1 the isomorphism is given by

H0 → diag(H − ε0, 0), H1 → diag(0, H − ε1)

Ω0 → diag(Ω− α2, 0), Ω1 → diag(0,Ω− α2)

X1 →
(

0 0
Eδ1 0

)
, Y1 →

(
0 F δ1
0 0

)
The fact that (5.5) transforms to an identical relation follows from the identity

EδF δ =
(

1
2

)δ δ−1∏
j=0

(Ω− u(H − j))

in A (see [23, Appendix]). Similarly for relations (5.6). . . (5.10). It is now easy to
check that this map is an isomorphism and we identify HΛ with this path algebra.
We now have ψ(H) =

∑t
i=0Hi, ψ(Ω) =

∑t
i=0 Ωi.

Now we make some simplifications. We want to complete HΛ at the ideal
(ψ(H), ψ(Ω)), and hence every factor in (5.5)(5.6) that is not zero if we put ψ(H) =
0, ψ(Ω) = 0 will become a unit. Using the special nature of the equations (5.5). . . (5.10)
the reader may verify that one may eliminate these units by changing the variables
Xi, Yi. Hence we have almost proved the following.
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Theorem 5.2.1. H(∞)
Λ is isomorphic to the completed path algebra of the quiver

(5.4) subject to the relations (5.7). . . (5.10) and the relations

XiYi = Ωi + α2 − u(Hi + ri)(5.11)

YiXi = Ωi−1 + α2 − u(Hi−1 + ri)(5.12)

In particular the full subcategory of O(∞)
Λ , consisting of finitely generated objects,

is equivalent with the category of finite dimensional representations of the quiver
(5.4) (subject to the relations (5.7). . . (5.12)), having the additional property that
sufficiently long paths act as zero.

Proof. Everything is clear, except perhaps the fact that completing the path algebra
at (ψ(H), ψ(Ω)) is the same as completing at the ideal generated by the paths of
length one. To prove this one has to show that the two corresponding adic filtrations
are cofinal. This is left as an exercise. �

Remark 5.2.2. We prefer the relations given by the above theorem since they make
clear the role of both H and Ω. However it is possible to eliminate Ω. Then (5.4)
is replaced by the quiver

(5.13)
mH0

r -
X1

�
Y1

mH1

r -
X2

�
Y2

mH2

r
m

Ht−1

r -
Xt

�
Yt

mHt

r· · ·

subject to the relations

XiYi − Yi+1Xi+1 = u(Hi + ri+1)− u(Hi + ri), for i = 1, . . . , t− 1(5.14)

HiXi = XiHi−1(5.15)

Hi−1Yi = YiHi(5.16)

Now we draw some conclusions.

5.3. Smith’s O-category. Let us recall Smith’s definition of O (which is a direct
generalization of [5]). An A-module is in O iff

(1) M is the sum of its H-weight spaces.
(2) For all m ∈M , dim(k[E] ·m) <∞.
(3) M is a finitely generated A-module.

If Λ ∈ t∗/ SuppA is as above then OΛ is defined as the full subcategory of O of
those objects having their weights in Λ. It is clear that O ⊂ O(∞) and OΛ ⊂ O(∞)

Λ .
Furthermore if M ∈ O(∞)

Λ then (1)(2)(3) are equivalent with
(1’) ∀β ∈ Λ : (H − β1)Mβ = 0;
(2’) M does not have L(εt) as a subquotient;
(3’) M has finite length.

We then easily prove the following (this has also been observed in [33]).

Proposition 5.3.1. The category OΛ is equivalent with the category of finite di-
mensional representations over the quiver

(5.17) r r r r r-
X1

�
Y1

-
X2

�
Y2

-
Xt−1

�
Yt−1

· · ·
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with relations

XiYi − Yi+1Xi+1 = 0, for i = 1, . . . , t− 2
Xt−1Yt−1 = 0

Proof. By using (3.10), and by tracing back the computations in §5.2 we see that
objects in OΛ correspond to finite dimensional representations of the quiver (5.4)
with dimension vector (d0, . . . , dt−1, 0), having the property that the (Hi)i act as
zero.

By using the fact that by definition α2 = u(ri) we obtain (5.17). Note that long
paths are automatically zero in (5.17). �

5.4. Finite dimensional representations. We have noted in §3.1 that the cate-
gory of finite dimensional representations lies in in O(∞). The following proposition
describes this subcategory.

Proposition 5.4.1. The quiver

(5.18)
mH1

r -
X2

�
Y2

mH2

r -
X3

�
Y3

mH3

r
m

Ht−2

r -
Xt−1

�
Yt−1

m
Ht−1

r· · ·

with relations :
if t ≥ 3

−Y2X2 = u(H1 + r2)− u(H1 + r1)

XiYi − Yi+1Xi+1 = u(Hi + ri+1)− u(Hi + ri), for i = 2, . . . , t− 2

Xt−1Yt−1 = u(Ht−1 + rt)− u(Ht−1 + rt−1)
HiXi = XiHi−1

Hi−1Yi = YiHi

(5.19)

if t = 2

(5.19bis) 0 = u(H1 + r2)− u(H1 + r1)

has a finite dimensional path algebra, say of dimension N .
Furthermore one has that the category of finite dimensional representations in

O(∞)
Λ is non-trivial iff t ≥ 2, and is equivalent with the category of finite dimensional

representations over the quiver satisfying the relations (5.19(bis)) together with the
relations

(5.20) HN
i = 0, for i = 1, . . . , t− 1

Proof. The proof that (5.18) has a finite dimensional path algebra is an exercise
which is left to the reader (see example 5.4.4 below for the case t = 3).

A finitely generated object in O(∞)
Λ is finite dimensional if and only if it con-

tains no composition factors of the form L(ε0), L(εt). The proposition now follows
directly from Theorem 5.2.1. Note that the completion has been replaced by the
equivalent operation of adding the relations (5.20). �

Remark 5.4.2. It was shown in [33] that the category of finite dimensional repre-
sentations of A, with generalized weights lying in Λ, has projective covers. This is
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equivalent with saying that it is given by the representations of some finite dimen-
sional algebra. However this algebra was not determined explicitly.

In [23, Cor 3.8] Smith shows that any ideal of finite codimension in A/(Ω − α)
is eventually idempotent. Proposition 5.4.1 allows us to do better.

Corollary 5.4.3. Every ideal in A of finite codimension is eventually idempotent

Proof. Let J ⊂ A be an ideal of finite codimension. We will show that the length of
A/J as a left A-module is bounded in terms of |V (J0)|. Since |V (J0)| = |V ((J2)0)|
this proves what we want.

Let’s suppose V (J0) = {β1, . . . , βq}. Then there exists p such that A/J is a
quotient, as left A-module of M (p)(β1) ⊕ · · · ⊕ M (p)(βq). Applying F (∞) shows
that F (∞)(A/J) is a finite dimensional quotient of H(∞)

Λ1
⊕ · · · ⊕H(∞)

Λq
, where Λi is

chosen to contain βi. According to Proposition 5.4.1 there exists a finite dimensional
quotient, say Qi of H(∞)

Λi
such that finite dimensional objects in O(∞)

Λi
correspond to

finite dimensional representations of Qi. Furthermore it is easy to see that dimQi
may be uniformly bounded in terms of deg u(H) (see (5.1)), say by M .

Hence one deduces that the length of F (∞)(A/J) is bounded by qM , and so the
same holds for A/J . �

Example 5.4.4. Assume that t = 3. That is (5.18) is the quiver

mH1

r -
X2

�
Y2

mH2

r
with relations

Y2X2 = u(H1 + r1)− u(H1 + r2)

X2Y2 = u(H2 + r3)− u(H2 + r2)

together with the two last equations of (5.19).
Expanding Y2X2Y2 in two ways yields

(5.21) (u(H1 + r1)− u(H1 + r3))Y2 = 0

Similarly by expanding X2Y2X2

X2(u(H1 + r1)− u(H1 + r3)) = 0

Multiplying (5.21) on the left and on the right with X2 yields

(u(H1 + r1)− u(H1 + r3))(u(H1 + r1)− u(H1 + r2)) = 0

(u(H2 + r1)− u(H2 + r3))(u(H2 + r3)− u(H2 + r2)) = 0

Put θi = u(H + ri). We obtain that the path algebra of (5.18) is given by

(5.22)
(
k[H]/(θ1 − θ3)(θ1 − θ2) Y k[H]/(θ1 − θ3)

Xk[H]/(θ1 − θ3) k[H]/(θ1 − θ3)(θ2 − θ3)

)
where X,Y commute with H and satisfy the relations

Y X = θ1 − θ2

XY = θ3 − θ2
(5.23)
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Put n1 = ord(H)(θ2 − θ3), n2 = ord(H)(θ1 − θ3) and n3 = ord(H)(θ1 − θ2). Note
that two of these numbers have to be equal. Then the completion of (5.22) is given
by (

k[H]/(Hn2+n3) Y k[H]/(Hn2)
Xk[H]/(Hn2) k[H]/(Hn1+n2)

)
where X,Y still satisfy (5.23).

5.5. Primitive ideals and primitive quotients. We start by reproving the fol-
lowing proposition.

Proposition 5.5.1. [23] Let J be a primitive ideal in A. Then

(1) J contains some Ω− λ, λ ∈ k;
(2) J is of the form AnnA L(α) where L(α) may be chosen in Smith’s O-

category;
(3) (Ω− λ) is a primitive ideal for all λ ∈ k;
(4) J is generated by J ∩ k[H,Ω].

Proof. (1) follows from Quillen’s lemma. For λ ∈ k put B = A/(Ω− λ). It follows
from (5.3) that the hypotheses for Theorem 3.2.4 are satisfied for B. This implies
(2)(4). Furthermore if we choose α = (α1, λ) in such a way that 〈α〉 = k×{λ} then
AnnBL(α) = 0. This proves (3). �

Now fix λ ∈ k and put B = A/(Ω−λ) as above. These are the minimal primitive
quotients of A. One may prove the following results.

Lemma 5.5.2. [23] B is a domain.

Proof. This follows from (5.3) and Proposition 3.4.1. It suffices to choose α =
(α1, λ) in such a way that α1 is “large” in its congruence class mod Z. �

Proposition 5.5.3. [8, §3] B is simple if and only if the polynomial λ− u(x) has
no two distinct roots which differ by an element of Z.

Proof. This follows from the above lemma, (5.3) and Proposition 3.3.1. �

Proposition 5.5.4. [3][6] One has the following

(1) The global dimension of B is finite if and only if the polynomial λ − u(x)
has no multiple roots.

(2) If λ− u(x) has no multiple roots then

gl dimB =

{
2 if λ− u(x) has two roots which differ by a non-zero element of Z.
1 otherwise

Proof. We first prove (1) and (2) for graded global dimension. We apply the criterion
given by corollary 3.5.11. Let α = (α1, λ) ∈ t∗, Λ = α + SuppA. We have to
determine when H

(∞)
Λ,B has finite global dimension.

Using 4.2.1 we see that H(∞)
Λ,B = H

(∞)
Λ,A /(ψ(Ω)). Hence to obtain H

(∞)
Λ,B we have

to set (Ωi)i=0,...,t = 0 in (5.7). . . (5.12).
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Thus H(∞)
Λ,B is the completed path algebra of the quiver

mH0

r -
X1

�
Y1

mH1

r -
X2

�
Y2

mH2

r
m

Ht−1

r -
Xt

�
Yt

mHt

r· · ·

with relations

XiYi = λ− u(Hi + ri)(5.24)

YiXi = λ− u(Hi−1 + ri)(5.25)
HiXi = XiHi−1

Hi−1Yi = YiHi

After dropping unit factors, we may replace (5.24)(5.25) by

XiYi = Hmi
i

YiXi = Hmi
i−1

where mi is the multiplicity of the root ri of λ− u(x).
The completed path algebra of the resulting quiver is a so called “tiled” order

(5.26) H
(∞)
Λ,B =


k[[H]] k[[H]]Hm1 k[[H]]Hm1+m2 . . .
k[[H]] k[[H]] k[[H]]Hm2 . . .
k[[H]] k[[H]] k[[H]] . . .

...
...

...
. . .


The global dimension of such an order is given by [7, lem. 2.7, cor. 2.10]

gl dimH
(∞)
Λ,B =


∞ if some mi 6= 1
2 if t ≥ 2 and all mi = 1
1 otherwise

This finishes the proof of (1)(2) for graded global dimension. Then remark 3.5.12
implies that (1) is also true for ordinary global dimension. So we are left with (2).
To handle this case we may proceed as in [6].

Assume that gl dimB < ∞. One may define a filtration on B such that the
injective dimension of grB is equal to 2. To do this put degH = 1, degE =
degF = N where N � 0. This defines a filtration on A such that grA = k[H,E, F ],
a polynomial ring in three variables. Then for the induced filtration on B one has
grB = k[H,E, F ]/(EF ) which clearly has the right injective dimension.

Now we use the well known formulas

gl dimB = inj dimB B = GKdimB −min GKdimM = 2−min GKdimM

where the minimum is taken over all finitely generated B-modules (see the proof of
Theorem 8.4.1 and lemma 9.1.2). Now one always has GKdimL(α) ≤ 1. Hence we
obtain that gl dimB = 2 if and only if B has a finite dimensional representation.
Otherwise gl dimB = 1. Now finite dimensional representations are of the form
L(α) and hence (2) follows from (5.3). �
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6. The Weyl algebras

All the rings we consider below are derived from (localizations of) the Weyl
algebras. Hence we discuss these briefly.

We fix some notation which we use throughout. LetR = k[x1, . . . , xr, x
±1
r+1, . . . , x

±1
r+s]

with r + s = n. A will be the ring of differential operators of R. That is

A = R[∂1, . . . , ∂n]

where ∂i = ∂
∂xi

. We put πi = xi∂i, t = kπ1 + · · · + kπn and we identify t, t∗ with
kn in the obvious way. For α ∈ Zn ⊂ t∗ we define

uα = x
(α1)
1 · · ·x(αr)

r x
αr+1
r+1 · · ·xαnn

where

x
(αi)
i =

{
xαii if αi ≥ 0
∂−αii if αi < 0

Then the t-weight for the adjoint action of t on A is given by α. Furthermore
A =

⊕
A0uα where A0 = k[π1, . . . , πn]. Hence A satisfies the hypotheses (A1)(A2)

and therefore we can talk about the ⇒
α

and the ⇐⇒ relation. The result is as
follows.

Proposition 6.1. Let α, β, γ ∈ t∗. Then β ⇒
α
γ iff

(1) α ∼= β ∼= γ mod Zn
(2) ∀i ∈ {1, . . . , r} such that αi ∈ Z one has

If αi ≥ 0 and βi < 0 then γi < 0
If αi < 0 and βi ≥ 0 then γi ≥ 0

Proof. According to Proposition 4.1.1 it suffices to look at the cases A = k[x, ∂]
and A = k[x, x−1, ∂]. In the second case one has AmAn = Am+n for all m,n ∈ Z
and hence by lemma 3.1.9(3) one has β ⇒

α
γ iff α ∼= β ∼= γ mod Zn.

So we concentrate on the first case. One uses again criterion 3.1.9(3) with

∂xm = xm−1(x∂ +m)

x∂m = ∂m−1(x∂ −m+ 1)

for m ≥ 1. This yields the following basic instances of ⇒
α

For m ≥ 1,
(1) α+m⇒

α
α+m− 1 iff α+m 6= 0;

(2) α−m⇒
α
α−m+ 1 iff α−m+ 1 6= 0;

and for m ≥ 0
(3) α+m⇒

α
α+m+ 1;

(4) α−m⇒
α
α−m− 1.

It is easy to see that the above (1)(2)(3)(4) are equivalent with (1)(2) from the
statement of the proposition. �

Corollary 6.2. If β, γ ∈ t∗ then β ⇐⇒ γ iff β ∼= γ mod Zn and for all i ∈
{1, . . . , r}

βi ∈ Z and βi ≥ 0 iff γi ∈ Z and γi ≥ 0
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Now fix θ ∈ kn and let Γ = θ+Zn. It is clear that there are only a finite number
of equivalence classes for ⇐⇒ in Λ. That is condition (A3) is satisfied. Hence we
can talk about the orders H(∞)

Λ .

Theorem 6.3. One has

H
(∞)
Λ
∼= H1 ⊗̂H2 ⊗̂ · · · ⊗̂Hn

where

Hi =

{( k[[πi]] (πi)
k[[πi]] k[[πi]]

)
if θi ∈ Z and i ∈ {1, . . . , r}

k[[πi]] otherwise

Proof. Again by Proposition 4.1.1 it suffices to look at the cases A = k[x, ∂] and
A = k[x, x−1, ∂]. In the second case there is only one equivalence class for ⇐⇒
and hence H(∞)

Λ is isomorphic to the completion of A0 at π−θ, which is isomorphic
to k[[π]].

Assume now that A = k[x, ∂]. If θ 6∈ Z then there is again only one equivalence
class for ⇐⇒ . Thus as above H(∞)

Λ = k[[π]].
Assume therefore that θ ∈ Z. Then it follows cor. 6.2 that there are two equiva-

lence classes : 〈−1〉 and 〈0〉. Hence by (3.8)

HΛ =
(
A0 A−1

A1 A0

)
with ψ : D → HΛ given by

π 7→
(
π + 1 0

0 π

)
Conjugation with

(
x 0
0 1

)
transforms HΛ in

(6.1)
(
A0 (π)
A0 A0

)
and ψ becomes the diagonal map a 7→ diag(a, a). Completing (6.1) at (π) yields
the desired result. �

Remark 6.4. It helps to observe that k[[π]] is the completed path algebra of the
one-loop quiver

m
r

and
( k[[π]] (π)
k[[π]] k[[π]]

)
is the completed path algebra of

r r-

�

Hence the general case is obtained by taking a product of such quivers (in an
appropriate sense). In this way one obtains a quiver whose finite dimensional
representations describe the finitely generated objects in O(∞)

Λ .
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7. Rings of differential operators for torus invariants

Let A, t, R, . . . be as in §6. Assume that G is an algebraic torus acting diagonally
on kx1 + · · · + kxr + kxr+1 + · · · + kxr+s with weights η1, . . . , ηn ∈ X(G), where
n = r + s. We may and we will assume that the generic stabilizer for the G-action
is trivial. That is, we assume that the weights η1, . . . , ηn span X(G).

Restriction of differential operators provides us with a natural map

(7.1) D(R)G/gD(R)G → D(RG)

where D(−) denotes the ring of differential operators [18][22]. This map is usually
an isomorphism, but the exact conditions under which this happens are somewhat
technical. See loc. sit.

Even if (7.1) is not surjective then one may find a new ring of Laurent polyno-
mials R′ with an action of a new torus G′ such that D(RG) = D(R′G

′
) and such

that (7.1) is an isomorphism with (G,R) replaced by (G′, R′).
The map (7.1) may be generalized to covariants. Let χ ∈ X(G). Then the

RG-module of co (or semi) invariants associated to χ is

RGχ = {r ∈ R | ∀g ∈ G : g · r = χ(g)r}

Let g = LieG. The fact that the generic stabilizer for the G-action is trivial implies
in particular that g ⊂ t. We may canonically embed X(G) ⊂ g∗ and hence χ may
be considered as an element of g∗. Then there is again a natural map

(7.2) D(R)G/(g− χ(g))D(R)G → DRG(RGχ )

which is usually an isomorphism. We recall that g− χ(g) was defined in (4.4).
Below we study the left hand side of (7.2), but we will not restrict χ to being

an element of X(G). That is, χ will be an arbitrary element of g∗. Working in this
greater generality is essentially for free.

If we put, as in §6, A = D(R) then, using the notation of §4.4, we have

Bχ = AG/(g− χ(g))AG

The rings Bχ also turn up in the study of rings of differential global operators on
toric varieties, see [19].

We will call h ⊂ t algebraic if it is the Lie algebra of some algebraic torus, acting
diagonally on

∑
i kxi. This equivalent with

h =
⋂
i

kerλi

for some (λi)i ∈ Qn ⊂ t∗.

7.1. A few results on Zariski closures. If one wants to apply the results from
§3 to rings of differential operators, the main difficulty consists of describing the
regions 〈α〉, and more specifically checking the conditions for Theorem 3.2.4. In this
section we provide some results which are related to this. We use some standard
results and notations from convex geometry for which we refer the reader to [21].

Lemma 7.1.1. Assume that E is a finite dimensional F -vector space, F a subfield
of R, and let λ1, . . . , λm ∈ E∗. Then there exists a disjoint decomposition

(7.3) {1, . . . ,m} = I t J
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such that there exist ε ∈ E and z ∈ Fm with the properties
∑m
i=1 ziλi = 0,

〈λi, ε〉 =

{
> 0 if i ∈ I
= 0 if i ∈ J

zi =

{
= 0 if i ∈ I
> 0 if i ∈ J

Furthermore, a decomposition (7.3), with the property that ε, z exist, is unique.

Proof. Let T be the positive span of (λi)i=1,...,m, H = T ∩ (−T ) the maximal linear
subspace of T , C = T∨. Then H = C⊥. Let J = {i | λi ∈ H}, I = {i | λi ∈
C∨ \ C⊥} and choose ε ∈ relint(C). Then [21, Lemma A.4] gives 〈λi, ε〉 > 0 iff
i ∈ I.

Also if j ∈ J then R+(−λj) ⊂ T and so we can find z
(j)
i ∈ F such that∑

i z
(j)
i λi = 0, z(j)

i ≥ 0 for all i and z
(j)
j > 0. set zi =

∑
j z

(j)
i . Then

∑
ziλi = 0,

zi ≥ 0 for all i and zi > 0 for i ∈ J . The existence of ε forces zi = 0 for i ∈ I.
The uniqueness of the decomposition is proved similarly. �

Proposition 7.1.2. Let E be a Q-vector space, L a full Z-lattice in E, λ1, . . . , λm ∈
E∗, c1, . . . , cm ∈ Q, and define

C = {x ∈ E | ∀i = 1, . . . ,m : 〈λi, x〉 ≤ ci}
Let {1, . . . ,m} = I t J be a decomposition as in (7.3). Put

E′ =
⋂
j∈J

kerλj

C ′ = {x ∈ E | ∀i ∈ J : 〈λi, x〉 ≤ ci}
Then

(1) C ∩ L = C ′ ∩ (L+ E′)
(2) C ′ ∩ (L+ E′) is a finite union of translates of E′.

Proof. Throughout let ε, z be as in lemma 7.1.1. We first prove (2). We define a
map

ι : C ′ ∩ (L+ E′)→ Q|J| : x 7→ (〈λj , x〉)j∈J
By definition if x ∈ C ′ then 〈λj , x〉 ≤ cj for all j ∈ J . On the other hand

λj = − 1
zj

∑
k 6=j
k∈J

zkλk

and hence

〈λj , x〉 = − 1
zj

∑
k 6=j
k∈J

zk〈λk, x〉

≥ − 1
zj

∑
k 6=j
k∈J

zkck

Thus the image of ι is bounded.
In addition we have im ι = ι(C ′ ∩L), and hence the image of ι is discrete (E is a

Q-vector space). Together this shows that im ι is finite. Since the fibers of ι consist
of translates of E′, (2) is proved.
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Now we prove (1). Note that C ∩ L ⊂ C ′ ∩ (L + E′). Using (2) it suffices now
to prove two statements :

(1a) ι(C ∩ L) = im ι.
Because L is dense in E we may replace ε by some positive multiple

such that ε ∈ L. Assume that l + e ∈ C ′ ∩ (L + E′) with l ∈ L, e ∈ E′.
Then ι(l −Mε) = ι(l) = ι(l + e), for M ∈ N. If we choose M � 0 then
l −Mε ∈ C ∩ L.

(1b) If ζ ∈ im ι then ι−1(ζ) ∩ (C ∩ L) is Zariski dense in ι−1(ζ).
To prove this let (λ′i)i=1,...,m be the restrictions of (λi)i=1,...,m to E′. Let

x ∈ ι−1(ζ) ∩ (C ∩ L). Then ι−1(ζ) ∩ (C ∩ L) = x+ U where

U = {y ∈ E′ ∩ L | 〈λ′i, x+ y〉 ≤ ci for all i ∈ I}

Note now that by definition ε is in E′ and satisfies 〈λ′i, ε〉 > 0 for all i ∈ I.
Furthermore L ∩ E′ is a dense sublattice of E′ since the ground field is Q.
Then it follows from [28, lemma 3.4] that U is Zariski dense in E′. Since
ι−1(ζ) = x+ E′ this proves (1b). �

Remark 7.1.3. • Proposition 7.1.2 is false if Q is replaced by R.
• Since for λ ∈ E∗, 〈λ,−〉 takes on discrete values, we may replace some of

the ≤-signs in the definition of C by <-signs, provided we do the same with
the corresponding signs in the definition of C ′.

Corollary 7.1.4. Let x ∈ L, Then

(7.4) (x+ C ∩ L) ∩ (C ∩ L) = x+ C ∩ L ∩ C ∩ L

scheme theoretically.

Proof. It suffices to prove (7.4) set theoretically since we are talking about finite
unions of translates of linear spaces. By Proposition 7.1.2 the right-hand side of
(7.4) is equal to

(x+ C ′) ∩ C ′ ∩ (L+ E′)
Let ai = min(ci, ci − 〈λ, x〉) for i = 1, . . . ,m. Then

(x+ C) ∩ C = {y ∈ E | ∀i = 1, . . . ,m : 〈λi, y〉 ≤ ai}

Let ((x + C) ∩ C)′ be derived from (x + C) ∩ C in the same way as C ′ is derived
from C. That is

((x+ C) ∩ C)′ = {y ∈ E | ∀i ∈ J : 〈λi, y〉 ≤ ai}

It is then easy to see that the left-hand side of (7.4) is equal to

((x+ C) ∩ C)′ ∩ (L+ E′)

Hence we have to show

((x+ C) ∩ C)′ = (x+ C ′) ∩ C ′

but this is clear. �

The following result will be used later

Lemma 7.1.5. Let X be a set of the form C ∩L (as in 7.1.2) and assume that X
is Zariski dense in E. Then given β, γ ∈ L there exist α ∈ X such that α+ γ ∈ X,
α+ β + γ ∈ X.
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Proof. According to [28, lemma 3.4] there exists ε such that for all i ∈ {1, . . . ,m} :
〈λi, ε〉 > 0. By replacing ε with a suitable multiple, we may assume that ε ∈ L. It
then suffices to take α = −Mε for M � 0. �

7.2. Computation of 〈α〉Bχ . In this section we let the notation be as in the
beginning of §7. We will use the results of §7.1 to give a classification of the 〈α〉Bχ .
Although not strictly indispensable, this result will be useful in the classification
of the primitive ideals of Bχ which we give in §7.3. The reader is advised to read
that section first.

We recall that η1, . . . , ηn ∈ g∗ are the weights for the action of g on kx1+· · ·+kxn.
We have g ⊂ t and we identify t, t∗ with kn as in §6. Then

V (g− χ(g)) = {(αi)i=1,...,n ∈ t∗ |
n∑
i=1

αiηi = χ}

Definition 7.2.1. Let (ψ, θ) be a pair satisfying
(1) ψ ∈ g ∩Qn

(2) 〈ψ, ηi〉 = 0 for i 6∈ {1, . . . , r}
(3) θ ∈

(∑
〈ψ,ηi〉=0 kηi

)
/
(∑

〈ψ,ηi〉=0 Zηi
)

Then we say that (ψ, θ) is attached to χ if there exist β ∈ V (g − χ(g)) with the
properties

(4)
∑
〈ψ,ηi〉=0 βiηi

∼= θ mod
∑
〈ψ,ηi〉=0 Zηi

(5) For all i ∈ {1, . . . , r}
〈ψ, ηi〉 < 0⇒ βi ∈ Z, βi ≥ 0

〈ψ, ηi〉 > 0⇒ βi ∈ Z, βi < 0

〈ψ, ηi〉 = 0⇒ βi 6∈ Z

Remark 7.2.2. (1) Property (5) above makes sense since ψ ∈ g ∩ Qn and ηi ∈
X(G) which is in the image of Zn ⊂ t∗ in g∗. Hence 〈ψ, ηi〉 ∈ Q.

(2) Properties (1)(2)(3) of (ψ, θ) are independent of χ. For a given pair (ψ, θ)
to be attached to at least one χ it is necessary and sufficient that θ is in
the image of ∑

i∈{1,...,r}
〈ψ,ηi〉=0

(k − Z)ηi +
∑

i 6∈{1,...,r}

kηi

To a pair (ψ, θ) satisfying (1)(2)(3) we associate a set

(7.5) Sψ,θ =


(γi)i ∈ V (g− χ(g)) |

∑
〈ψ,ηi〉=0

γiηi ∼= θ mod
∑

〈ψ,ηi〉=0

Zηi

and ∀i ∈ {1, . . . , n} :
〈ψ, ηi〉 < 0⇒ γi ∈ Z, γi ≥ 0

〈ψ, ηi〉 > 0⇒ γi ∈ Z, γi < 0


Lemma 7.2.3. Sψ,θ is a finite union of translates of the linear space

(7.6) {(ui)i=1,...,n ∈ V (g) | ∀i ∈ {1, . . . , n} : 〈ψ, ηi〉 6= 0⇒ ui = 0}

Proof. This result can be obtained from the proof of Proposition 7.2.4. However
for clarity we give an independent proof.

Define the map
ι : Sψ,θ → Zv : (γi) 7→ (γi)〈ψ,ηi〉6=0
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where v = |{i | 〈ψ, ηi〉 6= 0}|. The fibers of ι clearly consist of translates of (7.6).
Let (γi)i ∈ Sψ,θ. Then∑

〈ψ,ηi〉6=0

γiηi = χ− θ mod
∑

〈ψ,ηi〉=0

Zηi

Applying 〈ψ,−〉 and using (3) in definition 7.2.1 yields∑
〈ψ,ηi〉6=0

γi〈ψ, ηi〉 = 〈ψ, χ〉

Now if 〈ψ, ηi〉 6= 0 then the definition of Sψ,θ implies that γi ∈ Z and γi〈ψ, ηi〉 ≤ 0.
Thus there are only finitely many possibilities for (γi)〈ψ,ηi〉6=0. Whence the image
of ι is finite. �

The following proposition is the main result of this section

Proposition 7.2.4. Every 〈α〉Bχ is of the form Sψ,θ where (ψ, θ) is attached to χ.
Conversely, if (ψ, θ) is attached to χ then Sψ,θ = 〈β〉Bχ where β is as in definition
7.2.1(4)(5).

We will prove this result below. The following proposition tells us when Sψ,θ ⊂
Sψ′,θ′ and when Sψ,θ = Sψ′,θ′

Proposition 7.2.5. Assume that (ψ, θ), (ψ′, θ′) are attached to χ. Then
(1) Sψ,θ ⊂ Sψ′,θ′ iff

{i | 〈ψ′, ηi〉 < 0} ⊂ {i | 〈ψ, ηi〉 < 0}
{i | 〈ψ′, ηi〉 > 0} ⊂ {i | 〈ψ, ηi〉 > 0}

(7.7)

θ′ ∼= θ mod
∑

〈ψ′,ηi〉=0

Zηi(7.8)

(2) Sψ,θ = Sψ′,θ′ iff

{i | 〈ψ′, ηi〉 < 0} = {i | 〈ψ, ηi〉 < 0}
{i | 〈ψ′, ηi〉 > 0} = {i | 〈ψ, ηi〉 > 0}

θ ∼= θ′ mod
∑

〈ψ,ηi〉=0

Zηi

Proof. (2) follows from (1), so we concentrate on (1). If (7.7)(7.8) hold then clearly
Sψ,θ ⊂ Sψ′,θ′ , so we prove the converse. Assume Sψ,θ ⊂ Sψ′,θ′ . Since (ψ, θ) is
attached to χ there exist β satisfying 7.2.1(4)(5). We deduce

θ ∼=
∑

〈ψ,ηi〉=0

βiηi mod
∑

〈ψ,ηi〉=0

Zηi(7.9)

{i | 〈ψ, ηi〉 < 0} = {i ∈ {1, . . . , r} | βi ∈ Z, βi ≥ 0}
{i | 〈ψ, ηi〉 > 0} = {i ∈ {1, . . . , r} | βi ∈ Z, βi < 0}

(7.10)

Now β ∈ Sψ′,θ′ and hence by (7.5)

θ′ ∼=
∑

〈ψ′,ηi〉=0

βiηi mod
∑

〈ψ′,ηi〉=0

Zηi(7.11)

{i | 〈ψ′, ηi〉 < 0} ⊂ {i ∈ {1, . . . , r} | βi ∈ Z, βi ≥ 0}
{i | 〈ψ′, ηi〉 > 0} ⊂ {i ∈ {1, . . . , r} | βi ∈ Z, βi < 0}

(7.12)
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From (7.10)(7.12) we deduce

{i | 〈ψ′, ηi〉 < 0} ⊂ {i | 〈ψ, ηi〉 < 0}
{i | 〈ψ′, ηi〉 > 0} ⊂ {i | 〈ψ, ηi〉 > 0}

Furthermore (7.10) implies that∑
〈ψ′,ηi〉=0

βiηi ∼=
∑

〈ψ,ηi〉=0

βiηi mod
∑

〈ψ′,ηi〉=0

Zηi

This yields (7.8). �

Corollary 7.2.6. There are only a finite number of different 〈α〉Bχ .

Proof. The proof is similar to that of lemma 7.2.3. By Propositions 7.2.4 and 7.2.5
it suffices to show that for every ψ satisfying (1)(2) of definition 7.2.1, there are
only finitely many θ such that (ψ, θ) is attached to χ. Suppose that we are given θ
and β ∈ V (g− χ(g)) such that (3)(4)(5) of definition 7.2.1 hold. Then∑

〈ψ,ηi〉6=0

βiηi = χ− θ mod
∑

〈ψ,ηi〉=0

Zηi

Applying 〈ψ, 〉 and using (2) and (3) we obtain

(7.13)
∑

〈ψ,ηi〉6=0

βi〈ψ, ηi〉 = 〈ψ, χ〉

Now if 〈ψ, ηi〉 6= 0 then (5) implies that βi ∈ Z and βi〈ψ, ηi〉 ≤ 0. Thus there
are only finitely many possibilities for (βi)〈ψ,ηi〉6=0 satisfying (7.13), and hence only
finitely many possibilities for θ. �

Example 7.2.7. The above proof gives a method for calculating all θ such that
(ψ, θ) is attached to χ. We give an example which shows that ψ does not determine
θ. We consider the action of a 2-dimensional torus G on kx1+· · ·+kx4. We identify
X(G) with Z2. Suppose the weights η1, . . . , η4 are given by (0, 2), (0,−2), (1, 0),
(1, 1). Let χ = (1, 2) and ψ = (−1, 0). Then (7.13) becomes

−β3 − β4 = −1

with β3, β4 nonnegative integers, with solutions (β3, β4) = (1, 0) or (0, 1). The
corresponding values of θ are χ − η3 = (0, 2) and χ − η4 = (0, 1) which lie in
distinct cosets of

∑
〈ψ,ηi〉=0 Zηi = Z(0, 2). Finally we can choose β1, β2 so that

β = (1/2,−1/2, 1, 0) in the first case and β = (1/4,−1/4, 0, 1) in the second case.

Proof of Proposition 7.2.4. First we fix α ∈ V (g − χ(g)). For simplicity we write
〈α〉 for 〈α〉Bχ . We also put T = {1, . . . , r} ∩ {i | αi ∈ Z}. Then by Corollary 6.2

〈α〉 =
{
β ∈ V (g− χ(g)) | β ∼= α mod Zn and ∀i ∈ T :

αi ≥ 0⇒ βi ≥ 0
αi < 0⇒ βi < 0

}
We will write 〈α〉 − α in the form C ∩ L as in §7.1. More precisely we put E =
V (g) ∩Qn, L = SuppBχ = SuppA ∩ E and for i ∈ T , λi is defined by

αi ≥ 0⇒ λi(u) = −ui
αi < 0⇒ λi(u) = ui
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If we put

C =

{
u ∈ V (g) | ∀i ∈ T :

αi ≥ 0⇒ λi(u) ≤ αi
αi < 0⇒ λi(u) ≤ −αi − 1

}
then we indeed have

〈α〉 − α = L ∩ C
Note that the fact that g = LieG implies that L is a full sublattice in E.

Now using lemma 7.1.1, let T = I t J be a disjoint decomposition such that
there exist ε ∈ E and z ∈ Q|T | such that

∑
ziλi = 0 and

〈λi, ε〉 > 0 and zi = 0 if i ∈ I
〈λi, ε〉 = 0 and zi > 0 if i ∈ J

Define (yi)i=1,...,n ∈ Qn by

yi =


−zi if i ∈ T , αi ≥ 0
zi if i ∈ T , αi < 0
0 otherwise

If (ωi)i ∈ Qn satisfies
∑
ωiηi = 0 then (ωi)i ∈ E. Evaluating

∑
ziλi on (ωi)i yields∑

ωiyi = 0. Since this holds for all such (ωi)i and ηi ∈ g ∩ Qn this implies that
there must exist ψ ∈ g ∩Qn such that yi = 〈ψ, ηi〉.

Now we use lemma 7.1.2 to compute the Zariski closure of C ∩ L in E. Note
that for i ∈ {1, . . . , n} we have yi = 〈ψ, ηi〉 6= 0 if and only if i ∈ J . Thus

E′ =
⋂
j∈J

kerλj = {(ui)i=1,...,n ∈ V (g)∩Qn | ∀i ∈ {1, . . . , n} : 〈ψ, ηi〉 6= 0⇒ ui = 0}

Furthermore, if 〈ψ, ηi〉 < 0 then αi ≥ 0 and the condition λi(u) ≤ αi in the
definition of C is equivalent to ui ≥ −αi. Similarly if 〈ψ, ηi〉 > 0 then αi < 0 and
the condition λi(u) ≤ −αi − 1 becomes ui < −αi. Hence

C ′ =

{
(ui)i=1,...,n ∈ V (g) ∩Qn | ∀i ∈ {1, . . . , n} :

〈ψ, ηi〉 < 0⇒ ui ≥ −αi
〈ψ, ηi〉 > 0⇒ ui < −αi

}
Now by Proposition 7.1.2

C ∩ L = (E′ + L) ∩ C ′

Since

E′ + L =

{
(ui)i ∈ V (g) ∩Qn | ∃(vi)i ∈ V (g) ∩ Zn

such that ∀i ∈ {1, . . . , n} : 〈ψ, ηi〉 6= 0⇒ ui = vi

}
we find

C ∩ L =


(ui)i ∈ V (g) ∩Qn | ∃(vi)i ∈ V (g) ∩ Zn

such that ∀i ∈ {1, . . . , n} :
〈ψ, ηi〉 < 0⇒ ui = vi ≥ −αi
〈ψ, ηi〉 > 0⇒ ui = vi < −αi


This is the Q-Zariski closure of 〈α〉 − α. To find 〈α〉 we have to take the k-Zariski
closure and add α. We find

(7.14) 〈α〉 =


(γi)i ∈ V (g− χ(g)) | ∃(δi)i ∈ V (g− χ(g)) : δ ∼= α mod Zn

and ∀i ∈ {1, . . . , n} :
〈ψ, ηi〉 < 0⇒ γi = δi ≥ 0

〈ψ, ηi〉 > 0⇒ γi = δi < 0


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It will be useful to rewrite (7.14) a bit. The existence of δ ∈ V (g− χ(g)) such that
δ ∼= α mod Zn and 〈ψ, ηi〉 6= 0⇒ γi = δi is equivalent to∑

〈ψ,ηi〉=0

γiηi ∈
∑

〈ψ,ηi〉=0

αiηi +
∑

〈ψ,ηi〉=0

Zηi

Hence if θ is the image of
∑
〈ψ,ηi〉=0 αiηi in ∑
〈ψ,ηi〉=0

kηi

 /

 ∑
〈ψ,ηi〉=0

Zηi


then we obtain from (7.14) :

〈α〉 = Sψ,θ

Now by construction (ψ, θ) satisfies 7.2.1(1)(2)(3). Furthermore for µ ∈ Q one has∑
〈ψ,ηi〉=0

αiηi =
∑

〈ψ,ηi〉=0

(αi + µεi)ηi

Thus β = α+ µε satisfies 7.2.1(4) and since for all i ∈ T we have 〈ψ, ηi〉 6= 0 if and
only if εi = 0 we see that β satisfies 7.2.1(5) for µ small enough. This shows that
(ψ, θ) is attached to χ.

Now we indicate how one proves the converse. Assume that (ψ, θ) is attached
to χ. Then we claim that Sψ,θ = 〈β〉 where β is as in definition 7.2.1. This follows
by retracing the computations in the first part of the proof. It turns out that one
has to take I = ∅, J = T , ε = 0, zi = |〈ψ, ηi〉|. �

7.3. Primitive ideals. In this section we will verify the hypotheses for Theorem
3.2.4 and Propositions 3.2.2 and 3.4.1 for Bχ as introduced in the beginning of §7.
For simplicity we restate a combined version of these results below.

Theorem 7.3.1. (1) Bχ is a domain.
(2) Bχ is primitive.
(3) Every prime ideal in Bχ is of the form J(α) with α ∈ V (g − χ(g)). In

particular every prime ideal is primitive.
(4) There is a one-one correspondence between the regions 〈α〉Bχ ⊂ V (g−χ(g))

and the primitive ideals in Bχ. The correspondence is given by associating
J(α) to α ∈ V (g− χ(g)).

(5) Bχ has only a finite number of primitive ideals;
(6) If J is a primitive ideal in Bχ then Jα = BχαJ0 + J0B

χ
α. In particular, J is

generated in degree zero.

Proof. Let α ∈ V (g− χ(g)). We write 〈α〉 for 〈α〉Bχ . Then

(7.15) 〈α〉 =


β ∈ V (g− χ(g)) | β ∼= α mod Zn

and ∀i ∈ {1, . . . , r}, αi ∈ Z :
αi ≥ 0⇒ βi ≥ 0
αi < 0⇒ βi < 0


In the course of the proof of Proposition 7.2.4 we have shown that 〈α〉 − α may
be written in the form C ∩ L, where C,L are as in Proposition 7.1.2. Hence for
β ∈ SuppBχ we obtain by cor. 7.1.4

(〈α〉 − α+ β) ∩ (〈α〉 − α) = 〈α〉 − α+ β ∩ 〈α〉 − α
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Translating this by α we obtain

(〈α〉+ β) ∩ 〈α〉 = 〈α〉+ β ∩ 〈α〉

which was the hypothesis for Proposition 3.2.2. So this proves that every J(α) is
generated in degree zero and is determined by 〈α〉.

Fix µ ∈ V (g − χ(g)) and put Λ = µ + SuppBχ. From the fact that g = LieG,
one obtains that SuppBχ is a full lattice in V (g). Hence Λ = µ + SuppBχ. By
(7.15) it follows that there are only a finite number of equivalence classes for ⇐⇒
in Λ. Hence at least one of those must be dense. This proves (2).

Let 〈α〉 be such a Zariski dense equivalence class in Λ. Since 〈α〉 is (up to
translation) of the form C∩L it follows from lemma 7.1.5 that for all β, γ ∈ SuppBχ

there exist δ ∈ 〈α〉 such that δ + γ ∈ 〈α〉, δ + β + γ ∈ 〈α〉. Then (1) follows from
Proposition 3.4.1. The only remaining non-trivial hypothesis we have to verify is
3.2.4(3). But this is precisely corollary 7.2.6. �

Remark 7.3.2. (1) Note that the 〈α〉Bχ were described in §7.2. Hence it follows
from 7.3.1(4) that there is also a one-one correspondence between the equiv-
alence classes of (ψ, θ)’s attached to χ and primitive ideals in Bχ (where
the equivalence relation is deduced from Proposition 7.2.5)

(2) In this context it is useful to observe that in a pair (ψ, θ) one may choose
ψ in g ∩ Zn = Y (G). Hence primitive ideals in Bχ are to a certain extent
determined by one-parameter subgroups of G.

7.4. Primitive quotients. It is possible to describe the primitive quotients of Bχ.
In this section we will write Bχg for Bχ.

Proposition 7.4.1. Assume that J is a primitive ideal in Bχg . Then there exist
an algebraic g ⊂ h ⊂ t and χ1, . . . , χp ∈ h∗ , ∀i = 1, . . . , p : χi|g = χ such that

Bχg /J =


Bχ1

h Bχ1,χ2
h

Bχ2,χ1
h Bχ2

h

. . .
B
χp
h


Proof. By Theorem 7.3.1(3), J = J(α) and hence J0 = I

(
〈α〉
)
. By Proposition

7.1.2 and lemma 7.2.3

〈α〉 = V (h− χ1(h)) ∪ · · · ∪ V (h− χp(h))

for some algebraic g ⊂ h ⊂ t, and appropriate χ1, . . . , χp. Then we use Theorem
7.3.1(6) and Proposition 4.5.1. �

Remark 7.4.2. It would be very nice if all (χi)i=1,...,p were equivalent under the →
relation (for h), so that Bχg /J would in fact be Morita equivalent to Bχ1

h . However
it is easy to give counterexamples to this.

From the proof of Proposition 7.4.1 we deduce the following corollary :

Corollary 7.4.3. The Goldie rank of Bχg /J(α) equals the number of connected
components of 〈α〉.
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7.5. Simplicity. Given the fact that a ring is simple if and only if its only primitive
ideal is the zero ideal, it is possible to deduce from Theorem 7.3.1(6) and Remark
7.3.2 necessary and sufficient conditions for simplicity. However these are some-
what technical. Instead we prove a direct criterion that emphasizes the connection
between the simplicity of Bχ and the Cohen-Macaulayness of RGχ . We use the same
notation as in the previous sections.

Suppose for a moment that s = 0, that is R = k[x1, . . . , xr], and that χ ∈ X(G).
Then it was shown by Stanley in [25, Th. 3.2] that if χ is of the form

∑r
i=1 θiηi

in X(G)Q with θi ∈] − 1, 0] then RGχ is Cohen-Macaulay. On the other hand a
straightforward generalization of [28, Theorem 6.2.5] shows that if Bχ is simple,
then RGχ is Cohen-Macaulay.

So it is not unreasonable to suppose that there is a connection between the
condition χ =

∑r
i=1 θiηi, θi ∈] − 1, 0] and the simplicity of Bχ. Corollary 7.5.2

below goes in this direction.
To state the result we assume that s and χ are general again. That is R =

k[x1, . . . , xr, x
±1
r+1, . . . , x

±1
r+s] and χ ∈ g∗.

Put t = dim g and choose an identification X(G) ∼= Zt. So there is a cor-
responding identification of g∗ with kt. Choose furthermore a Q-linear projection
pr : k → Q and denote with the same symbol the corresponding projection g∗ → Qt.
If χ ∈ g∗ and α ∈ V (g− χ(g)) then clearly pr(χ) =

∑
i pr(αi)ηi.

Let K be a maximal subset of {1, . . . , n} such that there exist (µi)∈K ∈ Q
different from zero, with

∑
i∈K µiηi = 0. It is easy to see that such a K is unique.

The following proposition gives a somewhat technical simplicity criterion for Bχ.
The main applications are corollary 7.5.2 and Proposition 7.6.3 below.

Proposition 7.5.1. Assume that pr(χ) is of the form
∑n
i=1 θiηi with (θi)i ∈ Q

and

(7.16) θi ∈]− 1, 0[ for i ∈ K ∩ {1, . . . , r}

Then Bχ is simple.

Proof. According to Proposition 3.3.1 and Theorem 7.3.1(1) it is sufficient to show
that for all α ∈ V (g− χ(g)) it is true that 〈α〉Bχ = V (g− χ(g)). One has

〈α〉Bχ =
{
β ∈ V (g− χ(g)) | β ∼= α mod Zn and ∀i ∈ T :

αi ≥ 0⇒ βi ≥ 0
αi < 0⇒ βi < 0

}
(recall that T = {1, . . . , r} ∩ {i | αi ∈ Z}). Since 〈α〉 −α is of the form C ∩L, as in
Proposition 7.1.2, we know by [28, Lemma 3.4] that 〈α〉Bχ is Zariski dense iff there
exists ε ∈ Qn such that

∑
εiηi = 0 and

(7.17) ∀i ∈ {1, . . . , r} ∩K,αi ∈ Z :
αi ≥ 0⇒ εi > 0
αi < 0⇒ εi < 0

(the restriction to i ∈ K is due to the fact that in [28, lemma 3.4] the λi that
describe C are, implicitly, assumed to be non-zero).

Suppose that pr(χ) =
∑n
i=1 θiηi where (θi)i satisfies (7.16). Then ε = pr(α)− θ

obviously satisfies (7.17). �
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Corollary 7.5.2. (1) If 0 is in the relative interior of the convex polyhedral
cone spanned by the weights (ηi)i∈{1,...,r}, (±ηi)i∈{r+1,...,r+s} then the con-
clusion of Proposition 7.5.1 remains valid if we replace (7.16) by

θi ∈]− 1, 0] for i ∈ {1, . . . , r}

(2) If 0 is in the relative interior of the convex polyhedral cone spanned by the
weights (ηi)i∈{1,...,r}, (±ηi)i∈{r+1,...,r+s} then Btriv is simple (“triv” is the
trivial character 0).

Proof. (1) The hypotheses imply that there exist (δi)i∈ Qn, ∀i ∈ {1, . . . , r} :
δi > 0 such that

∑n
i=1 δiηi = 0. If we replace θ with θ − µδ with µ ∈ Q+,

sufficiently small, but positive, we obtain that (7.16) is fulfilled.
(2) This is obvious from (1). �

Corollary 7.5.3. Assume that G is an abelian linear algebraic group acting ratio-
nally on a smooth affine variety. Then the ring of differential operators D(X//G)
is simple.

Proof. By the Luna Slice Theorem we can reduce to the case where X is a represen-
tation [31]. Furthermore by [22, Thm 10.6] (see also [18, Prop. 3.7]) we can further
reduce to X = kr×(k∗)s, G acting diagonally with trivial principal isotropy groups
(TPIG) and such that D(X//G) = D(X)G/(g − χ(g)). Let G◦ be the connected
component of G. The fact that X has TPIG implies that corollary 7.5.2(2) holds
and thus D(X)G

◦
/(g − χ(g)) is simple. Furthermore H = G/G◦ is a finite group

and using again the fact that X has TPIG yields that H acts faithfully on X//G◦.
Thus if we filter D(X)G

◦
/(g− χ(g)) by order of differential operators then H also

acts faithfully on the associated graded ring. So H acts by outer automorphisms
and hence by [17, cor. 2.6] D(X//G) = D(X)G/(g−χ(g)) = (D(X)G

◦
/(g−χ(g)))H

is simple. �

7.6. Simplicity and the →-relation. We will first investigate when χ, χ′ ∈ g∗

are comparable. Let K ⊂ {1, . . . , n} be as in the previous section.

Proposition 7.6.1. If χ− χ′ ∈
∑
i∈K Zηi then χ, χ′ are comparable.

Proof. According to Proposition 4.4.2 we have to show that χ + ηi and χ are
comparable if i ∈ K.

Since xi ∈ Ag
ηi , ∂i ∈ A

g
−ηi it suffices to show that ∂ixi 6∈ (g − χ(g)). For this it

suffices that πi 6∈ g.
So suppose on the contrary that πi ∈ g and let

∑
i∈K µiηi = 0, µi ∈ Q, µi 6= 0.

Now ηi is the composition of the inclusion g → t and the projection on the i’th
factor t → k. Hence ηj(πi) = δij . Evaluating

∑
i∈K µiηi on πi yields µi = 0,

contradicting the choice of the µ’s. �

Lemma 7.6.2. Let pr : k → Q be as in §7.5. Let χ ∈ g∗. Then there always exists
χ′ ∈ g∗ such that χ′ ∼= χ mod

∑
i∈K Zηi and such that

pr(χ′) =
n∑
i=1

θiηi

with θi ∈]− 1, 0[∩Q for all i ∈ K.
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Proof. Let
∑
i∈K µiηi = 0, µi ∈ Q different from 0. Write χ =

∑n
i=1 ziηi, zi ∈ k.

By replacing z with z + εµ, ε ∈ Q chosen suitably, we may assume that pr(zi) 6∈ Z
for i ∈ K.

Then we write pr(zi) = ni + θi, ni ∈ Z, θi ∈]− 1, 0[ and we put χ′ =
∑n
i=1(zi −

ni)ηi. It is clear that χ′ has the required properties. �

Now let us call χ ∈ g∗ minimal if for all χ′ ∈ g∗ with χ → χ′ one has χ′ → χ
(we think of → as ≥).

The following is the main result of this section.

Proposition 7.6.3. Let χ ∈ g∗. Then Bχ is simple if and only if χ is minimal.

Proof. Assume first that Bχ is simple and χ → χ′. By Prop. 4.4.2, χ and χ′ are
comparable. Hence in particular Bχ,χ

′
Bχ
′,χ is a non-zero ideal in Bχ. Since Bχ is

simple this implies Bχ,χ
′
Bχ
′,χ = Bχ and hence χ′ → χ which is what we had to

show.
Conversely assume that χ is minimal. By lemma 7.6.2 there exist χ′ comparable

to χ such that Bχ
′

is simple. So Bχ
′,χBχ,χ

′
= Bχ

′
and thus χ → χ′. Since χ is

minimal this implies χ′ → χ and hence Bχ and Bχ
′

are Morita equivalent. Thus
Bχ is also simple. �

7.7. Primitive ideals and the →-relation. We will consider pairs (ψ, θ) satis-
fying (1)(2)(3) of definition 7.2.1 and having the additional property that θ is in
the image of ∑

i∈{1,...,r}
〈ψ,ηi〉=0

(k − Z)ηi +
∑

i 6∈{1,...,r}

kηi

We will call two such pairs (ψ, θ), (ψ′, θ′) equivalent if

{i | 〈ψ′, ηi〉 < 0} = {i | 〈ψ, ηi〉 < 0}
{i | 〈ψ′, ηi〉 > 0} = {i | 〈ψ, ηi〉 > 0}

θ′ ∼= θ mod
∑

〈ψ,ηi〉=0

Zηi

and we will denote the set of all equivalence classes by P.
We define (ψ, θ) ≥ (ψ′, θ′) when

{i | 〈ψ′, ηi〉 < 0} ⊂ {i | 〈ψ, ηi〉 < 0}
{i | 〈ψ′, ηi〉 > 0} ⊂ {i | 〈ψ, ηi〉 > 0}

θ′ ∼= θ mod
∑

〈ψ′,ηi〉=0

Zηi

and in this way P becomes a partially ordered set. Note that the order relation on
P corresponds to the inclusions between the Sψ,θ as given by Proposition 7.2.5.

If χ ∈ g∗ then we define Pχ as the set of all equivalence classes of pairs (ψ, θ)
attached to χ. If (ψ, θ) ∈ Pχ then we write J(ψ, θ)Bχ for the primitive ideal
associated to Sψ,θ.

In this section we will prove the following result.

Proposition 7.7.1. (1)
⋃
χ∈g∗ Pχ = P

(2) The map Pχ → Prim(Bχ) : (ψ, θ) 7→ J(ψ, θ)Bχ is an order preserving
bijection.
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(3) χ′ → χ if and only if Pχ ⊂ Pχ′ .

The proof of this result is partially based upon the following proposition which
shows that P may be considered as the set of all primitive ideals in all Bχ, subject
to a natural identification.

If J is an ideal of Bχ we set as in §4.4

J̃ = {x ∈ Bχ
′
| Bχ,χ

′
xBχ

′,χ ⊂ J}

Proposition 7.7.2. Assume that (ψ, θ) is attached to χ. Then

J̃(ψ, θ)Bχ =

{
J(ψ, θ)Bχ′ if (ψ, θ) is attached to χ′

Bχ
′

otherwise

Proof. Let β ∈ V (g−χ(g)) be as in definition 7.2.1(4)(5). According to Proposition
4.4.5 we have to show that

〈β〉A ∩ V (g− χ′(g)) 6= ∅ iff (ψ, θ) is attached to χ′

Assume first that there exist β′ ∈ 〈β〉A ∩ V (g− χ′(g)). Then corollary 6.2 implies
that β′ satisfies definition 7.2.1(4)(5) and hence (ψ, θ) is attached to χ′.

Conversely assume that (ψ, θ) is attached to χ′ and let β′ ∈ V (g − χ′(g)) be
as in definition 7.2.1(4)(5). According to 7.2.1(4) there exist (ui)〈ψ,ηi〉=0 ∈ Z such
that

∑
〈ψ,ηi〉=0(βi − β′i − ui)ηi = 0. Put φi = βi − β′i − ui if 〈ψ, ηi〉 = 0 and φi = 0

otherwise. We replace β′ by β′ + φ. Then this new β′ still satisfies 7.2.1(4)(5) but
also β ∼= β′ mod Zn. Hence corollary 6.2 yields that β′ ∈ 〈β〉A ∩ V (g− χ′(g)). �

Proof of Proposition 7.7.1. (1) is clear. (2) follows from Theorem 7.3.1(4) and
Propositions 7.2.4 and 7.2.5. So we only have to prove (3).

According to Proposition 4.4.5, Theorem 4.4.4 and Proposition 7.7.2 we have
the following chain of equivalences.

χ′ → χ iff ∀α ∈ V (g− χ(g)) : J̃(α)Bχ 6= Bχ
′

iff ∀(ψ, θ) ∈ Pχ : J̃(ψ, θ)Bχ 6= Bχ
′

iff ∀(ψ, θ) ∈ Pχ : (ψ, θ) ∈ Pχ′

This proves the proposition. �

8. Dimension theory for Bχ

In this section we keep the notations of §6,§7. Our aim in this section is to give
the values of some classical dimensions for Bχ. For completeness we also restate
some results already proved in [18]. The case of global dimension is treated in
section §9.

8.1. Krull dimension. The Krull dimension of Bχ is rather easy to compute. One
uses the the following lemma.

Lemma 8.1.1. Let S be a ring graded by a group G, H a subgroup of G and let B
be the ring obtained from A by taking the graded components corresponding to H.
Then

Kdim(B) ≤ Kdim(A)

Proof. It is easy to see that [15, 6.5.3 (i)] applies. �



48 IAN M. MUSSON AND MICHEL VAN DEN BERGH

Theorem 8.1.2. Kdim(Bχ) = Kdim(Bχ)0 = dim t− dim g

Proof. We have Kdim(Bχ) ≥ Kdim(Bχ)0 because of the above lemma. On the
other hand we have by definition

Bχ = Ag/(g− χ(g))

and g − χ(g) is a regular sequence in Ag. So by the lemma and by [15, 6.3.9] we
obtain

Kdim(Bχ) ≤ KdimAg − dim g ≤ KdimA− dim g = dim t− dim g

Here we have used that KdimA = dim t [15, Thm. 6.6.15]. �

8.2. GK-dimension. To study the GK-dimension of Bχ and its modules we filter
Bχ by order of differential operators. We start by filtering A = R[∂1, . . . , ∂n] by
the degree of the ∂’s. That is

FmA =
{∑

a(u)∂
u1
1 · · · ∂unn |

∑
ui ≤ m

}
and one has grF A = R[∂̄1, . . . , ∂̄n] which is a polynomial ring over R.

This filtration induces a filtration on AG which we also denote by F . Since F is
G-invariant and G is reductive we have grF (AG) = (grA)G.

The filtration F on AG induces a filtration on Bχ = Ag/(g − χ(g)) and since g
is generated by a regular sequence in (grF A)g we easily deduce that

(8.1) grF B
χ = (grF A)G/(g)

If M is a finitely generated AG-module then there always exists a so-called “good”
filtration on M . That is a filtration (FmM)m such that grF M is finitely generated
as grF AG-module. For such a filtration it follows from [16, §1.4] that

(8.2) GKdimAGM = GKdimgrF A
G grF M

Theorem 8.2.1. (1) The GK-dimension of an AG-module is either an integer
or infinite.

(2) GK-dimension is exact for AG-modules (see [11, Chapter 5] for the defini-
tion of exactness).

(3) GKdimAG = 2n− dimG.
(4) GKdimBχ = 2(n− dimG)

Proof. (1) and (2) follow from the discussion above. (3) and (4) are restatements
of [18, Cor. 3.2]. �

Corollary 8.2.2. Let α ∈ t∗. Then

(8.3) GKdimBχ/J(α) = 2 GKdim(Bχ/J(α))0 = 2 dim 〈α〉Bχ

Proof. Since the last equality in (8.3) is a tautology we concentrate on the first one.
According to Proposition 7.2.4 there exists an algebraic g ⊂ h ⊂ t and χ1, . . . , χp ∈
h∗ such that

(8.4) Bχ/J(α) =


Bχ1

h Bχ1,χ2
h

Bχ2,χ1
h Bχ1

h

. . .
B
χp
h


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Let S = ⊕Bχih be embedded diagonally in the right-hand side of (8.4). Then
Bχ/J(α) is a finitely generated as a module over S and hence by [11, Prop. 5.5]

GKdimBχ/J(α) = GKdimS = max
i

GKdimBχih

By the same argument we have

GKdim(Bχ/J(α))0 = GKdimS0 = max
i

GKdim(Bχih )0

and hence to prove the first equality in (8.3) we may assume that J(α) = 0. But
then we may invoke Theorem 8.2.1. �

Our next aim is to compute the GK-dimension of objects in O(∞)
Bχ .

Proposition 8.2.3. Let α ∈ V (g). Then

GKdimBχ L(α)Bχ = dim 〈α〉Bχ
To give the proof of this proposition we have to make a few preparations.
Let E, ‖ ‖ be a normed finite dimensional vector space over R and let M be an

E-graded k-vector-space. Then we define for z ∈ R

dM,‖ ‖(z) =
∑
‖x‖≤z

dimkMx

and

GKdim(M,E) = lim
n∈N

sup
log dM,‖ ‖(n)

log n
Since all norms on E are equivalent GKdim(M,E) does not depend upon the choice
of ‖ ‖.

Theorem 8.2.4. (1) Let E be a finite dimensional vector space over R and
let A,M be respectively an E-graded k-algebra and an E-graded A-module.
Then

GKdimAM ≤ GKdim(M,E)

(2) Assume now in addition that A is commutative, A,M are finitely generated,
A is graded by some lattice in E and dimMx ∈ {0, 1} for all x ∈ E. Then

GKdimAM = GKdim(M,E)

Proof. (1) Let V be a finite dimensional subspace of A and F a finite dimen-
sional subspace of M . By enlarging V and F if necessary we may assume
that V and F are graded and 1 ∈ V .

As in [11] we put dV,F (n) = dimV nF . Choose a norm ‖ ‖ on E and put

s = max
u∈SuppV

‖u‖

t = max
u∈SuppF

‖u‖

Then V nF ⊂ ⊕‖u‖≤ns+tMu so dV,F (n) ≤ dM,‖ ‖(ns+ t) and thus

lim
n

sup
log dV,F (n)

log n
≤ GKdim(M,E)

Since this holds for all V, F we obtain (1).
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(2) We let V, F be as in (1) but we now assume that they generate A and
M . On the R-vector-space {(xl)l∈SuppV | xl ∈ R} we define a norm by
‖x‖ =

∑
l |xl|.

It is clear that we now have the following

(V nF )u =
∑
‖N‖≤n
e∈SuppF

 ∏
l∈SuppV

V Nll

Fe

where the sum is restricted to the positive solutions N of∑
l∈SuppV

Nll + e = u

By lemma 8.2.6 below we know that there exist α, β such that if ‖N‖ >
α‖u− e‖+ β then there exists a solution N ′ to∑

l∈SuppV

N ′l l = 0

such that N ′ ≤ N and ‖N − N ′‖ ≤ α‖u − e‖ + β. Note that, to be able
to apply this lemma, we have used that SuppV ⊂ SuppA is contained in
a lattice in E.

For such an N ′ we have that∏
l∈SuppV

V
N ′l
l ⊂ A0

Hence if we define

β′ = α

(
max

e∈SuppF
‖e‖
)

+ β

then we have that F (u) = (V bα‖u‖+β
′cF )u is a generating vector-space for

Mu as A0-module. Since dimMu = 0, 1 this yields that

dim(V nF )u = 1

if n ≥ α‖u‖+ β′ and u ∈ SuppM . So

dV,F (n) ≥ #
{
u ∈ SuppM | ‖u‖ ≤ n− β′

α

}
= dM,‖ ‖

(
n− β′

α

)
which yields

GKdimAM ≥ GKdim(M,E)
Since the reverse inequality was proved in (1) we are done. �

Proof of Proposition 8.2.3. Let us write L(α) for L(α)Bχ . We may clearly compute
the GK-dimension with respect to AG. Then we may use the filtration F on AG

which was defined earlier. This filtration is compatible with the t∗-grading on AG.
Furthermore by inspection of the proof of [11, lemma 6.7] yields that it is possible
to make L(α) in to a filtered AG module such that

• grF L(α) is a finitely generated grF AG-module.
• All FmL(α) are t∗-graded subspaces of L(α).
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Using (8.2) and Theorem 8.2.4(2) we find that

GKdimAG L(α) = GKdimgr(AG) grL(α) = GKdim(L(α), V (g))

Now according to Proposition 7.1.2 and the discussion thereafter, there exist an
algebraic g ⊂ h ⊂ t such that SuppL(α) is a union of dense cones in a finite
number of translates of V (h). But then it is easy to see that

GKdim(L(α), V (g)) = dimV (h) = dim 〈α〉Bχ �

Corollary 8.2.5. Assume that M ∈ O(∞)
Bχ is finitely generated. Then

GKdimM =
1
2

GKdim(Bχ/AnnM)

Proof. Let L(α1), . . . , L(αp) be the Jordan-Holder quotients of M (with multiplic-
ity). Clearly GKdimM = max GKdimL(αi). Let t be such that GKdimL(αt) is
maximal.

If we put α1, . . . , αp in the correct order then

J(α1) · · · J(αp) ⊂ AnnM ⊂ J(αt)

So

(8.5) GKdim(Bχ/J(α1) · · · J(αp)) ≥ GKdim(Bχ/AnnM) ≥ GKdim(Bχ/J(αt))

Now since rad(J(α1) · · · J(αt)) = J(α1)∩· · · J(αp) we obtain by [11, Prop. 5.7] that

GKdim(Bχ/J(α1) · · · J(αp)) = GKdim(Bχ/J(αs))

for some s. Using Proposition 8.2.3 and (8.5) we now obtain

2 GKdimL(αs) ≥ GKdimBχ/AnnM ≥ 2 GKdimL(αt)

Hence by the choice of t

GKdim(Bχ/AnnM) = 2 GKdimL(αt) = 2 GKdimM �

In the proof of Theorem 8.2.4 we used lemma 8.2.6 below. This lemma has
perhaps some independent interest.

Assume that φ is an m× n-matrix over Z. If x, y ∈ Nn then we say that x < y
if xi ≤ yi for all i and xi < yi for at least one i. We will call y ∈ Nn minimal with
respect to φ if there does not exist x ∈ Nn such that φx = φy and x < y.

Lemma 8.2.6. Choose norms ‖ ‖ on Rm, Rn. Then there exist constants α, β
such that for all minimal y with respect to φ one has

‖y‖ ≤ α‖φy‖+ β

Proof. Since all norms on Rm and Rn are equivalent we may choose specific ones.
We take the euclidean norm on Rm and on Rn we take ‖x‖ =

∑
i |xi|.

We now proceed by translating our problem into one for torus invariants. Let
T = (C∗)m, R = C[u1, . . . , un]. We consider R as a Zn-graded ring in the obvious
way. Define ηi ∈ X(T ) by

ηi(z1, . . . , zm) = zφ1i
1 · · · zφmim

We let T act on ui with weight ηi. This defines a T action on R. As usual, for a
graded object X we let SuppX stand for {α | Xα 6= 0}. The solutions of φy = 0
correspond to SuppRT and the y that are minimal with respect to φ are given by
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SuppR/(RT>0R) where RT>0 is the irrelevant ideal of RT (considered as a positively
graded ring in the natural way).

Let I = rad(RT>0R), R̄ = R/(RT>0R) and let Ī be the image of I in R. Then

Supp R̄ = Supp R̄/Ī ∪ Supp Ī/Ī2 ∪ · · · (finite union)

Since Ī is finitely generated this implies that there exist x1, . . . , xt ∈ Zn such that

(8.6) Supp R̄ ⊂
⋃
j

(xj + SuppR/I)

Now we describe SuppR/I. Let X = SpecR. For λ ∈ Y (T ) a one-parameter
subgroup in T one defines

Xλ = {x ∈ X | lim
t→0

λ(t)x = 0}

Then the Hilbert-Mumford criterion yields that the irreducible components of
SpecR/I are of the form Xλ for suitable λ.

If P1, . . . , Ps are the minimal primes of R/I then R/I injects in ⊕R/Pi and hence

SuppR/I ⊂
⋃
i

SuppR/Pi

(of course one has equality here).
Furthermore R/Pi is the coordinate ring of some Xλ and one verifies that

(8.7) SuppR/Pi = {(ai)i ∈ Nn | 〈λ, ηi〉 ≥ 0⇒ ai = 0}

Since T = (C∗)m there are canonical identifications X(T )R = Y (T )R = Rm and we
use these to put the euclidean norm on X(T )R and Y (T )R.

Let a = (ai)i ∈ SuppR/Pi and put ζ =
∑
i aiηi. Then

∑
i ai〈λ, ηi〉 = 〈λ, ζ〉.

Then (8.7) implies that

‖a‖ =
∑

ai ≤
|〈λ, ζ〉|

min〈λ,ηi〉<0 |〈λ, ηi〉|
≤ ‖λ‖

min〈λ,ηi〉<0 |〈λ, ηi〉|
‖ζ‖

We now take α to be the maximum of all

‖λ‖
min〈λ,ηi〉<0 |〈λ, ηi〉|

where the λ’s are taken such that Xλ runs over all irreducible components of
SpecR/I.

Furthermore we put

β = max
j

(‖xj‖+ α‖
∑
i

xjiηi‖)

If y ∈ Supp R̄ then we may write

y = xj + a
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for some j and a ∈ SuppR/Pi for some i. Hence

‖y‖ ≤ ‖xj‖+ ‖a‖

≤ ‖xj‖+ α‖
∑
i

aiηi‖

≤ ‖xj‖+ α‖
∑
i

(ai + xji)ηi‖+ α‖
∑
i

xjiηi‖

≤ β + α‖
∑
i

yiηi‖

Translating this back to the setting of the statement of the lemma yields the desired
result. �

8.3. GK-dimension of annihilators. If U is the enveloping algebra of an alge-
braic Lie algebra then a famous result of Gabber and Joseph [11, Thm 9.11] asserts
that for any finitely generated U -module M

(8.8) 2 GKdimM ≥ GKdim(U/AnnM)

This result was used by Levasseur for the computation of the injective dimensions
of minimal primitive quotients of enveloping algebras (see [12]).

Our aim in this section is to prove a result similar to (8.8) for rings of differential
operators on torus invariants. Unfortunately we have only been able to generalize
(8.8) in the case that M is simple. However this is sufficient to generalize the proof
of Levasseur to Bχ.

We revert to the notation which has been in use in sections 6,7. As indicated in
the previous paragraph we will prove the following result.

Theorem 8.3.1. Let M be a simple Bχ-module. Then

2 GKdimM ≥ GKdim(Bχ/AnnM)

Proof. For simplicity we write B = Bχ and we let s stand for the image of t in B0.
Thus B0 is the symmetric algebra of s.

Put J = AnnM . Since M is simple J is a primitive ideal. Therefore by Theorem
7.4.1 there exists an algebraic g ⊂ h ⊂ t such that

(8.9) B/J =


B1 B1,2

B2,1 B2

. . .
Bp


where Bi = Bχih , Bi,j = B

χi,χj
h . Let ei ∈ B/J be the idempotent which corresponds

in the right-hand side of (8.9) to the matrix which has 1 in location (i, i) and zero
elsewhere. Then it is easy to verify the following

• all eiM are either zero or simple Bi-modules;
• AnnBi eiM = 0.

Now let S = ⊕iBi be embedded diagonally in the right-hand side of (8.9). Then
B/J is finitely generated as a module over S, and hence by an extension of [11,
Prop 5.5]

GKdimBM = GKdimB/JM = GKdimSM = max
i

GKdimBi eiM
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Since we also have by [11, Prop 5.5]

(8.10) GKdimB/J = GKdimS = max
i

GKdimBi

we may suppose that J = AnnBM = 0. (Of course in the maximum that is taken
in (8.10), all GKdimBi are equal by Theorem 8.2.1.)

So now we suppose that AnnBM = 0 and we have to show that GKdimM ≥
1
2 GKdimB = GKdimB0. Hence we will assume on the contrary that GKdimM <
GKdimB0 and we will obtain a contradiction by showing that necessarily AnnBM 6=
0.

Choose a non-zero element x ∈ M in such a way that P = AnnB0 x has the
following properties

(1) GKdimB0/P is minimal;
(2) among those P which satisfy (1), P is maximal.

It is an easy exercise that P is prime.
If α ∈ s∗ then we denote by τα : B0 → B0 the map which sends π ∈ s to π−α(π).

Define
Mα = {m ∈M | tα(P )m = 0}

It follows from (1) above that if m ∈Mα \ {0} then

GKdimB0/AnnB0 m = GKdimB0/tα(P )

and since tα(P ) is prime this implies that

(8.11) AnnB0 m = tα(P )

We now make two observations.

Claim 1. Assume that there exist α1, . . . , αp ∈ t∗ such that

(Mα1 + · · ·+Mαp−1) ∩Mαp 6= 0

Then Mαp = Mαi for some i ∈ {1, . . . , p− 1}.

Proof. To prove this assume that m1 + · · · + mp = 0 with mi ∈ Mi and mp 6= 0.
Then  ⋂

1≤i≤p−1

ταi(P )

mp = 0

and hence by (8.11) ⋂
1≤i≤p−1

ταi(P ) ⊂ ταp(P )

Thus there must exist an i such that ταi(P ) = ταp(P ). But then by definition
Mαi = Mαp . �

Let L = SuppB ⊂ s∗. By construction L is a full sublattice in s∗.

Claim 2. M =
∑
l∈LMl. This follows from the fact that

∑
l∈LMl defines a

non-zero submodule of M and M is simple.

Now consider
L′ = {l ∈ L | tl(P ) = P}

L′ is clearly a sublattice of L, and hence if we put

h =
⋂
l∈L′

ker l
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then h is algebraic in t. Furthermore k ⊗Z L
′ identifies with V (h) ⊂ s∗ and since

V (P ) is k ⊗Z L
′-stable we obtain the inequality

(8.12) dimV (P ) ≥ dimV (h)

which will be used below.
If α ∈ h∗ then we define

Mα =

{
Mβ if α ∈ imL and β ∈ L is a lifting of α
0 otherwise

To show that this is well defined let β, γ ∈ L be two liftings of α ∈ h∗. Then
β − γ ∈ L ∩ ker(s∗ → h∗) = L′ and hence τβ(P ) = τγ(P ).

Now we claim that the decomposition M =
∑
α∈h∗Mα defines as h∗-grading on

M . We only have to show that the sum is direct. To do this, it suffices by claim 1
to show that if Mβ = Mγ 6= 0, β, γ ∈ L then β, γ have the same image in h∗. But
this is clear since τβ(P ) = τγ(P ) and β − γ ∈ L. Hence β − γ ∈ L′.

So now we have defined a h∗-grading M =
⊕

α∈h∗Mα. Since M is simple, it is
easily seen that M0 is a simple Bh-module. Since h ⊂ Z(Bh) it follows by Quillen’s
lemma than AnnBh M0 contains h − ζ(h) for certain ζ ∈ h∗. From the fact that
AnnBh M0 ∩B0 = P we obtain h− ζ(h) ⊂ P . Now the inequality (8.12) yields that
in fact P = (h− ζ(h)).

Now let m be an arbitrary element in Mα, α ∈ h∗. Then by definition

0 = τα(h− ζ(h))m = (h− ζ(h)− α(h))m

So if we shift the h∗-grading on M by ζ then we may, and we will, assume that

(8.13) (h− α(h))Mα = 0

We now choose an algebraic q in such a way that s = h ⊕ q. Then there is a dual
decomposition s∗ = h∗ ⊕ q∗ and we define C = Bq = ⊕l∈h∗Bl.

Fix α ∈ h∗, m ∈ Mα and put N = Cm. N is clearly a h∗-graded C-submodule
of M .

Claim 3. If β ∈ h∗ is such that Nβ 6= 0 then Nβ is a free B0/(h− β(h))-module of
rank one.

Proof. Assume that Nβ 6= 0. Clearly Nβ = Bβ−αm = B0uβ−αm. So Nβ is
generated by 1 element. Since according to (8.13) Nβ is annihilated by (h− β(h))
we see that Nβ is a quotient of B0/(h− β(h)).

On the other hand Nβ ⊂Mβ which is a torsion free B0/(h−β(h))-module (by the
choice of P ). This implies that GKdimB0 Nβ = GKdimB0 Mβ = GKdim(B0/(h −
β(h)). So Nβ = B0/(h− β(h)). �

Put C ′ = C/(q) = Bq/(q). Clearly C ′ is of the form Bζq′ for suitable q′, ζ ∈ q′∗.
Hence the theory of section 7 applies to C ′.

Define
Z =

⋃
〈α〉C′ 6=h∗

〈α〉C′ ⊂ h∗

By the results in section 7, Z is contained in a finite number of hyperplanes in h∗.

Claim 4. SuppN ⊂ Z.

Proof. Put N = B0/(q)⊗B0 N . Then we have the following.
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• SuppN = SuppN .
• Since q is generated by a regular sequence in N

GKdimN ≤ GKdimN − dim q ≤ GKdimM − dim q

< GKdimB0 − dim q = dim s− dim q = dim h

• By (8.13) is N is in O(1)
C′ . Since N is in addition finitely generated, N is an

extension of a finite number of L(α)C′ , each of which has GK-dimension
less than dim h. Thus according to Proposition 8.2.3 we have

SuppN ⊂
⋃

〈α〉C′ 6=h∗

SuppL(α)C′ ⊂ Z

This concludes the proof of the last claim. �

Since M is the union of all N we obtain that SuppM ⊂ Z. Now let f ∈ Sh be
zero on Z. Then it follows from (8.13) that fM = 0 and hence we are done. �

8.4. Injective dimension. In this section we use Theorem 8.3.1 and Corollary
8.2.5 to compute the injective dimension of Bχ. More precisely we will prove the
following result.

Theorem 8.4.1. (1) Bχ satisfies the left (and right) Auslander condition. That
is if M is a finitely generated left (right) Bχ-module and if N is a non-
zero submodule of ExtjBχ(M,Bχ) then j(N) ≥ j where j(N) = infj{j |
ExtjBχ(N,Bχ) 6= 0}.

(2) If Bχ is a finitely generated Bχ-module then

j(M) + GKdimM = GKdimBχ

(3) The left and right injective dimension of Bχ are equal. Furthermore

inj dimBχ = GKdimBχ − min
α∈V (g−χ(g))

GKdimL(α)Bχ

= 2(n− dim g)− min
α∈V (g−χ(g))

dim 〈α〉Bχ

Proof. This result follows almost immediately from [13] and [12], once we have
Theorem 8.3.1. For simplicity we write B for Bχ. It follows from [18, Thm D] that
grF B is Gorenstein. This implies (1) by [13, Rem. 4.5]. (2) follows from [13, Thm
4.4] together with (8.2). To prove (3) we claim first that

(8.14) inj dimB = max j(M)

where the maximum runs over all finitely generated B-modules. To show this we
have to construct M such that

µ
def= inj dimBB = j(M)

Now by [13, Thm 4.4] we have µ = inj dimBB . So by definition there exists a
finitely generated right B-module N such that M = ExtµB(N,B) 6= 0. If j(M) 6= µ
then by the Auslander condition j(M) =∞ which is impossible by (2).

Rewriting (8.14) using (2) yields

(8.15) inj dimB = GKdimB −min GKdimM
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Let M be such that GKdimM is minimal. We may assume that M is simple. Then
by Theorem 8.3.1 we have

GKdimM ≥ 1
2

GKdim(B/AnnM)

Now by Theorem 7.3.1(3) we have AnnM = J(α) for some α ∈ V (g − χ(g)) and
hence by cor. 8.2.5

1
2

GKdim(B/AnnM) = GKdimL(α)

Hence by the choice of M we find GKdimM = GKdimL(α). Substituting this
in (8.15) yields the first equality of (3). The second equality in (3) follows from
Theorem 8.2.1 and Proposition 8.2.3. �

9. Finite global dimension

9.1. Introduction and statement of the main result. In this section the no-
tations will be as in §6,§7. Recall that in §4.4 we introduced the →-relation on g∗

which was closely related with the Morita equivalences among the various Bχ.
In §7.6 it was shown that minimal χ’s correspond precisely to those Bχ’s that

are simple. Now let us define χ ∈ g∗ to be maximal if χ′ → χ, χ′ ∈ g∗ implies
χ→ χ′ (we think of → as ≥). Our main result in this section will be.

Theorem 9.1.1. Let χ ∈ g∗. Then Bχ has finite global dimension if and only if χ
is maximal.

Using Theorem 8.4.1(3) and the following easy lemma we may compute the exact
value of gl dimBχ, once we know it is finite.

Lemma 9.1.2. Assume that C is a Noetherian ring. If gl dimC is finite then
gl dimC = inj dimC.

Proof. Clearly inj dimC ≤ gl dimC so we have to prove the opposite inequality.
Let µ = inj dimC. Assume that M is a finitely generated C-module with

0→ Pl → Pl−1 → · · · → P0 →M → 0

a resolution consisting of finitely generated projective C-modules such that Pl →
Pl−1 is non-split. Suppose l > µ. Dualizing yields that P ∗l−1 → P ∗l is surjective and
hence split. But then dualizing again yields that Pl → Pl−1 must split. This is a
contradiction and hence l ≤ µ, �

One possibility to prove Theorem 9.1.1 would be to invoke corollary 3.5.11 to-
gether with remark 3.5.12. In this way we would have to show that gl dimH

(∞)
Γ <∞

for all Γ. Unfortunately we have not been able to do this directly. Instead our ar-
guments are somewhat more complicated.

If χ is not maximal, and dim g = 1 then it is shown in [28] that gl dimBχ =∞
by constructing a module with a periodic projective resolution. This too we have
not been able to generalize. Instead we show that gl dimH

(∞)
Γ =∞ for some Γ by

using the following well-known result.

Proposition 9.1.3. Let C be a Noetherian ring of finite global dimension and let
G0(C), resp. K0(C) be the Grothendieck group of finitely generated, resp. finitely
generated projective C-modules. Then G0(C) = K0(C).
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To prove the other half of Theorem 9.1.1 we use the method of [28]. However,
whereas in [28] we could get by with ordinary Öre localization, in this paper we are
forced to use the more sophisticated micro-localization. See e.g. [1].
§9.2,§9.3 below are devoted to the proof that maximality implies finite global

dimension. §9.4,§9.5 are devoted to the converse.

9.2. Some useful facts. In this section we give the tools to construct an analog
of the exact sequence in [28, §5]. As was already pointed out in §9.1, we are forced
to work with algebraic micro-localization.

The methods in this section are derived from [29]. However we have adapted the
notations to make them more compatible with our current situation.

Let P be a Laurent polynomial ring of the form

P = k[y1, . . . , yd, y
±1
d+1, . . . , y

±1
d+e]

and let Y = SpecP . Assume that an algebraic torus G acts diagonally on ky1 +
· · ·+ kyd+e with weights (ζi)i=1,...,d+e ∈ X(G) ⊂ X(G)R.

We fix throughout a number 1 ≤ c ≤ d and we letW stand for the set {1, . . . , c}.
For S ⊂ W we define

US = {(y1, . . . , yd+e) ∈ Y | ∀i ∈ S : yi 6= 0}
YS = {(y1, . . . , yd+e) ∈ Y | ∀i ∈ S : yi = 0}

Obviously US is open and YS is closed in Y .
Let

Go = {g ∈ G | g(yi) = yi for i = c+ 1, . . . , d+ e}
By ζoi we denote the weight ζi restricted to Go.

If E is a finite dimensional R-vector space and T ⊂ E then we denote by posT
the cone spanned by T . That is : the set of all positive linear combinations of
elements in T . By relint posT we the denote the relative interior of posT . This
consists of all strictly positive linear combinations of elements in T . By convention :
relint pos ∅ = pos ∅ = {0}.

Let δ ∈ X(G)R and denote its restriction to Go by δo. We define

Wδ = {S ⊂ W | δo ∈ relint pos
i∈S

ζoi }

It is easy to see that Wδ is closed under unions.
For ψ ∈ Y (Go)R we define

Sψ = {i ∈ W | 〈ψ, ζoi 〉 > 0}

Finally we put

Uδ =
⋃

S∈Wδ

US

Yδ =
⋃

〈ψ,δo〉>0
ψ∈X(Go)R

YSψ

Proposition 9.2.1. Y = Uδ t Yδ
Proof. The case δo = 0 is trivial so we assume δo 6= 0.

First we show that Uδ ∩ Yδ = ∅. To this end it is sufficient to show that for all
S ∈ Wδ and for all ψ ∈ X(Go)R such that 〈ψ, δo〉 > 0 one has that S ∩ Sψ 6= ∅.
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Suppose on the contrary that we have found S and Sψ such that S ∩ Sψ = ∅.
This means that for all i ∈ S one has 〈ψ, ζoi 〉 ≤ 0 and furthermore there exist
(ui)i ∈ R+

>0 such that δo =
∑
i∈S uiζ

o
i . But this clearly in contradicts 〈ψ, δo〉 > 0.

Next we prove that Uδ ∪ Yδ = Y . Let (y1, . . . , yd+e) ∈ Y and put

T1 = {i ∈ W | yi 6= 0}
T2 = {i ∈ W | yi = 0}

We have to show that one of the following is true.
(1) There exist S ∈ Wδ such that S ⊂ T1.
(2) There exist ψ ∈ X(Go)R such that 〈ψ, δo〉 > 0 and Sψ ⊂ T2.

Assume that (1) is false. This means that δo cannot be written as

δo =
∑
i∈T1

uiζ
o
i , ui ∈ R+

or equivalently δo does not lie in the cone spanned by (ζoi )i∈T1 .
But then there must exist a “separating hyperplane.” That is a ψ ∈ X(Go)R

such that 〈ψ, δo〉 > 0 and ∀i ∈ T1 : 〈ψ, ζoi 〉 ≤ 0.
Now let i ∈ Sψ. Then 〈ψ, ζoi 〉 > 0 and hence i 6∈ T1. Therefore i ∈ T2, whence

(2) is true. �

The augmented Čech complex

Cδ = C·(OY ; (US)S∈Wδ
)

is given by
Cδ(P )q =

⊕
{Si1 ,...,Siq}⊂Wδ

Γ(USi1 ∩ · · · ∩ USiq ,OY )

with the usual alternating boundary maps.
By Proposition 9.2.1 the homology of Cδ(P ) is given by H∗Yδ(Y,OY ).
Now using the techniques of [29, §3.4] (see also [27, lemma 6.6]) one sees that

H∗Yδ(Y,OY ) may be suitably filtered such that the associated quotients have the
form H∗YSψ

(Y,OY ), ψ ∈ X(Go)R, 〈ψ, δo〉 > 0.
Furthermore by an obvious generalization of [29, Cor, 3.3.2] the Go-weights of

H∗YSψ
(Y,OY ) are given by

(9.1)
c∑
i=1

aiζ
0
i , (ai)i ∈ Z

where

ai < 0 if i ∈ Sψ
ai ≥ 0 if i ∈ {1, . . . , c} \ Sψ

Now if

(9.2)
c∑
i=1

R+ζi +
d+e∑
i=c+1

Rζi = X(G)R

then
∑c
i=1 R+ζoi = X(Go)R and hence Sψ is never empty. Applying 〈ψ,−〉 gives

that (9.1) can never yield zero. So we have shown that H∗YSψ (Y,OY )G = 0 for all
ψ ∈ X(Go)R, 〈ψ, δo〉 > 0. Hence the foregoing discussion yields.
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Theorem 9.2.2. Assume (9.2). Then Cδ(P )G is exact.

Now let us briefly recall the notion of algebraic micro-localization. As general
references we use [32] and [1].

Let (FnA)n∈Z be an ascending filtration on a ring A and let S ⊂ grF A be an
Öre set consisting of homogeneous elements. Then the micro-localization QµS(A) is
a filtered ring together with a filtered structure morphism A→ QµS(A) having the
properties.

(1) If s ∈ FmA \ Fm−1A such that s̄ ∈ S then s is invertible in QµS(A).
(2) QµS(A) is complete.
(3) QµS(A) is universal with respect to properties (1) and (2).

It is shown in [1] and [32] that QµS(A) exists and is unique. Further remarkable
properties of QµS(A) are collected in loc. cit. Let us mention that grF Q

µ
S(A) =

(grF A)S and if Ã =
⊕

n FnA is Noetherian then QµS(A) is a flat A-module. Note
that if FnA = 0 for n < 0 then Ã is Noetherian if and only if grF A is Noetherian.

If S is obtained from some Öre set T in A then QµS(A) is equal to the completion
of AT . If Ã is Noetherian then we may always take for T the largest possible
multiplicative set mapping to S. This is the so-called saturation of S, denoted by
Ssat. It is shown in [1] that Ssat is an Öre set in A.

In the sequel we will need graded analogs of the above notions. So we assume
that A is graded by some as yet unspecified group and that all FnA are also graded.
Furthermore we assume that S consists of homogeneous elements for both gradings
on grF A. Then one may construct a graded micro-localization Qµ,gr

S (A) satisfying
the graded analogs of (1)(2)(3) and having properties analogous to that of ungraded
micro-localization.

We will use graded algebraic micro-localization in the following situation. A will
be filtered such that grF A = P where P is as above. We assume in addition that
A is graded by the character group of some algebraic torus T acting rationally on
A such that all FnA are graded and such that the yi ∈ P are homogeneous. Finally
we assume that G acts on A through an inclusion G ⊂ T .

For S ⊂ W = {1, . . . , c} we let Aµ,S stand for the graded algebraic micro-
localization of A at the multiplicative set generated by {yi | i ∈ S}. Then grF Aµ,S
is the localization of P at {yi | i ∈ S}. That is grF Aµ,S = Γ(US ,OY ).

We now define the augmented “micro Čech complex” Cµ,δ(A) by

Cµ,δ(A)q =
⊕

{Si1 ,...,Siq}⊂Wδ

Aµ,Si1∪···∪Siq

with the usual alternating boundary maps.

Proposition 9.2.3. If (9.2) is satisfied then Cµ,δ(A)G is exact.

Proof. We have

gr Cµ,δ(A)G = Cδ(P )G

which is exact by Theorem 9.2.
Now Cµ,δ(A)G has (graded) complete terms. This implies in the usual way that

Cµ,δ(A)G is also exact. �
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9.3. Rings of differential operators of finite global dimension. We now
use the notations of §6,§7. As before we consider the weights η1, . . . , ηn ∈ X(G)
implicitly also as elements of X(G)Q, X(G)R, g∗, . . . .

To continue it will be convenient to introduce alternative names for x1, . . . , xn,
∂1, . . . , ∂n. We put

y1 = ∂1, . . . , yr = ∂r

yr+1 = x1, . . . , y2r = xr

y2r+1 = ∂r+1, . . . , y2r+s = ∂r+s

y2r+s+1 = xr+1, . . . , y2r+2s = xs+r

To make our notations compatible with §9.2 we put d = 2r + s, e = s. For c we
take 2r. We filter A, Ag, Bχ, etc. . . with the filtration F which was introduced in
§8.2.

For χ ∈ g∗, S ⊂ W we put

(9.3) Ag
µ,S = ⊕α∈V (g)Aµ,S,α

and

(9.4) Bχµ,S = Ag
µ,S/(g− χ(g))Ag

µ,S

(compare with §4.4).
We will call S ⊂ W reduced if it contains no pair of the form {i, i+ r}. In that

case {yi | i ∈ S} generates an Öre set and we will use the notations in (9.3)(9.4)
also without the µ-symbol, thereby refering to ordinary Öre localization.

Lemma 9.3.1. (g− χ(g)) is generated by a regular sequence in Ag
µ,S.

Proof. Clearly (g − χ(g)) is generated by a regular sequence in D. Since A is a
direct sum of copies of D it is D-flat. Furthermore since grF A is Noetherian, Aµ,S
is A-flat and so Aµ,S is also D-flat. So (g − χ(g)) is also generated by an Aµ,S-
regular sequence. Observing that Ag

µ,S is a D-direct summand of Aµ,S concludes
the proof. �

Now for δ ∈ X(G)R we define

Cµ,δ(Bχ) = Cµ,δ(A)G/(g− χ(g))Cµ,δ(A)G

where Cµ,δ(A)G is defined in §9.2.

Proposition 9.3.2. Cµ,δ(Bχ) is exact.

Proof. By the fact that the (ζi)1,...,2r come in pairs ±ηi, (9.2) is implied by the fact
that

∑
kηi = g∗. Hence by Proposition 9.2.3, Cµ,δ(A)G is exact.

Lemma 9.3.1 implies that (g − χ(g)) is generated by a regular sequence on the
terms of the complex Cµ,δ(A)G. One then shows by induction that Cµ,δ(Bχ) is also
exact. �

To be able to continue we must understand better Bχµ,S . As a first step, but
also as a useful example we compute Qµ,gr

S (A) where A = k[x, ∂] graded by deg x =
−deg ∂ = 1 and S = {1}, {x}, {∂}, {x, ∂}.

1, x and ∂ generate Öre sets in A and the filtrations on the homogeneous parts
of A, Ax, A∂ are left limited. In particular the homogeneous parts of A, Ax, A∂
are complete and therefore Qµ,gr

S (A) is simply equal to AS if S = {1}, {x}, {∂}.
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The computation of Qµ,gr
x∂ (A) is more interesting. Let D̂∞ = k((π−1)) where as

usual D = k[π], π = x∂. Then one verifies that the multiplication on A extends
uniquely to a continuous multiplication on D̂∞ ⊗D A and

Qµ,gr
x∂ (A) = D̂∞ ⊗D A

Of course one also has

Qµ,gr
x∂ (A) = D̂∞ ⊗D Ax

Qµ,gr
x∂ (A) = D̂∞ ⊗D A∂

These examples serve to illustrate that in order to compute Aµ,S for S ⊂ {1, . . . , 2r},
we may always reduce to the case that S is reduced. One proves the following result.

Proposition 9.3.3. (1) Let S0 ⊂ S be obtained from S ⊂ {1, . . . , 2r} by re-
moving all pairs {i, i+ r} and let S0 ⊂ S1 ⊂ S be reduced. Then

(9.5) Bχµ,S =

 ⊗̂
{i,i+r}⊂S

D̂i,∞

⊗D BχS1

where ⊗̂ denotes the completed tensor product and D̂i,∞ = k((π−1
i )).

(2) If S is reduced then as a right Bχ-module

BχS = lim−→
t
Bχ
′,χ

where χ′ = χ + tδ, t ∈ N and δ is some strictly positive integer linear
combination of (ζi)i∈S.

Proof. (1) The discussion above yields that (9.5) holds with Bχµ,S replaced by
Aµ,S . Taking G-invariants and quotienting out by (g − χ(g)) yields the
desired result.

(2) Assume that δ =
∑
i∈S δiζi, δi > 0. Let s =

∏
i∈S y

δi
i . The powers of s

form an Öre set and hence we can localize at s.
Then

AS = As = lim−→
t
s−tA

and hence using the notation of §4.4

Ag
S = lim−→

t
s−tAg

tδ
∼= lim−→

t
Ag
tδ

as right Ag-modules. Tensoring on the right with Bχ yields

BχS = lim−→
t
Ag
tδ/A

g
tδ(g− χ(g))

= lim−→
t
Ag
tδ/(g− (χ+ tδ)(g))Ag

tδ

= lim−→
t
Bχ+tδ,χ �

Proposition 9.3.4. Assume that δ ∈
∑

Zηi and χ ∈ g∗ are such that for all n ≥ 0
one has χ→ χ+ nδ. Then if S ∈ Wδ, B

χ
µ,S is a right flat Bχ-module.
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Proof. Since S ∈ Wδ there exists m ∈ N \ {0} such that

mδ =
∑
i∈S

aiζi +
∑

i∈{c+1,...,d+e}

biζi

with (ai)i∈S ∈ N \ {0}, (bi)i ∈ Z. If one replaces δ by mδ −
∑
i∈{c+1,...,d+e} biζi

then using Theorem 4.4.4 one deduces that one still has for n ≥ 0 : χ → χ + nδ
but now δ is a positive integer linear combination of (ζi)i∈S . Furthermore by using
ζi = −ζi+r we can assume that the coefficients of ζi or ζi+r or both are zero. Then
if we put S1 = {i ∈ S | ai 6= 0} we have that S1 is reduced.

By Proposition 9.3.3(1) we have that as right BχS1
-module

Bχµ,S =

 ⊗̂
{i,i+r}⊂S

D̂i,∞

⊗D BχS1

Since
⊗̂
{i,i+r}⊂S D̂i,∞ is easily seen to be a flat D-module, it suffices to show that

BχS1
is a flat Bχ-module.

By hypothesis ∀n ≥ 0, χ → χ′ = χ + nδ. General yoga [15, 3.5.4] about the
Morita context 4.5 yields that Bχ

′,χ is right projective. By Proposition 9.3.3(2) we
obtain that BχS1

is right flat. �

Proposition 9.3.5. Assume that S ⊂ W is reduced and has the property that∑
i∈S

kζi +
∑

i∈{c+1,...,d+e}

kζi = g∗

Then BχS has finite global dimension for all χ ∈ g∗.

Proof. Using the automorphisms xi → ∂i, ∂i → −xi we may assume that S ⊂
{r + 1, . . . , 2r}. By hypothesis (ζi)i∈S∪{c+1,...,d+e} contains a basis for g∗. Now
after possibly renumbering variables and taking different r, s we can apply lemma
9.3.6 below to conclude that BχS is of the form WH where H is a finite group and
W is a Weyl algebra with some of the variables inverted.

Furthermore one verifies that H acts faithfully on grF W and hence H acts by
outer automorphisms on W . Therefore by [15, 7.8.11, 7.8.12] WH has finite global
dimension. �

Lemma 9.3.6. Assume that ηt+1, · · · , ηn forms a basis for g∗ for some t ≥ r. Put

W = k[x1, . . . , xr, x
±1
r+1, · · ·x

±1
t , ∂1, . . . , ∂t]

W is Zt-graded in the standard way. Define

C =
⊕

Pt
i=1 αiηi∈

Pn
i=t+1 Zηi

Wα

If Cα 6= 0 define (vi)i=t+1,...,r by
∑t
i=1 αiηi =

∑n
i=t+1 viηi. Then the map

C → Bχ : r 7→ x
−vt+1
t+1 · · ·x−vnn r

is an an isomorphism of k-algebras.

The proof of this lemma is left to the reader.

Lemma 9.3.7. Let χ ∈ g∗. Then there exist δ1, . . . , δt ∈
∑n
i=1 Zηi that form a

basis for g∗ such that for any δ =
∑
i uiδi, ui ∈ N one has χ+ δ → χ.
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Proof. For any α ∈ V (g − χ(g)) we let Fα be the semi-group of all
∑n
i=1 viηi,

(vi)i ∈ Z where

(9.6) ∀i ∈ {1, . . . , r}, αi ∈ Z :
αi ≥ 0⇒ vi ≥ 0
αi < 0⇒ vi ≤ 0

Let δ ∈
⋂
α Fα then for all α ∈ V (g) one may write δ =

∑n
i=1 viηi, vi ∈ Z satisfying

(9.6).
Put β = α+v. Then α ⇐⇒ β and β ∈ V (g−(χ+δ)(g)). According to Theorem

4.4.4 we then have χ + δ → χ. So clearly we have to show that
⋂
α Fα contains a

basis for g∗. Note in passing that there are only a finite number of different Fα’s.
We will now construct elements of

⋂
α Fα. We will use again compatible projec-

tions pr : k → Q, pr : g∗ → Qt. pr : t→ Qn as in §7.5.
Let ε ∈ (Q+)n have the property that ∀i : 0 ≤ εi < 1 and set µ = χ+

∑n
i=1 εiηi.

Note that if α ∈ V (g− χ(g)) then µ =
∑
i βiηi where βi = αi + εi and αi have the

same sign.
Clearly there exists some mα ∈ N\{0} such that mαµ ∈ Fα. Let m = lcmFα mα.

Then mµ ∈
⋂
α Fα.

Since mµ = m pr(χ) +
∑n
i=1mεiηi it is clear that by varying εi we may obtain

a basis for g∗. �

Corollary 9.3.8. Let χ ∈ g∗. Then there exist δ ∈
∑n
i=1 Zηi such that for all

n ∈ N one has χ+ nδ → χ and if δ =
∑n
i=1 viηi, vi ∈ R then (ηi)vi 6=0 spans g∗.

Proof. The set of all δ that may be written as
∑n
i=1 viηi such that (ηi)vi 6=0 does not

span g∗ is contained in a finite number of subspaces of g∗ and hence is not Zariski
dense.

On the other hand we know by lemma 9.3.7 that the δ that have the property
that χ + nδ → χ, n ≥ 0 are Zariski dense. Hence there must be a δ satisfying the
requirements of the corollary. �

Theorem 9.3.9. Assume that χ ∈ g∗ is maximal. Then Bχ has finite global
dimension.

Proof. We choose δ ∈
∑

Zηi as in corollary 9.3.8. Since χ is maximal we have
χ→ χ+ nδ for all n ≥ 0.

Then by Proposition 9.3.2 and 9.3.4 Cµ,δ(Bχ) is an exact complex of the form
0→ Bχ → · · · , consisting of right flat Bχ-modules.

Now let S ∈ Wδ. If S is reduced then by Proposition 9.3.5, Bχµ,S = BχS has finite
global dimension. If this were true for all S ∈ Wδ then we could finish the proof as
in [28, §5].

Unfortunately we don’t know how to do this, and therefore we have to make a
slight detour.

For each S ∈ Wδ let S1 be a set with the property that for any pair {i, i+r} ⊂ S
one has |S1 ∩ {i, i+ r}| = 1.

Since S ∈ Wδ we have by definition that∑
i∈S

kζi +
∑

i∈{c+1,...,d+e}

kζi = g∗

Clearly this condition is still true if we replace S by S1. So by Proposition 9.3.5,
BχS1

has finite global dimension. Furthermore by Proposition 9.3.3(1), Bχµ,S is a
right flat BχS1

-module.
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Now we will modify the proof in [28, §5] as follows. Let M ∈ Bχ-mod be finitely
generated. We will show that M has finite injective dimension.

Since Cµ,δ(Bχ)⊗BχM is exact it suffices to show that each Bχµ,S⊗BχM , S ∈ Wδ

has finite injective dimension. Now Bχµ,S⊗BχM = Bχµ,S⊗BχS1
BχS1
⊗BχM and hence

by replacing BχS1
⊗Bχ M by a finite resolution, consisting of finitely generated

projective BχS1
-modules it suffices to show that Bχµ,S has finite injective dimension

as Bχ-module (here one uses of course that any finitely generated projective module
is a direct summand of a free module of finite rank). Now since Bχµ,S is a right flat
Bχ-module, every injective Bχµ,S-module is injective as Bχ-module. Hence it is
sufficient to show that Bχµ,S has finite injective dimension over itself.

Now Bχµ,S is (graded) complete and hence the spectral sequence

Ext∗grF B
χ
µ,S

(grF M, grF B
χ
µ,S)⇒ Ext∗Bχµ,S (M,Bχµ,S)

for a finitely generated Bχµ,S-module M , equipped with a good filtration F , yields
that it is sufficient to show that grF B

χ
µ,S has finite injective dimension.

Now
grF B

χ
µ,S = PGS /(g)PGS

where PS is the localization of P at (yi)i∈S .
Since g is generated by a regular sequence in PS , it suffices to show that PGS is

Gorenstein. This follows from [18, Thm 4.6]. �

9.4. On some orders of infinite global dimension. In the next two sections
we will complete the proof of Theorem 9.1.1 by proving the converse to 9.3.9. We
start by giving some results on certain orders over complete regular local rings that
might be of independent interest.

Let R = k[[π]] and

H =
(
R (π)
R R

)
H is the completed path algebra of the quiver

r r-

�-1 0

where −1 and 0 serve as labels.
Let p ∈ N. With Hp we denote the p-fold completed tensor product H⊗̂p. Let

Qp = {−1, 0}p. We make Qp into a quiver by introducing an arrow v → w from
v = (v1, . . . , w1) to w = (w1, . . . , wr) if there is exactly one i such that vi 6= wi.
We also introduce the relations u → v → w = u → v′ → w if u and w differ in
exactly two places and v 6= v′ is such that the indicated arrows are defined. (Note
in passing that we still write a path a−→ b−→ as ba.) Then Hp is the completed path
algebra of Qp.

We will call a path
u1 → u2 → · · · → uk

reduced if for every i, the i’th coordinate (uj)i changes at most once on the path.
Clearly every reduced path from u1 to uk is equivalent modulo the relations and
hence gives rise to the same element of Hp.

If v ∈ Qp then we denote by ev the corresponding idempotent in Hp. Similarly
if S ⊂ Qp then eS =

∑
v∈S ev.
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Below we will use the following result

Lemma 9.4.1. Let v, w ∈ Qp. Then

HpevH
pewH

p = HpxHp

where x is represented by a reduced path from w to v.

Proof. Left to the reader. �

If K ⊂ {1, . . . , p} then there is a projection map

prK : Qp → Q|K| : (v1, . . . , vp) 7→ (vi)i∈K
We will call the fibers of these maps the faces of Qp.

Lemma 9.4.2. Let S ⊂ Qp. Then G0(Hp/HpeSH
p) is rationally generated by the

classes of

(9.7) Hp/HpeTH
p

where S ⊂ T and Qp \ T is a face.

Proof. We use reverse induction on |S|. So the initial step is S = Qp and hence
eS = 1. In this case there is nothing to prove.

Now we consider the case that Qp − S is a face. Then

Hp/HpeSH
p = Hq

for 2q = |Qp − S| and hence we may assume without loss of generality that S = ∅.
Since Hp has finite global dimension we have

(9.8) G0(Hp) = K0(Hp) = K0(H)⊗p = G0(H)⊗p

Inspection reveals that the isomorphism

G0(H)⊗p → G0(Hp)

obtained from (9.8) is given by

(9.9) [M1]⊗ · · · ⊗ [Mp]→ [M1 ⊗̂kM2 ⊗̂k · · · ⊗̂kMp]

Now let Pv = Hev, Sv = Pv/ rad(Pv), v ∈ {−1, 0}. Then we have a projective
resolution

0→ P0 → P−1 → S−1 → 0
and furthermore H = P0 ⊕ P−1.

Therefore in G0(H)⊗Q.

[P−1] =
1
2

([H] + [S−1])

[P0] =
1
2

([H]− [S−1])

Hence rationally G0(H) is generated by [H], [S−1].
Now using the fact that H = H/He∅H, S−1 = H/He0H we obtain that com-

pleted tensor products of these modules are of the form (9.7) and then (9.9) implies
that such completed tensor products rationally generate G0(Hp). This finishes the
case S = ∅.

Now we consider the case where Qp − S is not a face. Then there must exist
v, w ∈ Qp − S and a reduced path from w to v such that x meets S (exercise !).

Claim . HpevH
pewH

p ⊂ HpeSH
p
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Proof. By lemma 9.4.1
HpevH

pewH
p = HpxHp

This proves the claim since HpxHp ⊂ HpeSH
p. �

Put

A = Hp/HpeSH
p

I = HpeS∪{v}Hp ⊂ A
J = HpeS∪{w}Hp ⊂ A

Then the claim implies that IJ = 0.
If M ∈ A-mod then there is an exact sequence

0→ JM →M →M/JM → 0

which implies that

(9.10) G0(A/I)⊕G0(A/J)→ G0(A)

is surjective.
By induction we may assume thatG0(A/I) andG0(A/J) are rationally generated

by classes of the form (9.7). Then by surjectivity of (9.10) we may assume that the
same is true for G0(A). �

Two fibers of the same prK are said to be parallel. If U ⊂ Qp then we denote by
F (U) the number of parallelism classes of faces contained in U . That is we count
faces in U , counting parallel faces only once.

Concerning the behavior or F (U) we have the following conjecture.

Conjecture 9.4.3. F (U) ≤ |U | with equality iff for all K ⊂ {1 . . . p}, q = |K| the
set Qq − prK(Qp − U) is connected.

Some of the arguments below would simplify if this conjecture were true.
Now we prove the following results.

Proposition 9.4.4. Let S ⊂ Qp. Then

rkZ(G0(eSHpeS)) = |Qp| − F (Qp − S)

Proof. We use the exact sequence

G0(Hp/HpeSH
p)→ G0(Hp)→ G0(eSHpeS)→ 0

By lemma 9.4.2 it suffices to show that the classes of the form (9.7) generate a
subgroup of rank F (Qp − S) in G0(Hp). We use the isomorphism (defined in the
proof of lemma 9.4.2)

G0(H)⊗ · · · ⊗G0(H)→ G0(Hp)

given by the completed tensor product.
To resolve some ambiguity of notation we will denote the product of [M1], . . . , [Mp] ∈

G0(H) in G0(Hp) by [M1](1) · · · [Mp](p). We also put [H] = 1.
Let Qp − T be a face defined by pr−1

K (v), K ⊂ {1, . . . , p}, v ∈ Q|K|. Then

[MT ] def= [Hp/HpeTH
p] =

∏
i∈K

[H/He−1−viH](i)

Below let Sv, Pv be as in the proof of lemma 9.4.2. Then

H/He−1−viH = Svi



68 IAN M. MUSSON AND MICHEL VAN DEN BERGH

so that we obtain
[MT ] =

∏
i∈K

[Svi ]
(i)

Now [S0] = −[S1] in G0(H) and hence parallel faces yield, up to sign, the same
element of G0(Hp).

Now for K ⊂ {1, . . . , p} let

TK = pr−1
K (−1, . . . ,−1)

The proof of the proposition is finished if we can show that all [MTK ] are inde-
pendent in G0(Hp). Using the fact that [S−1] = [P−1] − [P0] = 2[P−1] − 1 we
obtain

(9.11) [MTK ] =
∏
i∈K

(2[P−1](i) − 1)

So [MTK ] is a linear combination of terms of the form

(9.12)
∏
i∈L

[P−1](i)

with L ⊂ K and with “longest” term equal to 2|K|
∏
i∈K [P0](i).

Hence if we can show that the elements of the form (9.12) with L ⊂ {1, . . . , p}
are independent in G0(Hp) then we are done.

There are 2p = rkG0(Hp) such elements, so it is sufficient to show that they
generate G0(Hp). Now G0(Hp) = K0(Hp) has a basis consisting of elements∏r
i=1[Pvi ]

(i) for v = (v1, . . . , vr) ∈ Q(p).
Using the relations it is clear that one can express these basis elements in terms

of the elements (9.12). �

Corollary 9.4.5. If eSHpeS has finite global dimension then

F (Qp − S) = |Qp − S|

Proof. If eSHpeS has finite global dimension then K0(eSHpES) = G0(eSHpeS).
Now K0(eSHpeS) = Z|S| and by Proposition 9.4.4

rkZ G0(eSHpeS) = |Qp| − F (Qp − S)

This shows what we want. �

9.5. Rings of differential operators of infinite global dimension. We now
revert to the notations of §6,§7. Let θ ∈ V (g − χ(g)), Λ = θ + SuppA, Γ =
θ + SuppBχ. Clearly Γ = Λ ∩ V (g− χ(g)).

In order to apply corollary 3.5.11 we have to understand H
(∞)
Γ . The answer is

given by Proposition 4.4.1

(9.13) H
(∞)
Γ = eΛ,ΓH

(∞)
Λ eΛ,Γ/(ψ(g))

H
(∞)
Λ itself was computed in §6. We find that

(9.14) H
(∞)
Λ = Hp ⊗̂ k[[(πi)i6∈T ]

where Hp was introduced in §9.4,

T = {1, . . . , r} ∩ {i | θi ∈ Z}
and p = |T |.
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As was explained in §9.4, Hp is the completed path algebra of the quiver Qp.
We index the vertices of Qp by elements of {−1, 0}T .

By Proposition 4.3.1(3), eΛ,Γ =
∑
v∈SΓ

ev where SΓ is the set of all v ∈ {−1, 0}T
such that there exists α ∈ Γ with

∀i ∈ T :
vi = 0⇒ αi ≥ 0

vi = −1⇒ αi < 0

Theorem 9.5.1. If Bχ has finite global dimension then

(9.15) F (Qp − SΓ) = |Qp − SΓ|
for all θ ∈ V (g− χ(g)).

Proof. If Bχ has finite global dimension then by corollary 3.5.11 and remark 3.5.12,
H

(∞)
Γ has finite global dimension for all Γ.
Now H

(∞)
Γ is the completion of HΛ at the ideal ψ(m0) ⊂ ψ(D) (§3.5). Since g ⊂

m0 this implies that ψ(g) ⊂ rad(H(∞)
Γ ) and hence also ψ(g) ⊂ rad(eΛ,ΓH

(∞)
Λ eΛ,Γ).

Now H
(∞)
Γ and hence also eΛ,ΓH

(∞)
Λ eΛ,Γ is a free ψ(D̂)0-module and therefore

ψ(g) is generated by a regular sequence in eΛ,ΓH
(∞)
Λ eΛ,Γ. Hence the fact that H(∞)

Γ

has finite global dimension together with (9.13) implies that eΛ,ΓH
(∞)
Λ eΛ,Γ also has

finite global dimension.
(9.14) implies that

eΛ,ΓH
(∞)
Λ eΛ,Γ = eΛ,ΓH

p
ΛeΛ,Γ ⊗̂ k[[(πi)i 6∈T ]]

and hence eΛ,ΓH
p
ΛeΛ,Γ also has finite global dimension. Now corollary 9.4.5 implies

(9.15). �

The faces in Qp are of the form

F = pr−1
K (v)

where K ⊂ T and v ∈ {−1, 0}K . The parallelism class of F is determined by K.

Proposition 9.5.2. There is a face in Qp − SΓ in the parallelism class associated
to K ⊂ T if and only if (ηi)i 6∈K does not span g∗ as a vector space.

Proof. The property that pr−1
K (v) 6⊂ Qp − SΓ for all v ∈ {−1, 0}K means that,

whatever the choice of v ∈ {−1, 0}K , χ can always be written as
∑n
i=1 αiηi, α ∼=

θ mod Zn and

(9.16) ∀i ∈ K :
vi = 0⇒ αi ≥ 0

vi = −1⇒ αi < 0

Now let µ = χ−
∑
i 6∈K θiηi. Then µ ∈

∑n
i=1 Zηi and (9.16) is equivalent with the

property that µ can always be written as
∑n
i=1 uiηi with u ∈ Zn and

(9.17) ∀i ∈ K :
vi = 0⇒ ui ≥ 0

vi = −1⇒ ui < 0

So now we have to show that this property of µ is equivalent with (ηi)i 6∈K span-
ning g∗.

Assume first that (ηi)i 6∈K spans g∗ and fix v ∈ {−1, 0}T . Let Z be the semigroup
spanned by

(9.18) (ηi) i∈K
vi=0

, (−ηi) i∈K
vi=−1

, (±ηi)i 6∈K
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By hypotheses the elements (9.18) do not lie in some cone in g∗ and hence Z is in
fact equal to the group generated by the elements (9.18). Hence µ+

∑
i∈K
vi=−1

ηi ∈ Z
which is exactly what we have to show.

Conversely assume that (ηi)i 6∈K does not span g∗. We will seek a particular v,
violating (9.17).

There exist ψ ∈ g such that for all i 6∈ K one has 〈ψ, ηi〉 = 0 and with one of the
following additional properties.

(1) If µ 6∈
∑
i6∈K kηi then 〈ψ, µ〉 < 0.

(2) If µ ∈
∑
i6∈K kηi then ∃ : i ∈ K : 〈ψ, ηi〉 < 0.

Now we choose v ∈ {−1, 0}T such that

∀i ∈ K :
〈ψ, ηi〉 ≥ 0⇒ vi = 0

〈ψ, ηi〉 < 0⇒ vi = −1

Applying 〈ψ,−〉 to µ =
∑n
i=1 uiηi yields a contradiction with (9.17). �

Corollary 9.5.3. F (Qp − SΓ) depends only on T .

Theorem 9.5.4. If Bχ has finite global dimension then χ is maximal.

Proof. Assume that χ is not maximal an choose a maximal χ′ → χ. By definition
χ 6→ χ′. Hence by Theorem 4.4.4 there exists θ′ ∈ V (g− χ′(g)) such that

〈θ′〉A ∩ V (g− χ(g)) = ∅

Choose θ ∼= θ′ mod Zn such that θ ∈ V (g− χ(g)) and put Γ = θ + L, Γ′ = θ′ + L,
L = SuppBχ = SuppBχ

′
.

By construction |Qp−SΓ| > |Qp−SΓ′ |. Since χ′ is maximal Bχ
′

has finite global
dimension by Theorem 9.3.9 and hence by Theorem 9.5.1

F (Qp − SΓ′) = |Qp − SΓ′ |

Hence
|Qp − SΓ| > |Qp − SΓ′ | = F (Qp − SΓ′) = F (Qp − SΓ)

where the last equality follows from corollary 9.5.3.
Thus |Qp − SΓ| 6= F (Qp − SΓ) which by Theorem 9.5.1 implies that Bχ has

infinite global dimension. �

10. Finite dimensional representations.

10.1. Generalities. Let the notation A,G, g, Bχ, r, s, n,. . . be as before. In this
section we will describe the category of finite dimensional representations of AG.
Our most explicit results will be in the cases where dimG is one or two dimensional.
It turns out that especially the case dimG = 2 has some interesting features which
do not occur in higher dimensions.

The focus of this section will be the ring AG, so we fix notations accordingly.
For example 〈α〉 stands for 〈α〉AG (notation: §3.2 and §4) and L(α) will be the
corresponding simple AG representation.

To enhance readablity of this section there will be some duplication with §9.4
and §9.5. However the reader has to keep in mind that in those sections our main
focus was Bχ, so the notation is slightly different.
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Fix µ ∈ t∗ and let Λ = µ+SuppA, Γ = µ+SuppAG. For an arbitrary k-algebra
R we will denote by R-fin the category of finite dimensional R-modules. Clearly
AG-fin ⊂ O(∞).

Let O(p)
Γ,f be the category of finite dimensional objects in O(p)

Γ . As usual, AG-fin

decomposes as a direct sum : AG-fin = ⊕ΓO(∞)
Γ,f

Our first aim is to describe the finite dimensional simple modules in O(∞)
Γ (or

equivalently in O(1)
Γ ). As in §9.5 we put

T = {1, . . . , r} ∩ {i | µi ∈ Z}, p = |T |

Proposition 10.1.1. (1) For O(1)
Γ to contain non-zero finite dimensional rep-

resentations, it is necessary that the following condition holds :

(10.1) The (ηi)i 6∈T are linearly independent

(2) Assume that (10.1) holds. Then for α ∈ Γ one has dimL(α) <∞ iff there
exist ψ ∈ g ∩Qn such that :
(a) 〈ψ, ηi〉 = 0 iff i 6∈ T .
(b)

for all i ∈ T :
〈ψ, ηi〉 < 0⇒ αi ∈ Z, αi ≥ 0

〈ψ, ηi〉 > 0⇒ αi ∈ Z, αi < 0

Proof. Let dimL(α) < ∞ for α ∈ Γ. By Proposition 7.2.4 there exists a pair
(ψ, θ), attached to χ, such that 〈α〉 = 〈α〉 = Sψ,θ = 〈β〉 where β is as in definition
7.2.1(4)(5). Since |〈β〉| < ∞ we also have 〈β〉 < ∞ and hence |〈β〉| = 〈β〉. So
〈α〉 = 〈β〉. This implies in particular that α ∼= β mod Zn. Since α and β are in the
same V (g − χ(g)) this implies β ∈ Γ. Since also µ ∼= α mod Zn we have µi 6∈ Z if
βi 6∈ Z. Then (2)(5) of definition 7.2.1 imply that 〈ψ, ηi〉 = 0 iff i 6∈ T .

Now we prove (1). Assume that (10.1) does not hold. Then lemma 7.2.3 implies
that dimSψ,θ > 0. But this contradicts the fact that Sψ,θ = 〈α〉 is finite.

Now we prove the ⇒ direction of (2). We have already shown above that (2a)
holds. Since 〈α〉 = 〈β〉, (2b) follows directly from Definition 7.2.1.

Finally we prove the converse of (2). Let α ∈ Γ and assume ψ ∈ g ∩Qn satisfies
(2a)(2b). Put θ =

∑
〈ψ,ηi〉=0 αiηi. Then by Proposition 7.2.4 Sψ,θ = 〈α〉 and by

lemma 7.2.3, Sψ,θ is a finite set of points. Hence 〈α〉 itself is finite, whence L(α) is
finite dimensional. �

Remark 10.1.2. It follows easily from Proposition 10.1.1 that a necessary condition
for AG to have finite dimensional representations is that no ηi is equal to zero. This
can also be seen directly. Indeed if ηi = 0 for some i then AG contains the Weyl
algebra k[xi, ∂i], and so has no finite dimensional representations.

Now we will describe the category AG-fin. To be able to state our next theorem
we introduce some more notation. Hp will be as in §9.4. It is the completed path
algebra of the quiver Qp also introduced in §9.4. Recall that the vertices of Qp are
given by elements of {−1, 0}T and index the simple objects in O(1)

Λ,A.
We now define some subsets of Qp. SΓ is the set of all {−1, 0}T that correspond

to representations in O(1)
Γ . That is v ∈ SΓ iff there exist α ∈ Γ such that

∀i ∈ T :
vi = 0⇒ αi ≥ 0

vi = −1⇒ αi < 0
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In the notation of the previous sections: eΛ,Γ =
∑
v∈SΓ

ev (see §9.5).
By Sf,Γ we denote the subset of SΓ whose elements correspond to finite dimen-

sional objects in O(1)
Γ . We also write ef,Γ =

∑
v∈SΓ,f

ev. Sf will be the subset of
all v ∈ Qp such that there exist ψ ∈ g ∩Qn with the property

∀i 6∈ T : 〈ψ, ηi〉 = 0

∀i ∈ T :
vi = 0⇒ 〈ψ, ηi〉 < 0

vi = −1⇒ 〈ψ, ηi > 0
(10.2)

Clearly Sf,Γ = Sf ∩ SΓ. Put ef =
∑
v∈Sf ev.

With regard to these subsets of Qp we will need the following lemma.

Lemma 10.1.3. For v ∈ Qp define vopp by

vopp =

{
0 if vi = −1
−1 if vi = 0

Then if v ∈ Sf , then also vopp ∈ Sf . However v and vopp cannot both belong to SΓ.

Proof. Left to the reader. �

Now we define
Hp
f = Hp/Hp(1− ef )Hp

and we have the following result :

Theorem 10.1.4. Assume that (10.1) holds. Then the category O(∞)
Γ,f is equivalent

to the category of finite dimensional representations of the algebra

(10.3) ef,ΓH
p
f ef,Γ ⊗̂ k[[(πi)i 6∈T ]]

If χ ∈ g∗ then a similar statement holds for O(∞)
Γ,Bχ,f but we have to replace (10.3)

by
(ef,ΓH

p
f ef,Γ ⊗̂ k[[(πi)i 6∈T ]])/(ψ(g))

where ψ is as in §3.5 and §6.

Proof. We will give the proof for O(∞)
Γ,f . The proof for O(∞)

Γ,Bχ,f is completely similar.

An object in O(∞)
Γ is in O(∞)

Γ,f if it has no infinite dimensional composition factors.
So from

H
(∞)
Γ = eΛ,ΓH

(∞)
Λ eΛ,Γ

(Prop. 4.3.1(3)), together with

H
(∞)
Λ = Hp ⊗̂ k[[(πi)i6∈T ]]

we obtain that O(∞)
Γ,f is equivalent with the category of finite dimensional represen-

tations of
eΛ,ΓH

peΛ,Γ

eΛ,ΓHp(eΛ,Γ − ef,Γ)HpeΛ,Γ
⊗̂ k[[(πi)i6∈T ]]

We have to show that this is equal to (10.3). To prove this we first prove the
following claim :

(10.4) (1− ef )HpeΛ,Γ ⊂ Hp(eΛ,Γ − ef,Γ)Hp

Note that the left side of (10.4) is topologically spanned by reduced paths starting
in SΓ and ending in the complement in Sf .
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So let x be a reduced path starting in v ∈ SΓ and ending in w 6∈ Sf . We will
show that x is in the right side of (10.4). The fact that w 6∈ Sf means that there
exist (γi)i ∈ Zn such that

∑
γiηi = 0 and

(10.5) ∀i ∈ T :
wi = 0⇒ γi ≥ 0

wi = −1⇒ γi ≤ 0

and such that there is at least one i ∈ T with γi 6= 0. The fact that v ∈ SΓ means
that there exists α ∈ Γ such that

(10.6) ∀i ∈ T :
vi = 0⇒ αi ≥ 0

vi = −1⇒ αi < 0

Now we define v′ ∈ Qp as follows :

v′i =

{
wi if γi 6= 0
vi otherwise

Put α′ = α + Nγ, N ∈ N, N � 0. Then α′ satisfies (10.6) if we replace v by v′.
So v′ ∈ SΓ. We claim that also v′ 6∈ Sf . Assume the contrary. Then there exist
ψ ∈ g ∩Qn such that

∀i 6∈ T : 〈ψ, ηi〉 = 0

∀i ∈ T :
v′i = 0⇒ 〈ψ, ηi〉 < 0

v′i = −1⇒ 〈ψ, ηi〉 > 0

(10.7)

Applying 〈ψ,−〉 to
∑
i γiηi yields

∑
i∈T γi〈ψ, ηi〉 = 0.

Now if γi 6= 0 for i ∈ T , then v′i and wi are equal, and comparing (10.5) with
(10.7) we see that if γi 6= 0 then γi〈ψ, ηi〉 < 0. Since at least one (γi)i∈T is non-zero,
this yields a contradiction.

Now clearly there exists a reduced path x′ form v to w passing through v′. Hence
x = x′ belongs to Hp(eΛ,Γ − ef,Λ)Hp. This finishes the proof of (10.4).

From (10.4) we deduce the inclusion

eΛ,ΓH
p(1− ef )HpeΛ,Γ ⊂ eΛ,ΓH

p(eΛ,Γ − ef,Γ)HpeΛ,Γ

This is in fact an equality since the opposite inclusion follows trivially from ef,Γ =
efeΛ,Γ.

So we obtain
eΛ,ΓH

peΛ,Γ

eΛ,ΓHp(eΛ,Γ − ef,Γ)HpeΛ,Γ
=

eΛ,ΓH
peΛ,Γ

eΛ,ΓHp(1− ef )HpeΛ,Γ
= eΛ,ΓH

p
f eΛ,Γ

Since eΛ,ΓH
p
f eΛ,Γ is annihilated by 1− ef , on the left and on the right, it is equal

to efeΛ,ΓH
p
f eΛ,Γef = ef,ΓH

p
f ef,Γ. This finishes the proof of the theorem. �

Remark 10.1.5. Part of the usefulness of Theorem 10.1.4 stems from the fact that
Hp
f can be described as the completed path algebra of the full subquiver of Qpf of

Qp having the set Sf as vertices (thus an arrow v → w in Qp is in Qpf iff v, w ∈ Sf ).
The relations on Qpf are deduced in a trivial way from those of on Qp. That is if
u, v, w ∈ Sf , v′ ∈ Qp are such that v 6= v′, u 6= w and the arrows u → v → w,
u→ v′ → w are defined in Qp then

u→ v → w =

{
u→ v′ → w if v′ ∈ Sf
0 otherwise
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Theorem 10.1.4 together with the foregoing remark yield the following general
result.

Corollary 10.1.6. Assume that for all i ∈ {1, . . . , r} there exists a j ∈ {1, . . . , r},
j 6= i such that ηi and ηj are proportional in X(G)Q. Then AG-fin is semisimple.

Proof. If there is some ηi = 0 then by remark 10.1.2, AG-fin only contains the
zero-representation. So in that case the corollary is true. Hence assume ηi 6= 0 for
all i.

Assume that O(∞)
Γ contains a non-trivial finite dimensional representation. By

Proposition 10.1.1(1), if ηi and ηj are proportional then they are not both contained
in the complement of T . However if ψ ∈ g∩Qn then 〈ψ, ηi〉 = 0 implies 〈ψ, ηj〉 = 0.
So by Proposition 10.1.1(2a) we find that {ηi, ηj} ⊂ T . Hence {1, . . . , r} = T .
Furthermore the signs of 〈ψ, ηi〉 and 〈ψ, ηj〉 mutually determine each other. Hence
no two distinct vertices in Sf can be adjacent in Qp. So Hp

f = ⊕v∈Sf kev is semi-
simple and hence the same is true for O∞Γ,f by Theorem 10.1.4. �

10.2. dim g = 1. Corollary 10.1.6 applies almost immediately to the case dim g = 1.
Since we we are interested in non-trivial cases, we may assume by remark 10.1.2
that ηi 6= 0 for all i. Furthermore the case n = 1 is somewhat special. In that case
AG = k[π] and the reader may verify that some of the assertions in Proposition
10.2.1 below are false in that case. So we assume n > 1.

Finally if s > 0 then it follows from lemma 9.3.6 together with [15] that Bχ =
AG/(g − χ(g)) is simple, whence AG has no finite dimensional representation. So
again to avoid trivialities, we take s = 0.

Assuming all these conditions we have the following result which is very reminis-
cent of what happens in the case of U(sl2). As usual we identify X(G) = Y (G) = Z.

Proposition 10.2.1. Assume that dimG = 1, n > 1, s = 0 and ηi 6= 0 for all i.
Then

(1) For all χ ∈ g∗, Bχ has at most one finite dimensional simple representation.
(2) Bχ has a finite dimensional representation if and only if there exist a1, . . . , an ∈

Z such that
∑
aiηi = χ and one of the following holds

∀i ∈ {1, . . . , n} :
ηi < 0⇒ ai ≥ 0
ηi > 0⇒ ai < 0

or

∀i ∈ {1, . . . , n} :
ηi < 0⇒ ai < 0
ηi > 0⇒ ai ≥ 0

(3) The category of finite dimensional representations of AG is semi-simple.

Proof. Let χ ∈ g∗ and choose µ ∈ V (g − χ(g)). Put Γ = µ + SuppAG. Assume
that L(α) ∈ O(1)

Γ for some α ∈ Γ. By (10.1) we see that the complement of T
can at most contain one element. Let ψ be as in Proposition 10.1.1. Assume
i 6∈ T and note that for all ψ ∈ g ∩ Qn \ {0} one has 〈ψ, ηi〉 6= 0. Hence applying
(2a) of Proposition 10.1.1 we have ψ = 0. But then applying 10.1.1(2a) again for
ψ = 0 we obtain T = ∅. So n ≤ 1, which contradicts the hypotheses. Therefore
T = {1, . . . , n} and in particular µ ∈ Zn. This implies that Γ is uniquely determined
since if µ1, µ2 ∈ Zn are such that µi + SuppAG ⊂ V (g − χ(g)) for i = 1, 2 then
µ1 − µ2 = Zn ∩ V (g) = SuppAG.
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Now Proposition 10.1.1(2a) implies that ψ 6= 0. Hence allowing α to vary there
are at most two possible choices for ψ say ±1 (up to positive scalar multiples). Now
the signs of the components of α are determined by ψ. So there can be at most two
vertices in SΓ corresponding to finite dimensional representations. It is clear that
these two vertices must be opposite to each other in Qp. But lemma 10.1.3 implies
that opposite vertices cannot both belong to SΓ.

Hence there can be at most one finite dimensional simple representation in O(1)
Γ .

Since Γ ∈ V (g−χ(g)) was itself unique, with respect to the property of containing
finite dimensional representations, we deduce that Bχ has at most one finite dimen-
sional simple representatation. This proves (1). To prove (2) we observe that for
Bχ to have finite dimensional representations there have to exist α ∈ V (g− χ(g)),
ψ ∈ g∩Qn satisfying (2b) of Proposition 10.1.1. In the proof of (1) above we have
already seen that we may take α ∈ Zn, ψ = ±1. Plugging this into 10.1.1(2b) we
find exactly the condition stated under (2) of the current proposition.

(3) follows immediately from corollary 10.1.6. �

10.3. dim g = 2. In this case we can still give a fairly explicit description of the
category Bχ-fin for χ ∈ g∗. Our result is as follows :

Proposition 10.3.1. Assume that dimG = 2. Then Bχ-fin is equivalent to the
category of finite dimensional representations over a quiver which is a finite (per-
haps empty) union of quivers of the typer r r r r- - -

� � �· · ·

with relations given by all paths of length 2. In particular Bχ-fin has finite repre-
sentation type.

Proof. The fact that the indicated quiver has finite representation type follows
from [34, Prop. 2.3]. So we only have to prove the first part of the proposition.
As usual we can make a few reductions. To start we assume ηi 6= 0 for all i since
otherwise AG has no finite dimensional representations and there is nothing to
prove. Furthermore we assume that the weights (ηi)i generate X(G)Q rationally
since otherwise we could reduce to the case dim g = 1. In that case Bχ-fin is semi-
simple and contains at most a unique simple finite dimensional representation, and
we are done. Also, if n ≤ 2 then, assuming the earlier conditions, we obtain Bχ = k
and again there is nothing to do. So we assume n > 2.

Since Bχ has only a finite number of primitive ideals, it has in particular only
a finite number of finite dimensional simple representations. Hence there are only
a finite number of Γ ⊂ V (g − χ(g)) with the property that O(1)

Γ contains non-
trivial representations. Hence it is sufficient to prove the current proposition for an
individual O(1)

Γ .
So fix one particular Γ such that O(1)

Γ contains finite dimensional representations.
Then (10.1) implies that the complement of T contains at most two elements. We
analyze the different possibilities.

• |T c| = 2. Condition 10.1.1(2a) now implies ψ = 0, and applying 10.1.1(2a)
again for ψ = 0 we find T = ∅. Hence n = 2, which was excluded in the
beginning of the proof.
• |T c| = 1. By hypotheses p = |T | ≥ 2. Condition (2a) of Proposition 10.1.1

shows that, with respect to the signs of 〈ψ, ηi〉 there are two non-equivalent
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ψ’s, say ±ψ1. Hence Qpf consists of two elements which are opposite, and
since p ≥ 2 one sees that these are non-adjacent.

Thus Hp
f is semi-simple. So by Theorem 10.1.4, O(∞)

Γ,f is also semi-simple.
• |T c| = 0. This is the most interesting case. Now 10.1.1(2a) implies 〈ψ, ηj〉 6=

0 for all ψ. By ordering the essentially different ψ’s in counter clockwise
sense around the origin one easily sees that Qpf is either

(10.8)

r r r r r- - -

� � �· · ·v1 v2 v3 v2n v1
Y1 Y2 Y2n

X1 X2 X2n

(the first and the last vertex are identified) or else is a finite union of quivers
of the form

(10.9)

r r r r r- - -

� � �· · ·v1 v2 v3 vt vt+1
Y1 Y2 Yt

X1 X2 Xt

(this case occurs when some of the ηi are proportional) where the relations
are given by

Xi+1Xi = 0 and YiYi+1 = 0

(in (10.8) we take X2n+1 = X1, Y2n+1 = Y1. This convention remains in
force below.)

Now we compute Hp
f /ψ(g). In (10.8) and (10.9) we have

YiXi = eviπki

XiYi = evi+1πki

for some πki ∈ {π1, . . . , πn}.
Choose a basis {f1, f2} for g and use this basis to identify g∗ with k2.

Then we may write ηi = (ηi1, ηi2) ∈ k2 and ψ(fj) =
∑
i ηijπi.

Then in case (10.8) Hp
f /(ψ(g) is the completed path algebra of the same

quiver but with additional relations

(10.10) ηki+1jYi+1Xi+1 + ηkijXiYi = 0 (j = 1, 2, i = 1, . . . , 2n)

In case (10.9) Hp
f /(ψ(g) is a completed path algebra of the quiver given by

(10.9) but with additional relations

ηki+1jYi+1Xi+1 + ηkijXiYi = 0 (j = 1, 2, i = 1, . . . , n)(10.11)

ηk1jY1X1 = 0 (j = 1, 2)(10.12)

ηktjXtYt = 0 (j = 1, 2)(10.13)

Now for a vertex vi for which (10.10) or (10.11) applies we have that ηki ,
ηki+1 are not proportional and hence we obtain the additional relations
XiYi = 0, Yi+1Xi+1 = 0. Similarly, have assumed ηi 6= 0 for all i and so
(10.12) (10.13) imply Y1X1 = 0, XtYt = 0.

So we obtain that Hp
f /(ψ(g) is the completed path algebra of either

(10.8) or (10.9) with relations given by all paths of length 2. However
one immediately sees that the completion is unnecessary because the path
algebra modulo the relations is finite dimensional.

Now to finish the proof we invoke Theorem 10.1.4. This amount to
picking out of the quivers (10.8) and (10.9) the vertices that belong to SΓ.
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The only bad case that might occur is that we end up with a quiver of the
form (10.8). This would imply Sf = SΓ. However this is impossible since
by lemma 10.1.3 for an arbitrary vertex v, v and vopp cannot both belong
to SΓ. �

Remark 10.3.2. It follows from Proposition 10.2.1 that Bχ-fin ⊂ O(1)
Γ if dimG = 2.

This is not true in higher dimension. Likewise the fact that Bχ-fin has finite
representation type does not generalize to higher dimension.

11. An example

In this section we apply the foregoing results to an explicit example which may
be considered typical. We take

A = k[x1, x2, x3, x4, ∂1, ∂2, ∂3, ∂4]

and G will be a two-dimensional torus acting with weights η1,...,4 on x1,...,4 respec-
tively. We identify X(G) with Z2 and we assume that η1, η2, η3, η4 are given by
(1, 0), (1, 0), (0, 1), (−1, 1). As before, for χ ∈ g∗, we put

Bχ = Ag/(g− χ(g))

Bχ is a domain of GK dimension 4 and Krull dimension 2 (see §8). Below we will
compute the χ’s for which Bχ is simple or has finite global dimension. We will also,
for each χ describe, the lattice of primitive ideals of Bχ and we will give the →-
relation between different χ’s. The most interesting case is when χ ∈ X(G) = Z2.
In that case there are 15 equivalence classes which are related as in figure 11.3
below (we call χ, χ′ equivalent if χ→ χ′ and χ′ → χ both hold).

Remark 11.1. It follows from [19] that in this case Bχ is a ring of twisted differential
operators (tdo) on the first Hirzebruch surface. Recall that the first Hirzebruch
surface is given by P(OP1 ⊕OP1(−1)). Alternatively, it can be considered as a toric
variety with fan
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By taking we η4 = (−n, 1), n ∈ N we could also have treated the other Hirzebruch
surfaces. However the result are completely analogous to those for the first one.

Recall that the primitive ideals of Bχ are indexed by pairs (ψ, θ) satisfying the
conditions of definition 7.2.1(1). . .(5) (see remark 7.3.2(1) and Proposition 7.7.1(2)).
All these pairs fit together in a single large poset P (see §7.7)

The identification X(G) = Z2 allows us to identify g = g∗ = k2. Let Ξ be an
equivalence class for the comparability relation on g = k2 (see §4.4). By Proposition
7.6.1 Ξ is an element of k2/Z2.

Define
PΞ =

⋃
χ∈Ξ

Pχ
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Figure 11.1. The essentially different ψ’s

Then

P =
⋃
Ξ

PΞ

and further the elements of different PΞ are incomparable under the ordering on
P. Below we will describe the posets PΞ as Ξ varies.

Let us first give in Figure 11.1 the essentially different non-zero ψ’s. We also let
ψ0 = 0. Since all subsets of (ηi)i span a direct summand of Z2 we have for all ψ

(11.1)

(
4∑
i=1

Zηi

)
∩

 ∑
〈ψ,ηi〉=0

kηi

 =
∑

〈ψ,ηi〉=0

Zηi

If (ψ, θ1) is attached to χ1 and (ψ, θ2) is attached to χ2 with χ1, χ2 comparable
then (4) and (5) of definition 7.2.1 imply that χ1 − θ1 ∈

∑
Zηi, χ2 − θ2 ∈

∑
Zηi
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and hence

θ1 − θ2 ∈

(
4∑
i=1

Zηi

)
∩

 ∑
〈ψ,ηi〉=0

kηi

 =
∑

〈ψ,ηi〉=0

Zηi

Hence if (ψ, θ) is attached to χ then θ is uniquely determined by the comparability
class of χ (in contrast with example 7.2.7 where (11.1) didn’t hold). So in the sequel
we will say that ψ is attached to χ if there exists a θ (necessarily unique) such that
(ψ, θ) is attached to χ. Furthermore the ordering on P as defined in §7.7, when
restricted to PΞ, simplifies to

ψ ≥ ψ′ iff
{i | 〈ψ′, ηi〉 < 0} ⊂ {i | 〈ψ, ηi〉 < 0}
{i | 〈ψ′, ηi〉 > 0} ⊂ {i | 〈ψ, ηi〉 > 0}

(11.2)

Pictorially this ordering is given below

(11.3)
aa

aa
aa

aa

!!
!!

!!
!!

c
c

c
c

c
c
cc

S
S
S
S
S
S

C
C
C
C
C
C

�
�
�
�
�
�

�
�
�
�
�
�

#
#
#
#
#
#
##

HH
HH

HH

@
@
@

��
��

��

�
�
�

r r r r r r r r r r
r r

r

2 12 3 4 5 9 10 11 6 8

1 7

0
4

2

0

GKdimBχ/J(ψ)

Here we have written J(ψ) for the primitive ideal J(ψ, θ)Bχ of Bχ, introduced in
§7.7. The GK-dimension of the primitive quotient Bχ/J(ψ) is computed with the
formula

GKdimBχ/J(ψ, θ)Bχ = 2 dimSψ,θ

which follows from corollary 8.2.2 together with Proposition 7.2.4. dimSψ,θ can be
computed using lemma 7.2.3.

Remark 11.2. Similarly to what one does for enveloping algebras one can define,
for a given pair (ψ, θ), the function ν(χ) = Goldie rk (Bχ/J(ψ, θ)Bχ). ν is defined
on those χ for which (ψ, θ) is attached to χ. By corollary 7.4.3 ν(χ) is the number
of connected components of Sψ,θ (which depends on χ). Using this fact one can
easily compute ν for ψ1, . . . , ψ12. We do not list the results since they are not very
illuminating. Let us suffice by saying that we obtain polynomials of degree 0 for
ψ0, of degree 1 for ψ1, ψ7 and of degree 2 for the other ψ’s. The relation with the
GK-dimension of Bχ/J(ψ) is clear.

The fact that we obtain polynomials is a feature of this example and does not
hold in general. However by suitably extending the notion of degree it is possible
to generalize the connection with GK dimension.

Table 11.1 lists the χ’s that are attached to the various ψi’s. This amounts to
verifying definition 7.2.1(5). Using the identification g∗ = k2, we have written χ as
a pair (χ1, χ2) ∈ k2. Inspection of this table reveals that it is natural to separate
the χ’s into five disjoint families, each closed under comparability.

(A) χ1 6∈ Z, χ2 6∈ Z, χ1 + χ2 6∈ Z.
(B) χ1 ∈ Z, χ 6∈ Z2.
(C) χ2 ∈ Z, χ 6∈ Z2.
(D) χ1 + χ2 ∈ Z, χ 6∈ Z2.
(E) χ ∈ Z2
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ψ χ
0 no condition
1 χ2 ∈ N
2 χ ∈ N(1, 0) + N(−1, 1)
3 χ1 + χ2 ∈ N, χ 6∈ Z2

4 χ ∈ (1,−1) + N(0, 1) + N(1,−1)
5 χ1 ∈ 1 + N, χ 6∈ Z2

6 χ ∈ (1,−2) + N(1, 0) + N(0,−1)
7 χ2 ∈ −2− N
8 (−1,−2) + N(−1, 0) + N(1,−1)
9 χ1 + χ2 ∈ −3− N, χ 6∈ Z2

10 χ ∈ (−2,−1) + N(−1, 1) + N(0,−1)
11 χ1 ∈ −2− N, χ 6∈ Z2

12 χ ∈ (−2, 0) + N(−1, 0) + N(0, 1)

Table 11.1. The χ’s attached to a given ψ

We will analyze these families separately. Let us first recapitulate some of the facts
we will need. The injective dimension of Bχ is given by the following formula

(11.4) inj dimBχ = 4− 1
2

min
ψ att. to χ

GKdimBχ/J(ψ)

which follows by combining Theorem 8.4.1(3) with corollary 8.2.2. Note hereby
that GKdimBχ/J(ψ) was already given in (11.3). Recall also that inj dimBχ =
gl dimBχ if the latter is finite (lemma 9.1.2). By Theorem 9.1.1 gl dimBχ is finite
iff χ is maximal.

Below Ξ will stand for an equivalence class for the comparability relation. We
recall that the →-relation on Ξ may be deduced from Proposition 7.7.1(3).

Family (A). In this case only ψ0 is attached to the elements of Ξ. So by Proposition
7.7.1(3) all Bχ for χ ∈ Ξ are Morita equivalent. In particular every χ ∈ Ξ is both
minimal and maximal and so Bχ is simple and has finite global dimension. By
(11.4) we obtain

gl dimBχ = 2

Family (B). Here ψ0, ψ5 and ψ11 are attached to members of Ξ. By restriction
from (11.3) we obtain for PΞ :

A
A
A

�
�
�r

r r
0

5 11

The behavior of the Bχ for χ ∈ Ξ may be graphically represented as follows :
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r r

global dimension
arrow relation

primitive ideals

4 ∞ 4

- �

-2 1

r
r

0

11

r 0 r
r

0

5

χ1(∈ Z)

(Bχ simple)

Note that this picture is very similar to the situation for a one dimensional torus
(see [28]).

Family (C). Now φ0, φ1 and ψ7 are attached to members of Ξ. By restriction
from (11.3) we obtain PΞ :

A
A
A

�
�
�r

r r
0

1 7

The behavior of the Bχ for χ ∈ Ξ may be graphically represented as follows :r r

global dimension
arrow relation

primitive ideals

2 ∞ 2

- �

-2 0

r
r

0

7

r 0 r
r

0

1

χ2(∈ Z)

(Bχ simple)

Family (D). Now φ0, φ3 and ψ9 are attached to members of Ξ. By restriction
from (11.3) we obtain PΞ :

A
A
A

�
�
�r

r r
0

3 9

The behavior of the Bχ for χ ∈ Ξ may be graphically represented as follows :r r

global dimension
arrow relation

primitive ideals

4 ∞ 4

- �

-3 0

r
r

0

9

r 0 r
r

0

3

χ1 + χ2(∈ Z)

(Bχ simple)
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0,7

0

0,7,8,10

0,10

0,1,10,12

0,1,12

0,1

0,1,2,12

0,1,2

Figure 11.2. The ψ’s attached to a given χ.

Family (E). This is the most interesting case. Now we have for PΞ

c
c

cc

#
#
##

C
C
C
C
C
C

�
�
�
�
�
�

c
c

cc

C
C
C

�
�
�

#
#
##

r r r r r r
r r

r

2 12 4 10 6 8

1 7

0
The ψ’s that are attached to the various χ’s are represented graphically in Fig-
ure 11.2. We deduce that there are fifteen distinct equivalence classes in Ξ. Their
lattices of primitive ideals together with the →-relation are given in Figure 11.3.



RINGS OF INVARIANT DIFFERENTIAL OPERATORS 83

The Bχ’s corresponding to fat dots have finite global dimension. The central Bχ is
simple. The Bχ’s on the exterior have injective dimension 4. The central one has
injective dimension 2 and the intermediate ones have injective dimension 3.

To finish this example let us determine the category of finite dimensional repre-
sentations of Bχ, where χ belongs to one of the families we have defined. To this
end we recall the strategy that was exhibited in Section 10. First one determines,
with the help of Proposition 10.1.1, those Γ ⊂ V (g− χ(g)) for which O(1)

Γ contains
finite dimensional representations. Then for the individual Γ’s one uses Theorem
10.1.4. Recall that the first step in applying Theorem 10.1.4 consists in determining
the quiver Qpf . Since in our example one has dim g = 2 one can use Proposition
10.2.1 (or rather its proof) to obtain explicit results.

In our actual example we have already determined all the primitive ideals of
finite codimension in Bχ. Hence we also know all simple finite dimensional repre-
sentations. It turns out that, for a fixed χ, they all lie in a unique O(1)

Γ . If χ is in
family (B)(C) or (D) then for this Γ one has |T c| = 1 (notation : §10). Then as
in the proof of Proposition 10.2.1 one sees that the category of finite dimensional
Bχ-modules is semi-simple.

Assume now that χ is in family (E). Following again the strategy of the proof of
Proposition 10.2.1 we find that Qpf is given by the union of

r r r- -
� �ψ2 ψ4 ψ6

(oooo) (ooo-) (oo- -)

and r r r- -
� �ψ8 ψ10 ψ12

(- - - -) (- - -o) (- -oo)
In the indexation of the vertices we have written “-” for −1 and “o” for 0. We have
also indicated the corresponding ψ’s (see (10.2)). Invoking Theorem 10.1.4 we find
that in this case the quiver describing the finite dimensional representations of Bχ

is determined by the lattice of primitive ideals of Bχ. The correspondence is given
in Table 11.2. We see that we have a semi-simple category unless we are in case 2.
In that case Bχ has two simple finite dimensional representations, say L1, L2 and
two non-simple indecomposable modules which are respectively an extension of L1

by L2 and an extension of L2 by L1.
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Figure 11.3. The lattices of primitive ideals of the Bχ’s together
with the →-relation
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