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Abstract. In this paper we conjecture that the center of a non-commutative

complete regular local ring of global dimension two is a formal power series
ring in two variables. We prove this conjecture in the special case of Ore
extensions.

1. Introduction

Below k is a field. In this paper we will be concerned with rings of the form
C = k〈〈x, y〉〉/(r) where r only has term of total degree ≥ 2 and where the quadratic
part of r is non-degenerate. Such rings have global dimension two [7] and it may
be argued that they are the non-commutative analogues of two-dimensional regular
local rings.

In this paper we propose the following conjecture:

Conjecture 1.1. Let C be as above. Then the center of C is either trivial, or else
it is a formal power series ring in two variables. If the quadratic part of r is of
the form yx − xy and the characteristic p of k is > 0 then Z(C) is generated by
elements of the form xpn

+ · · · and ypn

+ · · · for some n > 0.

In this paper we will provide some evidence for this conjecture by proving it in
the case that C is given by an Ore extension C = B[[y;σ, δ]] where B is k[[x]], σ is
a k-linear automorphism of B and δ is a k-linear σ-derivation of B. Thus δ satisfies
δ(ab) = σ(a)δ(b) + δ(a)b and C is obtained from B by adjoining the variable y
subject to the commutation rule

(1.1) y b = σ(b)y + δ(b)

In other words C = k〈〈x, y〉〉/(r) where r is given by yx − σ(x)y − δ(x). Thus for
r to have only terms of degree ≥ 2 it is necessary that δ(x) contains only terms of
degree ≥ 2. We assume this throughout.

We will prove the following theorem:

Theorem 1.2. If C is an Ore extension as above then Conjecture 1.1 holds.

Our treatment of the case where σ is trivial relied originally on the following
combinatorial result by G. Baron and A. Schinzel in [1].

Proposition 1.3. For any prime p and any residues xi mod p, we have:
∑

σ∈Sp−1

xσ(1)(xσ(1) + xσ(2)) . . . (xσ(1) + . . .+ xσ(p−1))

≡ (x1 + · · · + xp−1)
p−1 (mod p)
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where Sp−1 is the group of all permutations σ of {1, . . . , p− 1}.

Afterwards we discovered a new approach which is independent of the above
result. It turns out that we can now even give a new proof of the result by G. Baron
and A. Schinzel. This proof is produced in the final section of this paper. Whereas
the proof in [1] is rather technical, our proof is straightforward and relies on general
computations with derivations.

2. Outline

In this section we outline our strategy for proving Theorem 1.2. First we dispense
with some trivial cases. If σ is trivial and δ = id then there is nothing to prove. In
addition it is easy to prove that in the following cases the center of C is trivial.

(1) σ is trivial, δ is not trivial and p = 0.
(2) The order of σ is infinite.

In subsequent sections we deal with the remaining cases. In Section 3 we discuss
the case where σ is the identity and p > 0. In Section 4 we focus on the case where
δ is trivial and σ is not trivial but has finite order. Finally in Section 5 we deal
with the case where both σ and δ are non-trivial and σ has finite order. In this last
case our approach is somewhat indirect and we do not obtain nice expressions for
the elements generating the center.

3. The case where σ is the identity and p > 0

It follows from (1.1) that in this case the commutation relation between y and
x is given by

(3.1) y x = x y + δ(x)

In this case we prove that Z(C) equals k[[z, w]], where z = xp and

w = yp − cp(x) y, with cp(x) =
∂

∂x

(

∂

∂x

(

. . .

(

∂ δ(x)

∂x
· δ(x)

)

. . . · δ(x)

)

· δ(x)

)

,

in which
∂

∂x
and δ(x) occur (p− 1) times.

It is obvious that [x, z] = 0, Furthermore from

[y, z] =
∑

a+b=p−1,a,b≥0

xaδ(x)xb = pδ(x)xp−1 = 0

we deduce that z also commutes with y. Hence z is in the center of C.
To prove that w is in the center of C we use the following key-lemma. This

lemma will also be used in the new proof of Proposition 1.3.

Lemma 3.1. Let f ∈ B, and let g be the element
∂

∂x

(

∂

∂x

(

. . .

(

∂ f

∂x
· f

)

. . . · f

)

· f

)

of B, where both
∂

∂x
and f occur (p− 1) times. Then

∂ g

∂x
= 0.

Proof. Without loss of generality we may assume that f 6= 0. Define the derivation

d of B by d(b) : =
∂b

∂x
· f , and consider the differential operator e = dp − g · d on

B. Since the pth power of a derivation is also a derivation, it follows that e is also
a derivation.
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If we evaluate e in x, we get e(x) = dp(x) − g · d(x) = dp−1(f) − g · f =

dp−2

(

∂ f

∂x
· f

)

− g · f = . . . = f ·
∂

∂x

(

∂

∂x

(

. . .

(

∂ f

∂x
· f

)

. . . · f

)

· f

)

− g · f =

f · g − g · f = 0 and so e is identically zero on B.
In particular e commutes with d. Computing with operators, we find 0 = [d, e] =

[d, dp − g · d] = dg · d. Evaluating at x and using the fact that f 6= 0, this yields
∂ g

∂x
= 0. �

Let yl, respectively yr be left, respectively right multiplication by y on B. Be-

cause yl and yr commute, we see that [y,−]p =

p
∑

i=0

(

p
i

)

yi
l (−yr)

p−i = yp
l − yp

r =

[yp,−]. It follows that we have [yp, x] = [y, [y, . . . , [y, δ(x)] . . .]] ((p − 1) times y)

and by repeatedly using the fact that [y, f(x)] =
∂ f(x)

∂x
[y, x] =

∂ f(x)

∂x
· δ(x), for

all f(x) ∈ B, we deduce, for f(x) = δ(x), [yp, x] = cp(x) [y, x].
It follows that w commutes with x. Let us prove that it also commutes with y.

[y, w] = [y, cp(x)] y =
∂ cp(x)

∂x
[y, x] y and applying Lemma 3.1 with f = δ(x) ∈ B,

we deduce [y, w] = 0. So we obtain k[[z, w]] ⊂ Z(C).
Let Q(Z(C)) and Q(C) be respectively the quotientfields of Z(C) and C. Since

{xayb | 0 ≤ a, b ≤ p−1} is a basis of C over k[[z, w]], we see that C is free of rank p2

over k[[z, w]]. This implies that p2 = dimk((z,w))Q(Z(C)) · dimQ(Z(C))Q(C), so

dimQ(Z(C))Q(C) ∈ {1, p, p2}. Since C is not commutative and dimQ(Z(C))Q(C)

is a square according to [3], it follows that dimQ(Z(C))Q(C) = p2 and furthermore
that Z(C) and k[[z, w]] have the same quotientfield.

As indicated above C is free of rank p2 over k[[z, w]]. In particular C is finitely
generated as a module over k[[z, w]]. It follows that Z(C) is also finitely generated
as a module over k[[z, w]] and thus Z(C) is integral over k[[z, w]]. Since k[[z, w]] is
integrally closed, it follows that Z(C) = k[[z, w]].

So in order to complete the proof Conjecture 1.1 in this special case, we have to
show that if v(δ(x)) ≥ 3 then v(cp(x)) > p− 1, where v is the x-adic valuation on

B. Therefore, let cr(x) be equal to
∂

∂x

(

∂

∂x

(

. . .

(

∂ δ(x)

∂x
· δ(x)

)

. . . · δ(x)

)

· δ(x)

)

in which
∂

∂x
and δ(x) occur (r − 1) times and this for all r ≥ 2.

We prove by induction that v(cr(x)) ≥ 2(r − 1).

Since v(δ(x)) ≥ 3, v(c2(x)) = v

(

∂ δ(x)

∂x

)

≥ 2, so we get by induction that

v(cr(x)) = v

(

∂

∂x
(cr−1(x) · δ(x))

)

= v(cr−1(x)) + v(δ(x))− 1 ≥ 2(r−2) + 3− 1 =

2(r − 1). So v(cp(x)) ≥ 2(p− 1) > p− 1.

4. The case where δ = 0 and σ is not trivial but has finite order

In this case the commutation relation between y and x is given by:

(4.1) y x = σ(x) y
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We will denote the order of σ by n and put A = Bσ. Let K, L be the
quotientfields of A, B respectively. We prove that Z(C) = k[[z, yn]], where
z = xσ(x) . . . σn−1(x). Let us first discuss the structure of A.

Lemma 4.1. A = k[[z]], with z as above.

Proof. It is obvious that A is a complete discrete valuation ring and k is a copy of
its residue field. So A is a formal power series ring k[[u]], where u is a uniformizing
element. Being a uniformizing element, u must be of the form xe + higher terms,
where e is the ramification index.

Since K is complete under a discrete valuation, L is a finite extension of K and
the residue class degree equals 1, we conclude that e = [L : K] = n.

It is easy to see that σ(x) = ζ x+ higher terms, where ζ is an nth root of unity.
So z = xσ(x) . . . σn−1(x) is of the form ±xn + higher terms. Therefore z is also a
uniformizing element and furthermore A = k[[z]]. �

It is clear that A ⊂ Z(C) and that yn belongs to the center of C. We now look
at the other inclusion.

Let f be in Z(C). We can write f , in a unique way, in the form
∑

i≥0

ai y
i, where

ai ∈ B. Since f ∈ Z(C), we have (using (4.1)) 0 = [x, f ] =
∑

i≥0

ai (x − σi(x)) yi.

Hence, for all i ∈ N, if ai 6= 0, x = σi(x), so n divides i. On the other hand we

have 0 = [y, f ] =
∑

i≥0

(σ(ai) − ai) y
i+1, so σ(ai) = ai, for all i in N, which means

that ai ∈ A, for all i in N. Therefore f ∈ k[[z, yn]].
We have now proved that Z(C) is a formal power series ring in the two variables

z, w. The remaining claim of Conjecture 1.1 follows from the fact that if σ(x) is of
the form x+ · · · then

• If p = 0 and σ is non-trivial then its order is infinite (easily proved).
• If p > 0 and if the order of σ is finite then it is a power of p [6].

5. The case where σ and δ are non trivial and σ has finite order

Here we have the following commutationrelation between y and x :

(5.1) y x = σ(x) y + δ(x)

As before we denote the order of σ by n and we assume n 6= 1. We put A = Bσ

and we let K and L be respectevely the quotientfields of A and B. We extend the
action of σ and δ to L and we denote these extended maps also by σ and δ.

It was shown in Lemma 4.1, that A is the ring of power series over k in
z = xσ(x) . . . σn−1(x) ∈ B.

For convenience we will first work in the polynomial Öre extension S = B[y;σ, δ].
We prove:

Theorem 5.1. The center Z(S) of S is the ring of polynomials A[w], where w is
a monic (skew) polynomial of degree n in y with coefficients in B. In particular,
we find that S is free of rank n2 over Z(S).

The proof of this theorem depends on the following lemma:
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Lemma 5.2. Let D, D′ be central simple algebras of the same PI-degree with
centers Z, Z ′, respectively. Assume that D ⊆ D′. Then Z ⊆ Z ′ and furthermore
the map ϕ : D ⊗Z Z

′ → D′, defined by ϕ(d⊗ z′) := dz′, is an isomorphism.

Proof. Denote the PI-degree of D and D′ by m. The PI-degree of DZ ′ is equal
to m since we have inclusions D ⊆ DZ ′ ⊆ D′. From Z ′ ⊆ Z(DZ ′) ⊆ DZ ′ ⊆ D′

(where Z(DZ ′) is the center of DZ ′), we deduce that m2 = [DZ ′ : Z(DZ ′)] ≤
[DZ ′ : Z ′] ≤ [D′ : Z ′] = m2 ,so [DZ ′ : Z ′] = m2 = [D′ : Z ′]. This implies
DZ ′ = D′ and in particular Z ⊆ Z(DZ ′) = Z(D′) = Z ′.

We conclude that the ϕ : D⊗Z Z
′ → D′ is an epimorphism. Since D is a central

simple algebra, the same holds for D⊗Z Z
′. Thus D⊗Z Z

′ is simple and it follows
that ϕ must be an isomorphism. �

Proof of Theorem 5.1. Working out the identity δ(x · f) = δ(f · x), for all f ∈ B,
we deduce:

(5.2) δ(f) =
σ(f) − f

σ(x) − x
· δ(x)

This implies immediately that, if f ∈ A, then δ(f) = 0, in other words, the
polynomial ring R = A[y] is a commutative subring of S.
Now consider S as right R-module. The rank of S over R is n, since B = k[[x]] is
free of rank n over A = k[[z]] = k[[xn + higher terms]].
Left multiplication yields an injective ringhomomorphism:

(5.3) S →֒ EndR(SR)

So S satisfies a polynomial identity because S is isomorphic to a subring of the
matrix ring Mn(R), which is a PI-ring since R is commutative. This implies also
that the PI-degree of S is less or equal to the PI-degree of Mn(R) which is n.
We claim that it is exactly n. To see this, filter S by y degree and denote the
associated graded ring by grS. Since grS = B[y;σ], we see that grS is a domain
and furthermore Z(grS) = A[yn] by Section 3. So grS is a prime ring of rank n2

over its center which implies that its PI-degree is equal to n. Since the PI-degree
of S ≥ PI-degree of grS, it now follows that the PI-degree of S is exactly n.

Let E be the quotientfield of S. As in (5.3) we have an inclusion:

(5.4) i : E →֒ EndK(y)(EK(y))

E is a central simple algebra of PI-degree n and so is EndK(y)(EK(y)). Hence (5.4)
induces, by Lemma 5.2, an isomorphism

(5.5) ϕ : E ⊗Z(E) K(y) →֒ EndK(y)(EK(y))

defined by ϕ(e⊗ f) = i(e) · f . This means that we can compute the characteristic
polynomial of each e ∈ E, in EndK(y)(EK(y)).

Since S is an Öre extension, it is also a maximal order by [4] and so it is closed
under taking coefficients of reduced characteristic polynomials. Using this obser-
vation we can now explicitly construct central elements in the center of S and the
one we are interested in, is the reduced norm of y.

By definition this reduced norm may be computed by taking the image of y in
EndK(y)(EK(y)) under (5.5), i.e. ϕ(y ⊗ 1) = i(y), where i(y) is left multiplication
by y, and then computing the determinant of i(y) in EndK(y)(EK(y)).
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To perform this computation we need a suitable basis for E /K(y). We pick a
normal basis {f, σ(f), . . . , σn−1(f)} for L/K, for some f ∈ L in [3]. This is still a
basis for E /K(y).

We now compute the matrix of i(y) explicitly. By (5.1) we get, for all 0 ≤ j ≤
n− 1, i(y)(σj(f)) = σj+1(f) · y + δ(σj(f)), and since {f, σ(f), . . . , σn−1(f)} is a

basis for L/K, i(y)(σj(f)) = σj+1(f) · y +

n−1
∑

i=0

σi(f) · aji, for certain aji ∈ K.

This means that the matrix of i(y) = D + Cy, where D = (aji) ∈Mn(K) and

C =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
1 0 0 . . . 0















the matrix of a cyclic permutation. Hence Nrd(y) = det(D + Cy) = (−1)n+1yn +
lower terms in y.

We now take w = (−1)n+1 Nrd(y). Clearly A[w] ⊂ Z(S). Since B is free of
rank n over A and w = yn + lower terms in y, S is free of rank n2 over A[w]. In
particular, Z(S) is integral over A[w]. Now because A[w] ⊂ Z(S) ⊂ S, we know
that K(w) ⊂ Q(Z(S)) ⊂ E, where Q(Z(S)) is the quotientfield of Z(S). Since
S is free of rank n2 over A[w] and E is a central simple algebra of PI-degree n,
the dimension of Q(Z(S)) over K(w) must be 1, so A[w] and Z(S) have the same
quotientfield.

The fact that A[w] is integrally closed and that Z(S) is integral over A[w] now
implies that A[w] = Z(S). �

In the next proposition we will obtain more information on the element w con-
structed in the above theorem. Let v be the x-adic valuation on B.

Proposition 5.3. Assume that v(δ(x)) = a.

If w = yn +

n−1
∑

i=0

fi(x) y
i, then for i > 0 we have v(fi) ≥ (a−1)(n−i). Furthermore

there exists an element q0(z) ∈ k[[z]] such that v(f0 + q0(z)) ≥ (a− 1)n.

In the proof of this proposition we need the result of the following lemma:

Lemma 5.4. If f ∈ B, then v

(

σ(f) − f

σ(x) − x

)

≥ v(f) − 1.

Proof. Put r = v(f).

Case 1. r ≥ 1

Put h = σ(x)− x, then we get
σ(f) − f

σ(x) − x
=

f(σ(x)) − f(x)

σ(x) − x
=

f(x+ h) − f(x)

h
.

Since f(x) =
+∞
∑

i=r

aix
i, for certain ai ∈ k with ar 6= 0, it is easy to see that

f(x+ h) − f(x)

h
=

+∞
∑

i=0





+∞
∑

j=r

ajψi,jh
j−i−1



xi
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where ψij =

{

0 if i ≥ j
j!

i!(j−i)! if i < j
.

So v

(

σ(f) − f

σ(x) − x

)

= v

(

f(x+ h) − f(x)

h

)

≥ min
i

((r − i − 1)v(h) + i) ≥ r − 1

since v(h) ≥ v(x) ≥ 1.

Case 2. r = 0.

In this case we get that f(x) =

+∞
∑

i=0

aix
i, for certain ai ∈ k with a0 6= 0. Since σ is an

automorphism which is also k-linear, it follows that v

(

σ(f) − f

σ(x) − x

)

= v

(

σ(g) − g

σ(x) − x

)

,

where g =

+∞
∑

i=1

aix
i. Since v(g) ≥ 1, we get by applying Case 1, v

(

σ(f) − f

σ(x) − x

)

≥

v(g) − 1 ≥ 0 ≥ v(f) − 1. �

We return now to the proof of Proposition 5.3.

Proof of Proposition 5.3. Put y = x−a+1y. If we multiply (5.1) on the left with
x−a+1, we obtain

(5.6) y x = σ(x) y + x−a+1 δ(x)

Consider the ring S = B[y;σ, δ], where δ is the σ-derivation of B defined by
δ(b) = x−a+1 δ(b). We clearly have inclusions S ⊂ S ⊂ L[y;σ, δ].

Applying Theorem 5.1 to S, we find that S has a central element w of the form

(5.7) w = yn +

n−1
∑

i=0

gi(x)y
i

with gi(x) ∈ B. Verifying the commutationrelation of x−a+1 and y, we find

(5.8) y x−a+1 = σ(x−a+1) y + δ(x−a+1)

For all f ∈ B, we get by (5.2) and Lemma 5.4 that v(δ(f)) = v

(

σ(f) − f

σ(x) − x
· δ(x)

)

= v

(

σ(f) − f

σ(x) − x

)

+ v(δ(x)) ≥ v(f) − 1 + a.

In particular, it follows that δ(x−a+1) ∈ B.
Using (5.8), we can rewrite w in the following form

w = z−a+1yn + h0(x) +

n−1
∑

i=1

(x · σ(x) · . . . · σi−1(x))−a+1hi(x)y
i

where, for all 0 ≤ i ≤ n−1, we have hi(x) ∈ B and with z the element of A defined
in Section 4.

Multiplying w with za−1, we get the element

yn + za−1h0(x) +

n−1
∑

i=1

(σi(x) · . . . · σn−1(x))a−1hi(x)y
i

which we will denote by w′.
Let us write p0(x) for za−1h0(x) and pi(x) for (σi(x) · . . . ·σn−1(x))a−1hi(x), for

all 1 ≤ i ≤ n− 1. Since v(p0(x)) = (a− 1) v(z) + v(h0(x)) ≥ (a− 1)n ≥ 0 and, for
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all 1 ≤ i ≤ n−1, v(pi(x)) = (a−1)





n−1
∑

j=i

v(σj(x))



 + v(hi(x)) ≥ (a−1)(n−i) ≥ 0,

we see that w′ belongs to S. w′ is also a central element of S, so it follows that w′

is a central element of S. This means that w′ has to be of the form

(5.9) w′ =
∑

qi(z)w
i

since by Theorem 5.1, we know that Z(S) = A[w] = k[[z]][w].
By looking at the degree of y, we can reduce (5.9) to w′ = q0(z) + q1(z)w and

if we look at the coefficient of yn, we see that q1(z) = 1. Hence fi(x) = pi(x),
for all 1 ≤ i ≤ n − 1, which implies that v(fi(x)) ≥ (a − 1)(n − i). Furthermore
p0(x) = q0(z) + f0(x) which implies v(q0(z) + f0(x)) ≥ (a− 1)n. �

Corollary 5.5. Let C be the formal power series ring k[[x]][[y;σ, δ]], where v(δ(x)) ≥ 3.
Let n be the order of σ. Then the center of C is equal to k[[z, w]], where z =
xn + ϕ(x) and w = yn + θ(x, y) with ϕ, θ containing only terms in x, y of total
degree > n.

Proof. Let M ⊂ S be the twosided ideal generated by x, y. Clearly C is equal to
the M -adic completion of S. Let m be the maximal ideal of Z(S) generated by
z, w. It is easy to see that

M2N ⊂ mS ⊂M

maS ∩ Z(S) = ma

Thus the completion of Z(S) at the induced topology coincides with the completion
at the m-adic topology, which is k[[z, w]]. Since S ⊂ C the PI-degree of C is ≥ n.
On the other hand, using the properties of completion every identity in S vanishes
in C. So the PI-degree of C is exactly n. Since Z(C) ⊃ k[[z, w]], rkZ(C) C = n2 and
k[[z, w]] is integrally closed, we prove exactly as before that Z(C) = k[[z, w]]. �

To complete the proof of Theorem 1.2 we use the fact that in characteristic p > 0
the order of σ is a power of p [5].

6. A new proof of Proposition 1.3

Let k be a field of characteristic p > 1 and consider the field k(t1, . . . , tp−1),

where t1, . . . , tp−1 are variables. Let f =

p−1
∑

i=1

fi ti ∈ k(t1, . . . , tp−1)[x] be arbitrary.

Since k(t1, . . . , tp−1) is also a field of characteristic p it follows from Lemma 3.1
that f satisfies

(6.1)
∂2

∂x2

(

∂

∂x

(

. . .

(

∂ f

∂x
· f

)

. . . · f

)

· f

)

= 0

where
∂

∂x
occurs p times and f occurs (p− 1) times.
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It is clear that
∂ f

∂x
=

p−1
∑

i=1

∂ fi

∂x
· ti. Taking the coefficient of t1 · . . . · tp−1 in (6.1)

we get

∑

σ∈Sp−1

∂2

∂x2

(

∂

∂x

(

. . .

(

∂ fσ(1)

∂x
· fσ(2)

)

. . . · fσ(p−2)

)

· fσ(p−1

)

= 0

for all polynomials fi over a field k of characteristic p > 0.
Consider the following expression in the variables f1, . . . , fp−1:

(6.2)
∑

σ∈Sp−1

[

∂2

∂x2

(

∂

∂x

(

. . .

(

∂ fσ(1)

∂x
· fσ(2)

)

. . . · fσ(p−2)

)

· fσ(p−1)

)

−
∂p fσ(1)

∂xp
· fσ(2) · . . . · fσ(p−1)

]

(6.2) has the following properties:

(a) (6.2) = 0, if f1, . . . , fp−1 are polynomials over a field k of characteristic
p > 0.

(b) Over any field, we may rewrite (6.2) in the form

(6.3)
∑

0≤u1,...,up−1≤p−1

au1...up−1

∂u1 f1
∂xu1

· . . . ·
∂up−1 fp−1

∂xup−1

such that au1...up−1
∈ Z.

Using these properties we will prove that the coefficients of (6.3) are multiples
of p.

Define for q, n ∈ N the symbolic nth power q(n) of q as follows:

q(n) =

{

1 if n = 0
q (q − 1) . . . (q − n + 1) if n ≥ 1

Now let (qi)i=1,...,p−1 ∈ N be arbitrary and put fi = xqi . Then it is easy to see
that (6.3) equals

∑

u1,...,up−1

au1...up−1
q
(u1)
1 . . . q

(up−1)
p−1 xq1−u1 . . . xqp−1−up−1

Since (6.3) is zero in k by property (a) we deduce:

(6.4)
∑

u1,...,up−1

au1...up−1
q
(u1)
1 . . . q

(up−1)
p−1 = 0

in k.
Let X be the k-vectorspace of all functions h : kp−1 → k. By [2]

{

xu1
1 . . . x

up−1

p−1 | for all 1 ≤ i ≤ p− 1, ui ≤ p− 1
}

is a basis for X. We may transform these ‘normal’ monomials into ‘symbolic’
monomials by a triangular matrix whose determinant is equal to 1. It follows that

{

x
(u1)
1 . . . x

(up−1)
p−1 | for all 1 ≤ i ≤ p− 1, ui ≤ p− 1

}

is also a basis for X.
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Since (6.4) holds for all q1, . . . , qp−1 ∈ N, this implies that

∑

u1,...,up−1

au1...up−1
x

(u1)
1 . . . x

(up−1)
p−1 = 0

in k. We conclude that the coefficients au1...up−1
are zero in k and hence they are

divisible by p, as elements of Z.
Let us look now at the difference of (6.2) and (6.3), i.e.

(6.5)
∑

σ∈Sp−1

[

∂2

∂x2

(

∂

∂x

(

. . .

(

∂ fσ(1)

∂x
· fσ(2)

)

. . . · fσ(p−2)

)

· fσ(p−1)

)

−
∂p fσ(1)

∂xp
· fσ(2) · . . . · fσ(p−1)

]

−
∑

u1,...,up−1

au1...up−1

∂u1 f1
∂xu1

· . . . ·
∂up−1 fp−1

∂xup−1

By definition (6.5) is equal to zero over any field with a derivation. We will consider
(6.5) over the complex numbers C. Let (vi)i=1,...,p−1 ∈ C and put fi = evix. We
deduce that

∑

σ∈Sp−1

[

vσ(1) (vσ(1) + vσ(2)) . . . (vσ(1) + . . .+ vσ(p−1))
2 e(vσ(1) +...+ vσ(p−1)) x

− vp

σ(1) e
(vσ(1) +...+ vσ(p−1)) x

]

−
∑

u1,...,up−1

au1...up−1
vu1
1 . . . v

up−1

p−1 e(v1 +...+ vp−1) x = 0

If we divide this by e(v1 +...+ vp−1) x, we get, for all v1, . . . , vp−1 ∈ C

∑

σ∈Sp−1

( vσ(1) (vσ(1) + vσ(2)) . . . (vσ(1) + . . .+ vσ(p−1))
2 − vp

σ(1) )

−
∑

u1,...,up−1

au1...up−1
vu1
1 . . . v

up−1

p−1 = 0

So the polynomial
∑

σ∈Sp−1

(xσ(1) (xσ(1) + xσ(2)) . . . (xσ(1) + . . .+ xσ(p−1))
2 − xp

σ(1) )

−
∑

u1,...,up−1

au1...up−1
xu1

1 . . . x
up−1

p−1

is identically zero.
If we reduce this modulo p, we deduce that




∑

σ∈Sp−1

xσ(1) (xσ(1) + xσ(2)) . . . (xσ(1) + . . .+ xσ(p−1))



 (x1 + . . .+ xp−1)

≡ xp
1 + . . .+ xp

p−1 ≡ (x1 + . . .+ xp−1)
p (mod p)

Hence Proposition 1.3 is proved.
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