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Abstract

In this paper we discuss some of the recent developments on derived
equivalences in algebraic geometry.
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1 Some background

In this paper we discuss some of the recent developments on derived equivalences
in algebraic geometry but we don’t intend to give any kind of comprehensive
survey. It is better to regard this paper as a set of pointers to some of the recent
literature.
To put the subject in context we start with some historical background. Derived
(and triangulated) categories were introduced by Verdier in his thesis (see [56])
in order to simplify homological algebra. From this point of view the role of
derived categories is purely technical.
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The first pure algebro-geometric derived equivalence seems to appear in [38]
where is it is shown that an abelian variety A and its dual Â are derived equiv-
alent. The equivalence resembles a Fourier-transform and is now known as a
“Fourier-Mukai” transform.
In [4] Beilinson showed that Pn is derived equivalent to a (non-commutative)
finite dimensional algebra. This explained earlier results by Barth and Hulek on
the relation between vector bundles and linear algebra. Beilinson’s result has
been generalized to other varieties and has evolved into the theory of exceptional
sequences (see for example [6]). The observation that derived equivalences do
not preserve commutativity is significant for non-commutative algebraic geom-
etry (see for example [22]).
Most algebraists probably became aware of the existence non-trivial derived
equivalences when Happel showed that “tilting” (as introduced by Brenner
and Butler [11]) leads to a derived equivalence between finite dimensional alge-
bras [25]. This was generalized by Rickard who worked out the Morita theory
for derived categories of rings [44, 45].
Hugely influential was the so-called homological mirror symmetry conjecture by
Kontsevich [33] which states (very roughly) that for two Calabi-Yau manifolds
X, Y in a mirror pair, the bounded derived category of coherent sheaves on X
is equivalent to a certain triangulated category (the Fukaya category) related to
the symplectic geometry of Y . The homological mirror symmetry conjecture was
recently proven by Seidel for quartic surfaces (which are the simplest Calabi-Yau
manifolds after elliptic curves) [49].

2 Notations and conventions

Throughout we work over the base field C. The bounded derived category of
coherent sheaves on a variety X is denoted by Db(X). Similarly, the bounded
derived category of finitely generated modules over an algebra A is denoted by
Db(A). The shift functor in the derived category is denoted by [1]. All functors
between triangulated categories are additive and exact (i.e. they commute with
shift and preserve distinguished triangles).
A sheaf is a coherent OX–module and a point in X is always a closed point. The
structure sheaf of a point x will be denoted by Ox. The canonical divisor of a
smooth projective variety is denoted by KX and the canonical sheaf is denoted
by ωX .

3 Basics on Fourier-Mukai transforms

Let X and Y be connected smooth projective varieties. We are interested in
equivalences of the derived categories Φ : Db(Y ) −→ Db(X). Such varieties X
and Y are also called Fourier-Mukai partners and the equivalence Φ is called
a Fourier-Mukai transform. In this section we will discuss some properties

2



which remain invariant under Fourier-Mukai transforms. The main technical
tool is Orlov’s theorem (see below) which states that any derived equivalence
Φ : Db(Y ) −→ Db(X) is coming from a complex on the product Y ×X.
Given Fourier-Mukai X, Y it is also interesting to precisely classify the Fourier-
Mukai transforms Db(Y ) −→ Db(X) (it is usually sufficient to consider X = Y ).
This is generally a much harder problem which has been solved in only a few
special cases, notably abelian varieties [41] and varieties with ample canonical
or anti-canonical divisor (see Theorem 4.4 below).

To start one has the following simple result.

Lemma 3.1 ([17, Lemma 2.1]). If X and Y are Fourier-Mukai partners,
then dim(X) = dim(Y ) and the canonical line bundles ωX and ωY have the
same order.

Proof. The proof is an exercise in the use of Serre functors [10]. The Serre
functor SX = −⊗ ωX [dim(X)] on X is uniquely characterized by the existence
of natural isomorphisms

HomDb(X)(E ,F) ∼= HomDb(X)(F , SXE)∗. (3.1)

By uniqueness it is clear that any Fourier-Mukai transform commutes with
Serre functors. Pick a point y ∈ Y and put E = Φ(Oy). The fact that
SY [−dim Y ](Oy) ∼= Oy yields SX [−dim Y ](E) ∼= E , or E ⊗X ωX [dim X −
dim Y ] ∼= E . Looking at the homology of E we see that this impossible if
dim Y 6= dim X. The statement about the orders of ωX and ωY follows by
considering the orders of the functors SX [−dim X] and SY [−dim Y ].

The following important result tells that any derived equivalence between Db(Y )
and Db(X) is obtained from an object on the product Y ×X.

Theorem 3.2 ([40]). Let Φ : Db(Y ) −→ Db(X) be a fully faithful functor.
Then there exists an object P in Db(Y × X), unique up to isomorphism, such
that Φ is isomorphic to the functor

ΦPY→X(−) := πX∗(P ⊗OY ×X
π∗Y (−)),

where πX and πY are the projection maps and πX∗, ⊗, and π∗Y are the appro-
priate derived functors.

In the original statement of this theorem Φ was required to have a right adjoint
but this condition is automatically fulfilled by [9, 10].

The object P in the theorem above is also called the kernel of the Fourier-Mukai
transform.

Remark 3.3. Theorem 3.2 is quite remarkable as for example its analogue for
affine varieties or finite dimensional algebras is unknown (except for hereditary
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algebras [36]). Projectivity is used in the proof in the following way: let L be an
ample line bundle on a projective variety X. Then for any coherent sheaf F on
X one has Homcoh(X)(F ,L−n) = 0 for large n. If X is for example affine then
OX is ample but this additional property does not hold.

It would seem useful to generalize Theorem 3.2 to singular varieties, in particular
those occurring in the minimal model program (see below). A first result in
this direction has been obtained by Kawamata [29] who proves the analogue of
Theorem 3.2 for orbifolds.

The real significance of Theorem 3.2 is that it makes it possible to define Φ
on objects functorially derived from X and Y . For example (see [18, 42]) let
ch′X(−) = chX(−).Td(X)1/2 (where chX(−) is the Chern character and Td(X)
is the Todd class of X). Using ch′Y×X(P) as kernel one finds a linear isomor-
phism of vector spaces

H∗(Φ) : H∗(Y, Q) −→ H∗(X, Q)

preserving parity of degree. Since the Chern character of P and the Todd class
on Y × X may have denominators the same result is not a priory true for
H∗(X, Z). However it is true for elliptic curves (trivial) and for abelian and
K3-surfaces [39].

Remark 3.4. In order to circumvent the non-preservation of integrality it may
be convenient to replace H∗(X, Z) by topological K-theory [28] K∗(X)top =
K0(X)top ⊕ K1(X)top which is the K-theory of complex vector bundles (not
necessarily holomorphic) on the underlying real manifold of X. Topological K-
theory is a cohomology theory satisfying the usual Eilenberg-Steenrod axioms
except the dimension axiom (which fixes the cohomology of a point). Since
K∗(−)top has the appropriate functoriality properties [28] one proves that Φ
induces an isomorphism

K∗(Φ)top : K∗(Y )top → K∗(X)top

It follows from the Atiyah-Hirzebruch spectral sequence that K∗(X)top is a
finitely generated Z/2Z graded abelian group such that the Chern-character

ch : K∗(X)top → H∗(X, Q)

induces an isomorphism [27, Eq (3.21)]

K∗(X)top ⊗Z Q ∼= H∗(X, Q)

In good cases the lattices given by K∗(X)top and H∗(X, Z) are the same. This
is for example the case for curves, K3 surfaces and abelian varieties.

By Riemann-Roch the following diagram is commutative

K0(Y )
K0(Φ)−−−−→ K0(X)ych′Y (−)

ych′X(−)

H∗(Y, Q)
H∗(Φ)−−−−→ H∗(X, Q)
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K0(X) is equipped with the so-called Euler form

e([E], [F ]) =
∑

i

(−)i dim HomDb(X)(E,F [i])

which is of course preserved by K0(Φ). The map ch′X(−) is compatible with
the Euler form up to sign provided one twist the standard bilinear form on
cohomology (obtained from Poincare duality) slightly [18]. More precisely put

v̌ = ideg ve−(1/2)KX v

and
〈v, w〉 = deg(v̌ ∪ w)

Then
e([E], [F ]) = −〈ch′X(E), ch′X(F )〉

The map Hi(Φ) is an isometry for 〈−,−〉.
The standard grading on H∗(X, C) is of course not preserved by a Fourier-Mukai
transform. However there is a different grading with is preserved. Define

nH∗(X, C) =
⊕

j−i=n

Hi,j(X)

where Hm(X, C) = ⊕i+j=mHi,j(X, C) = ⊕i+j=mHi(X, Ωj
X) is the Hodge de-

composition [24, §0.6]. It is classical that algebraic cycles lie in 0H∗(X, C). From
the fact that the kernel of H∗(Φ) is algebraic it follows that H∗(Φ) preserves
the ∗(−) grading.

As another application of functoriality note that if S is of finite type then there
is an equivalence

ΦS : Db(YS)→ Db(XS)

induced by PS (i.e. a Fourier-Mukai transform extends to families).

Example 3.5. Here we give an example of a Fourier-Mukai transform which is
very important for mirror-symmetry. Assume first that Z is a four dimensional
symplectic manifold and let i : S2 → Z be an embedding of a sphere as a
Lagrangian submanifold. Then there exists a symplectic automorphism τ of L
which is trivial outside a tubular neighborhood of S2 and which is the antipodal
map on S2 itself [50]. τ is called the symplectic Dehn twist of Z associated to i.
By the homological mirror symmetry conjecture there should be an analogous
notion for derived categories of varieties. This was worked out in [51]. It turns
out that the analogue of a Lagrangian sphere is a so-called spherical object. To
be more precise E ∈ Db(X) is spherical if Homi

Db(X)(E , E) is equal to C for
i = 0,dim X and is zero in all other degrees and if in addition E ∼= E ⊗ ωX .
Associated to a spherical object E ∈ Db(X) there is an auto-equivalence TE of
Db(X), informally defined by

TE(F) = cone
(
RHomDb(X)(E ,F)⊗C E

evaluation−−−−−−→ F
)
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The non-functoriality of cones leads to a slight technical problem with the nat-
urality of this definition. This would be a problem for abstract triangulated
categories but it can be rectified here using the fact that Db(X) (being a derived
category) is the H0-category of an exact DG-category.
It is easy to show that the kernel of TE is given by

cone
(
Ě � E φ−→ O∆

)
where Ě = RHomOX

(E ,OX), O∆ is the structure sheaf of the diagonal and φ is
the obvious map.
If X is a K3-surface then OX is spherical and the kernel of TOX

is given by
OX(−∆). Other examples of spherical objects are projective lines on smooth
surfaces with self intersection −2 and restrictions of exceptional objects to an-
ticanonical divisors. In particular this last construction yields spherical objects
on hypersurfaces of degree n + 1 in Pn.

It is convenient to have a criterion for a functor of the form ΦPY→X(−) :=
πX,∗(P ⊗ π∗Y (−)) to be an equivalence. The following result originally due to
Bondal and Orlov [6] and slightly amplified by Bridgeland [14, Theorem 1.1]
shows that we can use the skyscraper sheaves as test objects.

Theorem 3.6. Let P be an object in Db(Y × X). Then the functor Φ :=
ΦPY→X(−) : Db(Y ) −→ Db(X) is fully faithful if and only if the following con-
ditions hold

1. for each point y in Y

HomDb(X)(Φ(Oy),Φ(Oy)) = C

2. for each pair of points y1 and y2 and each integer i

Homi
Db(X)(Φ(Oy1),Φ(Oy2)) = 0 unless y1 = y2 and 0 ≤ i ≤ dim Y.

If these conditions hold then Φ is an equivalence if and only if Φ(Oy) ⊗ ωX
∼=

Φ(Oy) for all y ∈ Y .

Remark 3.7. Assume that P is an object in coh(Y ×X) flat over Y and write
Py = Φ(Oy). Then the previous theorem implies that Φ is fully faithful if and
only if

1. for each point y in Y

HomDb(X)(Py,Py) = C

2. for each pair of points y1 6= y2 and each integer i

Exti
OX

(Py1 ,Py2) = 0
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It is obvious that the conditions for Theorem 3.6 are necessary. Proving that
they are also sufficient is much harder. Since the proof in [6] only works for
equivalences between derived categories of coherent sheaves, we make explicit
some of the steps in Bridgeland’s proof (see [14]) which are valid for more general
triangulated categories.
Let A be a triangulated category. A subset Ω is called spanning if for each
object a in A each of the following conditions implies a = 0:

1. Homi(a, b) = 0 for all b ∈ Ω and all i ∈ Z,

2. Homi(b, a) = 0 for all b ∈ Ω and all i ∈ Z.

It is easy to see that the set of all skyscraper sheaves on a smooth projective
variety X is a spanning class for Db(X). Note that a spanning class will not
usually generate A in any reasonable sense.

Theorem 3.8 ([14, Theorem 2.3]). Let F : A −→ B be an exact functor be-
tween triangulated categories with left and right adjoint. Then F is fully faithful
if and only if there exists a spanning class Ω for A such that for all elements
a1, a2 in Ω, and all integers i, the homomorphism

F : Homi
A(a1, a2) −→ Homi

B(Fa1, Fa2)

is an isomorphism.

Recall that a category is called indecomposable if it is not the direct sum of two
non-trivial subcategories. The derived category Db(X) is indecomposable for
X connected. For a finite dimensional algebra A the derived category Db(A) is
connected precisely when A is connected.

Theorem 3.9 ([16, Theorem 2.3]). Let F : A → B be a fully faithful functor
between triangulated categories with Serre functors SA, SB (see (3.1)) possessing
a left adjoint. Suppose that A is non-trivial and B is indecomposable. Let Ω be
a spanning class for A and assume that FSA(ω) ∼= SBF (ω) for all ω ∈ Ω. Then
F is a equivalence of categories.

It follows from [9, 10] that ΦPY→X has both a right and a left adjoint. Explicit
formulas are for the left and the right adjoint are [14, Lemma 4.5]:

ΦP̌⊗π∗XωX [dim X]
X→Y (−) and ΦP̌⊗π∗Y ωY [dim Y ]

X→Y (−)

Applying Theorems 3.8,3.9 with F = ΦPY→X and Ω = {Oy | y ∈ Y } almost
proves Theorem 3.6 except that we seem to need additional information on
Homi

Db(X)(Φ(Oy),Φ(Oy)) for i > 0. It is not at all obvious but it turns out that
this extra information is unnecessary. Although it is not clear how to formalize
it, it seems that this part of the proof may generalize whenever Y is the solution
of some type of moduli problem in a triangulated category B (with P being the
universal family). See [15, 16, 54] for other manifestations of this principle.
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4 The reconstruction theorem

It is quite trivial to reconstruct X from the abelian category coh(X). For
example the points of X are in one-one correspondence with the objects in
coh(X) without proper subobjects. With a little more work one can also recover
the Zariski topology on X as well as the structure sheaf.
It is similarly of interest to know to which extent one can reconstruct a variety
from its derived category. The existence of non-isomorphic Fourier-Mukai part-
ners shows that this cannot be done in general, but it is possible if the canonical
sheaf or the anticanonical sheaf is ample.

Theorem 4.1 ([7, Theorem 2.5]). Let X be a smooth connected projective
variety with either ωX ample or ω−1

X ample. Assume Db(X) is equivalent to
Db(Y ). Then X is isomorphic to Y .

Proof. We give a proof based on Orlov’s theorem. Note that Y is also connected
since Db(Y ) ∼= Db(X) is connected.
Let Φ : Db(Y ) → Db(X) be the derived equivalence and let S be the Serre
functor −⊗ωX [dim X] on X. Recall that it is intrinsically defined by (3.1). We
say that E in Db(X) is a point object if

1. E ∼= S(E)[i] for some integer i,

2. Homi(E,E) = 0 for all i < 0, and

3. Hom(E,E) = C.

It is easy to prove that the only point objects in Db(X) (under the assumptions
on ωX) are the shifts of the skyscraper sheaves. The main point is 1., since
this condition and the ampleness of ω±1

X easily implies that E has finite length
cohomology.
It follows that Φ sends skyscraper sheaves to shifts of skyscraper sheaves. Then
the proof may then be finished using Corollary 4.3 below.

We need the following standard fact.

Proposition 4.2. Let Z → S be a flat morphism of schemes of finite type with
S connected. Let P ∈ D−(coh(Z)) and and assume that for all s ∈ S we have

that P
L
⊗OZ

π∗Os
∼= Oz[n] for some n ∈ Z, z ∈ Z. Then P ∼= i∗L[m] where

i : S → Z is a section of π, L ∈ Pic(S) and m ∈ Z.

Proof. We claim first that the support of the cohomology P is finite over S.
Assume that this is false and let Hi(P) be the highest cohomology group with
non-finite support. Then, up to finite length sheaves we have Hi(P)⊗OZ

π∗Os
∼=

Hi(P
L
⊗OZ

π∗Os). Hence Hi(P)⊗OZ
π∗Os has finite length for all s which is a

contradiction.
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It is now sufficient to prove that P0 = π∗(P) is a shifted line bundle given that

P0

L
⊗OS

Os has one-dimensional cohomology for all s.

Fix s ∈ S and assume P0

L
⊗OS

Os
∼= Os[n]. Using Nakayama’s lemma we deduce

that there is a neighborhood U of s such that Hi(P0 | U) = 0 for i > −n. We
temporarily replace S by U .

Applying −
L
⊗OS

Os to the triangle

τ≤−n−1P0 → P0 → H−n(P0)[n]→

we find H−n(P0)⊗OS
Os
∼= Os and TorOS

1 (H−n(P0),Os) = 0. Hence H−n(P)
is a line bundle on a neighborhood of s. Shrinking S further we may assume

P0
∼= τ≤−n−1P0 ⊕H−n(P0)[n] and hence τ≤−n−1P0

L
⊗OS

Os = 0. Shrinking S
once again we have τ≤−n−1P0 = 0 and thus P0

∼= H0(P0)[n] is a line bundle on
a neighborhood of s.
Since this works for any s and S is connected we easily deduce that P0 is itself
a shifted line bundle.

We deduce the following

Corollary 4.3. Assume that Φ : Db(Y )→ Db(X) is a Fourier-Mukai transform
between smooth connected projective varieties which sends skyscraper sheaves
to shifted skyscraper sheaves. Then Φ is of the form σ∗(− ⊗OX

L)[n] for an
isomorphism σ : Y → X, L ∈ Pic(Y ) and n ∈ Z.

Proof. By Proposition 4.2 the kernel of Φ must be of the form P = (1, σ∗)∗L[n]
for some map σ : Y → X. The resulting ΦPY→X = σ∗(−⊗OX

)[n] will be a
derived equivalence if and only if σ is an isomorphism.

One also obtains as a corollary the following result.

Theorem 4.4 ([7, Theorem 3.1]). Let X be a smooth connected projective
variety with ample canonical or anticanonical sheaf. Then the group of isomor-
phism classes of auto-equivalences of Db(X) is generated by the automorphisms
of X, the twists by line bundles and the translations.

Remark 4.5. It is clear that the notion of point object make sense for arbitrary
triangulated categories with Serre functor.
Let D be the bounded derived category of modules over a connected finite di-
mensional hereditary C–algebra A. Then point objects only exist for A tame
(or in the trivial case A ∼= C). In this case the point objects are the shifts of
quasi-simple modules in homogeneous tubes. Let A be not necessary hereditary
and we assume Db(A) is equivalent to Db(X) for some smooth projective variety
X. Then Db(A) has point objects. The situation is similar if we replace X by a
weighted projective variety. However, it is an open problem to construct algebras
A having (sufficiently many) point objects without knowing such an equivalence
between Db(A) and Db(X) for some (weighted) projective variety X.
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Note that there is a subtle point in the statement of Theorem 4.1. One does
not apriori require Y to have ample canonical or anti-canonical divisor. If we
preimpose this condition then Theorem 4.1 also follows from Theorem 4.6 below
which morally corresponds to the fact that derived equivalences commute with
Serre functors.

Theorem 4.6 ([42]). Let X be a smooth projective variety. Then the integers
dim Γ(X, ω⊗m

X ) as well as the the canonical and anti-canonical rings are derived
invariants.

Assume that X is connected. For a Cartier divisor D denote by R(X, D) the
ring

R(X, D) =
⊕
n≥0

Γ(X,OX(nD))

and by K(X, D) the part of degree zero of the graded quotient field of R(X, D).
We have K(X, D) ⊂ K(X) where K(X) is the function field of X. By [53,
Prop 5.7] K(X, D) is algebraically closed in K(X). If some positive multiple
of D is effective then the D-Kodaira dimension κ(X, D) of K(X, D) is the
transcendence degree of K(X, D), otherwise we set k(X, D) = −∞. It is clear
that we have

κ(X, D) ≤ dim X

and in case of equality we have K(X) = K(X, D).
The Kodaira dimension κ(X) of X is κ(X, KX). X is of general type if κ(X, KX) =
dim X.

Corollary 4.7 ([30, Theorem 2.3]). The Kodaira dimension is invariant
under Fourier-Mukai transforms. If X is of general type then any Fourier-
Mukai partner of X is birational to X.

Proof. This follows directly from Theorem 4.6 and the preceding discussion.

5 Curves and surfaces

In this section we consider Fourier-Mukai transforms for smooth projective
curves and smooth projective surfaces. For curves the situation is rather trivial:
only elliptic curves admit non-trivial Fourier-Mukai transforms Db(C) ∼= Db(D),
and in that case the curves C and D must be isomorphic. The group of auto-
equivalences of Db(C) is generated by the trivial ones and the classical Fourier-
Mukai transform (which is almost the same as the auto-equivalence associated
to the spherical object OE).
For surfaces the situation is more complicated and is worked out in detail in
[17]. The classification of possible non-trivial Fourier-Mukai transforms is based
on the classification of complex surfaces (see [2, page 188]). This classification
is summarized in Table 1.
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Class of X κ(X) nX b1(X) c2
1 c2

1) minimal rational
surfaces −∞ 0 8, 9 4, 3
3) ruled surfaces
of genus g ≥ 1 −∞ 2g 8(1− g) 4(1− g)

4)Enriques surfaces 0 2 0 0 12
5) hyperelliptic surfaces 0 2, 3, 4, 6 2 0 0
7) K3-surfaces 0 1 0 0 24
8) tori 0 1 4 0 0
9) minimal properly
elliptic surfaces 1 0 ≥ 0
10) minimal surfaces
of general type 2 ≡ 0 mod 2 2 > 0 > 0

Table 1. Classification of algebraic smooth complex surfaces

Let us start with the case of curves. Let C be a smooth projective curve and
denote by gC the genus of C. According to the degree of the canonical divisor
KC there are three distinct classes:

1. KC < 0: C is the projective line P1(C) and gC = 0,

2. KC = 0: C is an elliptic curve and gC = 1,

3. KC > 0: C is a curve of general type and gC > 1.

Using the reconstruction theorems 4.1 and 4.4 it is obvious that non-trivial
Fourier-Mukai transforms can only exist for elliptic curves since K−1

C is ample
in case 1. and KC is ample in case 3..
We will now look in somewhat more detail at the interesting case of elliptic
curves. Note that if C, D are abelian varieties then it is known precisely when C
and D are derived equivalent and furthermore the group Aut(Db(C)) consisting
of auto-equivalences ofDb(C) (up to isomorphism) is also completely understood
[41]. Here we give an elementary account of the one-dimensional case. This is
well-known and was explained to us by Tom Bridgeland. First we have the
following result.

Theorem 5.1. If C, D are derived equivalent elliptic curves then C ∼= D.

Proof. By the discussion in §3 the Hodge structures on H1(C, C) and H1(D, C)
are isomorphic. Since the isomorphism class of an elliptic curve is encoded in
its Hodge structure on H1(−, C) we are done.

Determining the structure of Aut(Db(C)) requires slightly more work. For an
elliptic curve C let eC be the Euler form on K0(C). By Serre duality eC is skew
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symmetric. Put N (C) = K0(C)/ rad eC
∼= Z2. eC defines a non-degenerate

skew symmetric form (i.e. a symplectic form) on N (C) which we denote by the
same symbol.
N (C) has a canonical basis given by v1 = [OC ], v2 = [Ox] (x ∈ C arbitrary).
The matrix of eC(vi, vj)ij with respect to this basis is(

0 1
−1 0

)
With respect to the standard basis the group of symplectic automorphisms of
N (C) may be identified with Sl2(Z).
Let T1, T2 be the auto-equivalences of C associated to the spherical objects OC

and Ox. It is not hard to see that T2 = −⊗OC
OC(x) so only T1 is a non-trivial

Fourier-Mukai transform.
One computes that with respect to the standard basis the action of T1, T2 on
N (C) is given by matrices

T1 =
(

1 −1
0 1

)
T2 =

(
1 0
1 1

)
These matrices are standard generators for Sl2(Z) which satisfy the braid rela-
tion

T1T2T1 = T2T1T2 (5.1)

Remark 5.2. Since the objects OC , Ox form a so-called A2 configuration [51]
the relation (5.1) actually holds in Aut(Db(C)).

We have:

Theorem 5.3. Let Aut0(Db(C)) be the subgroup of Aut(Db(C)) consisting of
auto-equivalences of the form σ∗(−⊗OC

L)[n] where σ ∈ Aut(C), L ∈ Pic0(C)
and n ∈ 2Z. Then the symplectic action of Aut(Db(C)) on N (C) yields an
exact sequence

0→ Aut0(Db(C))→ Aut(Db(C))→ Sl2(Z)→ 0.

Proof. The existence of T1, T2 implies that the map Aut(Db(C)) → Sl2(Z) is
onto.
Assume that Φ ∈ Aut(D(C)) act trivially on N (C). It is easy to see that for an
object E ∈ Db(C) this implies

deg Φ(E) = deg E
rkΦ(E) = rk E

(5.2)

The abelian category coh(D) is hereditary and hence every object in Db(D)
is the direct sum of its cohomology. Since Φ(Oy) must be indecomposable we
deduce from (5.2) that Φ(Oy) is a twisted skyscraper sheaf.
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We find by Corollary 4.3 that Φ = σ∗(−⊗OC
L)[n]. The fact that Φ acts trivially

on N (C) implies degL = 0 and n is even.

Remark 5.4. Using similar arguments as above it is easy to see that the orbits
of the action Aut(Db(C)) on the indecomposable objects in Db(C) are indexed
by N \ {0}. The quotient map is given by

E 7→ gcd(rk(E),deg(E))

In particular any indecomposable vector bundle is in the orbit of an indecom-
posable finite length sheaf.

Remark 5.5. The situation for elliptic curves is very similar to the situation
for tubular algebras [46, 26], tubular canonical algebras, or tubular weighted
projective curves (weighted projective curves of genus one) [35]. We quickly
explain how these three categories Db(C) (C an elliptic curve), Db(X) (X a
tubular weighted projective curve) and Db(Λ) (Λ a tubular canonical algebra or
a tubular algebra) are related to each other. Any elliptic curve C admits a non-
trivial automorphism φ : C −→ C x 7→ −x. Let G ∼= Z/2Z, generated by φ.
The category of G-equivariant sheaves on C is isomorphic to the category of
coherent sheaves on a weighted projective line of type D̃4. For the remaining
types E6,7,8 we consider elliptic curves with complex multiplication of order 3,
4 or 6, respectively. Then an analogous result holds for those curves (see also
[48]).

Now we discuss the case of surfaces. In the rest of this section a surface will be
a smooth projective surface.
Remember that a surface X is called minimal if it does not contain an excep-
tional curve C (i.e. a smooth rational curve with self intersection −1). The
possible non-trivial Fourier-Mukai partners for minimal surfaces were classified
by Bridgeland and Maciocia in [17]. This classification is based on the classi-
fication of surfaces (see [2, page 188]) as summarized in Table 1 (we have only
listed the algebraic surfaces as these are the only ones of interest to us).
Table 1 is in terms of some standard invariants which we first describe. We have
already mentioned the Kodaira dimension κ(X). It is either −∞, 0, 1 or 2 and
divides the minimal surfaces into four classes. For an arbitrary surface X there
is always a map X → X0 to a minimal surface. If k(X) ≥ 0 then X0 depends
only on the birational equivalence class of X [2, Proposition (4.6)].
Further invariants are the first Betti number b1(X) = dim H1(X, C), the square
of the first Chern class c2

1(X) = K2
X and the second Chern class c2(X) (where

ci = ci(TX)). Finally, for surfaces of Kodaira dimension zero one also needs the
smallest natural number nX with nXKX = 0.
The invariants b1(X), c1(X)2, c2(X) contain exactly the same information as
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the (numeric) Hodge diamond of X:

1
q(X) q(X)

pg(X) h1,1(X) pg(X)
q(X) q(X)

1

where pg(X) is the geometric genus of X, q(X) is the Noether number of X and
hij(X) = dim Hij(X, C). One has

b1(X) = 2q(x)

c2(X) = 2 + 2pg(X)− 4q(X) + h1,1(X)
1
12

(c1(X)2 + c2(X)) = 1− q(x) + pg(X))

The second line is the Gauss-Bonnet formula [24, §3.3] which says that c2(X) is
equal to the Euler number

∑
i dim(−1)i dim Hi(X, C) of X. The third formula

is Noether’s formula. It follows from applying the Riemann-Roch theorem [2,
Thm I.(5.3)] to the structure sheaf.
For abelian and K3-surfaces the so-called transcendental lattice is of interest.
First note that H2(X, Z) is free. For abelian surfaces this is clear since they
are tori and for K3 surfaces it is [2, Prop VIII(3.2)]. The Neron-Severi lattice is
NX = H2(X, Z) ∩H1,1(X) and the transcendental lattice TX is the sublattice
of H2(X, Z) orthogonal to SX .

Theorem 5.6 ([17, Theorem 1.1]). Let X and Y be a non-isomorphic
smooth connected complex projective surfaces with equivalent derived categories
Db(X) and Db(Y ) such that X is minimal. Then either

1. X is a torus (an abelian surface, in class 8)) and Y is also a torus with
Hodge-isometric transcendental lattice,

2. X is a K3-surface (a surface in class 7)) and Y is also a K3-surface with
Hodge isometric transcendental lattice, or

3. X is an elliptic surface and Y is another elliptic surface obtained by taking
a relative Picard scheme of the elliptic fibration on X.

A Hodge isometry between transcendental lattices is an isometry under which
the one dimensional subspaces H0(X, ωX) and H0(Y, ωY ) of TX⊗RC and TY ⊗R
C correspond.

The proof of Theorem 5.6 is quite involved and uses case by case analysis quite
essentially. As a very rough indication of some of the methods one might use,
let us show that if X is minimal then so is Y and they are in the same class.
Along the way we will settle the easy case κ(X) = 2.
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Step 1: By Corollary 4.7 and the discussion in §3 X and Y have the same
Kodaira dimension and the same Hodge diamond. In particular they have the
same b1(−), c1(−)2 and c2(−). Hence if they are both minimal then they are
in the same class.
Step 2: Assume now that X is minimal and let Y → Y0 be a minimal model
of Y . We have b1(Y ) = b1(Y0) [2, Theorem I.(9.1)]. If κ(X) = −∞, 1, 2 then
the class of X is recognizable from b1(X) and hence Y0 must be in the same
class as X. If Y0 is not in class 1,10) then it follows from the classification
that c1(Y0)2 = c(X)2 and hence c1(Y0)2 = c1(Y )2. If Y0 is in class 10) then
by Corollary 4.7 we have X = Y0 and hence we also have c1(Y0)2 = c1(Y )2.
Since c1(−)2 changes by one under a blowup [2, Theorem I.(9.1)(vii)] it follows
in these cases that Y = Y0.
If Y0 is is in class 1) then in principle we could have c1(Y0)2 = 9, c1(Y )2 =
c1(X)2 = 8. But then in Y is the blowup of P2 in a point and hence is Del-
Pezzo. We conclude by the reconstruction theorem 4.1 that X = Y which is a
contradiction.
Step 3: If κ(X) = 0 then ωX has finite order and hence the same is true for Y
by Lemma 3.1. This is impossible if Y is not minimal.

Let us also say a bit more on the K3 and abelian case. Assume that X is a a K3
or abelian surface. Then according [39] the Chern character K0(X)→ H∗(X, Q)
takes it values in H∗(X, Z). As before let N (X) be K0(X) modulo the radical
of the Euler form. Since the intersection form on H∗(X, Z) is non-degenerate
it follows that N (X) is the image of K0(X) in H∗(X, Z). It is easy to see that
the orthogonal to N (X) is TX .
Now assume that X and Y are derived equivalent K3 or abelian surfaces. Again
by [39] the induced isometry between H∗(X, Q) and H∗(Y, Q) yields an isometry
between H∗(X, Z) and H∗(X, Z). By the above discussion there is an isometry
between TX and TY . This is a Hodge isometry since H0(X, ωX) = 2H∗(X, C).
The complete result for K3 or abelian surfaces is as follows.

Theorem 5.7 ([40], see also [17]). Let X and Y be a pair of either K3-
surfaces or abelian surfaces (tori) then the following statements are equivalent.

1. There exists a Fourier-Mukai transform Φ : Db(Y ) −→ Db(X).

2. There is an Hodge isometry φt : T (Y ) −→ T (X).

3. There is an Hodge isometry φ : H2∗(Y, Z) −→ H2∗(X, Z).

4. Y is isomorphic to a fine, two-dimensional moduli space of stable sheaves
on X.

The non minimal case is covered by the following result of Kawamata.

Theorem 5.8 ([30, Theorem 1.6]). Assume that X, Y are Fourier-Mukai
partners but with X not minimal. Then there are only a finite number of pos-
sibilities for Y (as in the minimal case). If X is not isomorphic to a relatively
minimal elliptic rational surface then X and Y are isomorphic.
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It remains to classify the auto-equivalences of the derived category Db(X) for
a surface X. Orlov solved this problem for an abelian surface [41] (and more
generally for abelian varieties). The most interesting open case is given by K3-
surfaces although here important progress has recently been made by Bridge-
land [12, 13]. For any X Bridgeland constructs a finite dimensional complex
manifold Stab(X) on which Aut(Db(X)) acts naturally. Roughly speaking the
points of Stab(X) correspond to t-structures on Db(X) together with extra data
defining Harder-Narasimhan filtrations on objects in the heart. The definition
of Stab(X) was directly inspired by work of Michael Douglas on stability in
string theory [21]. It seems very important to obtain a better understanding of
the space Stab(X).

6 Threefolds and higher dimensional varieties

If X is a projective smooth threefolds then just as in the surface case one would
like to find a unique smooth minimal X0 birationally equivalent to X. Unfor-
tunately it is well known that this is not possible so some modifications have
to be made. In particular one has to allow X0 to have some mild singularities,
and furthermore X0 will in general be far from unique.
Throughout all our varieties are projective. We say that X is minimal if X is
Q-Gorenstein and KX is numerically effective. I.e. for any curve C ⊂ X we
have KX · C ≥ 0.
A natural category to work in are varieties with terminal singularities. Recall
that a projective variety X has terminal singularities if it is Q-Gorenstein and for
a (any) resolution f : Z → X the discrepancy (Q-)divisor KZ − f∗KX contains
every exceptional divisor with strictly positive coefficients. If dim X ≤ 2 and
X has terminal singularities then X is smooth. So terminal singularities are
indeed very mild.
If X is a threefold with terminal singularities then there exists a map f : Z → X
which is an isomorphism in codimension one such that Z terminal, and Q-
factorial [32, Theorem 6.25]. Minimal threefolds with Q-factorial terminal sin-
gularities are the “end products” of the three dimensional minimal program.
Such minimal models are however not unique. One has the following classical
result by Kollar [31].

Theorem 6.1. Any birational map between minimal threefolds with Q-factorial
terminal singularities can be decomposed as a sequence of flops.

Recall that a flop is a birational map which factors as (f+)−1f

X

f
AA

A

  A
AA

// X+

f+
{{

{

}}{{
{

W
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where f , f+ are isomorphisms in codimension one such that KX and KX+ are
Q-trivial on the fibers of f and f+ respectively and such that there is a Q-
Cartier divisor D on X with the property that D is relatively ample for f and
−D is relatively ample for f+.

Example 6.2. The easiest (local) example of a flop is the Atiyah flop [43]: Let
W = Spec (C[x, y, z, u]/(xu − yz) be the affine cone over P1 × P1 associated to
the line bundle OP1×P1(1, 1). W has an isolated singularity in the origin which
may be resolved in two different ways X −→ W ←→ X+ by blowing up the
ideals (x, y) and (x, z). The varieties X and X+ are related by a flop.

How does one construct a minimal model? Assume that X has Q-factorial
terminal singularities such that KX is not numerically effective. The celebrated
cone theorem [19, 32] allows one to construct a map f : X →W with relatively
ample −KX such that one of the following properties holds [19, Thm (5.9)]

1. dim X > dim W and f is a Q-Fano fibration.

2. f is birational and contracts a divisor.

3. f is birational and contracts a subvariety of codimension ≥ 2.

Case 1. is what one would get by applying the cone theorem to P2. The result
would be the contraction P2 → pt. In the case of surfaces 2. corresponds to
blowing down exceptional curves. In general the result is again a variety with
terminal singularities and smaller Neron-Severi group. Case 3. represents an
new phenomenon which only occurs in dimension three and higher. In this case
W may be not be Q-Gorenstein so one is out of the category one wants to work
in. In order to continue at this point one introduces a new operation called a
flip. A flip is a birational map which factors as (f+)−1f

X

f
AA

A

  A
AA

// X+

f+
{{

{

}}{{
{

W

where f , f+ are isomorphisms in codimension one such that −KX is relatively
ample for f , KX is relatively ample for f+ and X+ again has Q-factorial termi-
nal singularities. The existence of three dimensional flips was settled by Mori
in [37]. In higher dimension it is still open.

Example 6.3. Let us give an easy example of a (higher dimensional) flip gener-
alizing Example 6.2. Let W be the affine cone over Pm×Pn (m ≤ n) associated
to the line bundle OPm×Pn(1, 1). W has two canonical resolutions, the first one
X being given as the total space of the vector bundle O(1)⊕n over Pm and the
second one X+ as the total space of the vector bundle O(1)⊕m over Pn. The
birational map X 99K X+ is a flip.
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Following (and slightly generalizing) [8] (see also [30]) let us say that a birational
map X 99K X+ between Q-Gorenstein varieties is a generalized flip if there is a
commutative diagram with X̃ smooth

X̃

π
���

�����
π+
BBB

  B
BB

X // X+

such that D = π∗KX − π+∗(KX+) is effective. If D = 0 then X 99K X+ is a
generalized flop.

Bondal and Orlov [8] state the following conjecture (see also [30]).

Conjecture 6.4. For any generalized flip X 99K X+ between smooth projective
varieties there is a full faithful functor Db(X+) → Db(X). This functor is an
equivalence for generalized flops.

One could think of this conjecture as the foundation for a “derived minimal
model” program.
As evidence of the fact that smooth projective varieties related by a generalized
flop are expected to have many properties in common we recall the following
very general result by Batyrev and Kontsevich.

Theorem 6.5. If X and X+ smooth varieties related by a generalized flop then
they have the same Hodge numbers.

Proof. (see [20]) If X and X+ are related by a generalized flop then they have the
same “stringy E-function”. Since X and X+ are smooth the stringy E-function
is equal to usual E-function which encodes the Hodge numbers.

Remark 6.6. The relation between Conjecture 6.4 and Theorem 6.5 seems
rather subtle. Indeed a non-trivial Fourier-Mukai transform does not usually
preserve cohomological degree and hence certainly does not preserve the Hodge
decomposition.

For non-smooth varieties Db(X) is probably not the correct object to consider. If
X is Q-Gorenstein then every point x ∈ X has some neighborhood Ux such that
on Ux there is some positive number mx with the property mxKx = 0. Then Kx

generates a cover Ũx of Ux on which Z/mZ is acting naturally. Gluing the local
quotient stacks Ũx/(Z/mZ) defines a Deligne-Mumford stack [34] X birationally
equivalent to X. As usual we write Db(X ) for Db(coh(X )). The following result
summarizes what is currently known in dimension three concering the categories
Db(X ).

Theorem 6.7. Let α : X 99K X+ be a generalized flop between threefolds with
Q-factorial terminal singularities.
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1. α is a composition of flops.

2. There is a corresponding equivalence Db(X )→ Db(X+).

In this generality this result was proved by Kawamata in [30]. The corresponding
result in the smooth case was first proved by Bridgeland in [15]. By 1) it is
sufficient to consider the case of flops. While trying to understand Bridgeland’s
proof the second author produced a mildly different proof of the result [55].
Some of the ingredients in this new proof were adapted to the case of stacks by
Kawamata.

Let us give some more comments on flips and flops. Flips and flops occur very
naturally in invariant theory [52] and toric geometry and, as a particular case,
for moduli spaces of thin sincere representations of quivers.

Batyrev’s construction of Calabi-Yau varieties [3] uses toric geometry, in par-
ticular toric Fano varieties. Those varieties correspond to reflexive polytopes.
Reflexive polytopes can also be constructed directly from quivers, however, this
class of reflexive polytopes is very small. For moduli spaces of thin sincere quiver
representations of dimension three all flips are actually flops.

Remark 6.8. The results above should have consequences for derived categories
of modules over finite dimensional algebras. However, no example is known of a
derived equivalence between a bounded derived category Db(A) of modules over
finite dimensional algebra A and Db(X), where X admits a flop. The “closest”
examples to such an equivalence are the fully faithful functors constructed in [1].
If one allows flips (instead of flops) such equivalences exist, one may find toric
varieties Y with a full strong exceptional sequence of line bundles. However, for
its counterpart W under the flip such sequences are not known. Strongly related
to this problem is a conjecture of A. King, that each smooth toric variety admits
a full strong exceptional sequence of line bundles, however, even the existence
of a full exceptional sequence of line bundles is an open problem.

7 Non-commutative rings in algebraic geometry

In the previous section we considered mainly Fourier-Mukai transforms between
algebraic varieties. There are also species of Fourier-Mukai transforms where one
of the partners is non-commutative. In this section we discuss some examples.
In contrast to the previous sections our algebraic varieties will not always be
projective.
Let f : X →W be a projective birational map between Gorenstein varieties. f
is said to be a crepant resolution if X̃ is smooth and if f∗ωW = ωX . A variant
of Conjecture 6.4 is the following:
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Conjecture 7.1. Assume that W has Gorenstein singularities and that we have
two crepant resolution.

X

f
AA

A

  A
AA

// X+

f+
{{

{

}}{{
{

W

Then X and X+ are derived equivalent.

We will now consider a mild non-commutative situation to which a similar
conjecture applies. Let G ⊂ Sln(C) be a finite group and put W = Cn/G.
Write Db

G(Cn) for the category of G equivariant coherent sheaves on Cn and let
X →W be a crepant resolution W .

Conjecture 7.2. Db(X) and Db
G(Cn) are derived equivalent.

If A is the skew group ring O(Cn)∗G then one may view A as a non-commutative
crepant resolution of Cn/G. Conjecture 7.2 may be reinterpreted as saying that
all commutative crepant resolutions are derived equivalent to a non-commutative
one. So in that sense it is an obvious generalization of Conjecture 7.1. A proper
definition of a non-commutative crepant resolution together with a suitably
generalized version of Conjecture 7.2 was given in [54]. An example where this
generalized conjecture applies is [23]. A similar but slightly different conjecture
is [8, Conjecture 5.1].

Conjecture 7.2 has now been proved in two cases. First let X be the irreducible
component of the G-Hilbert scheme of Cn containing the regular representation.
Then we have the celebrated BKR-theorem [16].

Theorem 7.3. Assume that dim X ≤ n + 1 (this holds in particular if n ≤ 3).
Then X is a crepant resolution of W and Db(X) is equivalent to Db

G(Cn).

Note that this theorem, besides establishing the expected derived equivalence,
also produces a specific crepant resolution of W . For n = 3 this was done earlier
by a case by case analysis (see [47] and the references therein).

Very recently the following result was proved.

Theorem 7.4. [5] Assume that G acts symplectically on Cn (for some arbitrary
linear symplectic form). Then Conjecture 7.2 is true.

Somewhat surprisingly this result is proved by reduction to characteristic p.

Let us now discuss a similar but related problem. For a given scheme X one
may want to find algebras A derived equivalent to X. One has the following
very general result.

Theorem 7.5 ([9]). Assume that X is separated. Then there exist a perfect
complex E such that D(Qcoh(X)) is equivalent to D(A) where A is the DG-
algebra RHomOX

(E,E).

20



Recall that a perfect complex is one which is locally quasi-isomorphic to a finite
complex of finite rank vector bundles.

In order to replace DG-algebras by real algebras let us say that a perfect complex
E ∈ D(Qcoh(X)) is classical tilting if it generates D(Qcoh(X)) (in the sense
that RHomOX

(E,U) = 0 implies U = 0) and Homi
OX

(E,E) = 0 for i 6= 0. One
has the following result.

Theorem 7.6. Assume that X is projective over a noetherian affine scheme
of finite type and assume E ∈ D(Qcoh(X)) is a classical tilting object. Put
A = EndOX

(E). Then

1. RHomOX
(E,−) induces an equivalence between D(Qcoh(X)) and D(A).

2. This equivalence restricts to an equivalence between Db(coh(X)) and Db(mod(A)).

3. If X is smooth then A has finite global dimension.

Proof. 1) is just a variant on Theorem 7.5. The inverse functor is −
L
⊗A E. To

prove 2) note that the perfect complexes are precisely the compact objects (see
[9, Theorem 3.1.1] for a very general version of this statement). Hence perfect

complexes are preserved under −
L
⊗A E. An object U has bounded cohomology

if and only for any perfect complex C one has Hom(C,U [n]) = 0 for |n| � 0.
Hence objects with bounded cohomology are preserved as well. Now let Z be an

object in Db(mod(A)). Then it easy to see that τ≥n(Z
L
⊗A E) is in Db(coh(X))

for any n. Since Z
L
⊗A E has bounded cohomology we are done. To prove 3)

note that for any U, V ∈ mod(A) we have Exti
A(U, V ) for i � 0. Since A has

finite type this implies that A has finite global dimension.

Classical tilting objects (and somewhat more generally: “exceptional collec-
tions”) exist for many classical types of varieties [6]. The following somewhat
abstract result was proved in [55].

Theorem 7.7. Assume that f : Y → X is a projective map between varieties,
with X affine such that Rf∗OY = OX and such that dim f−1(x) ≤ 1 for all
x ∈ X. Then Y has a classical tilting object.

This result was inspired by Bridgeland’s methods in [15]. It applies in particular
to resolutions of three-dimensional Gorenstein terminal singularities. It also has
a globalization if X is quasi-projective instead of affine.
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