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Abstract. The Hilbert scheme of n points in the projective plane has a nat-
ural stratification obtained from the associated Hilbert series. In general, the
precise inclusion relation between the closures of the strata is still unknown.

In [11] Guerimand studied this problem for strata whose Hilbert series are
as close as possible. Preimposing a certain technical condition he obtained
necessary and sufficient conditions for the incidence of such strata.

In this paper we present a new approach, based on deformation theory, to
Guerimand’s result. This allows us to show that the technical condition is not
necessary.
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1. Introduction and main result

Below k is an algebraically closed field of characteristic zero and A = k[x, y, z].
We will consider the Hilbert scheme Hilbn(P2) parametrizing zero-dimensional sub-
schemes of length n in P2. It is well known that this is a smooth connected projective
variety of dimension 2n.

Associated to X ∈ Hilbn(P2) there is an ideal IX ⊂ OP2 and a graded ideal
IX = ⊕nH0(P2, IX(n)) ⊂ A. The Hilbert function hX of X is the Hilbert function
of the graded ring A(X) = A/IX . Classically hX(m) is the number of conditions
for a curve of degree m to contain X. Clearly hX(m) = n for m� 0.

It seems Castelnuovo was the first to recognize the utility of the difference func-
tion (see [5])

sX(m) = hX(m)− hX(m− 1)
Thus sX(m) = 0 for m� 0. Knowing sX we can reconstruct hX .

It is known [5, 8, 10] that a function h is of the form hX for X ∈ Hilbn(P2) if
and only if h(m) = 0 for m < 0 and h(m) − h(m − 1) is a so-called Castelnuovo
function of weight n.

A Castelnuovo function [5] by definition has the form

(1.1) s(0) = 1, s(1) = 2, . . . , s(σ−1) = σ and s(σ−1) ≥ s(σ) ≥ s(σ+1) ≥ · · · ≥ 0.

for some integer σ ≥ 0, and the weight of s is the sum of its values.
It is convenient to visualize s using the graph of the staircase function

Fs : R → N : x 7→ s(bxc)
and to divide the area under this graph in unit squares. We will call the result a
Castelnuovo diagram which, if no confusion arises, we also refer to as sX .

In the sequel we identify a function f : Z → C with its generating function
f(t) =

∑
n f(n)tn. We refer to f(t) as a polynomial or a series depending on

whether the support of f is finite or not.

Example 1.1. s(t) = 1 + 2t+ 3t2 + 4t3 + 5t4 + 5t5 + 3t6 + 2t7 + t8 + t9 + t10 is a
Castelnuovo polynomial of weight 28. The corresponding diagram is

We refer to a series ϕ for which ϕ = hX for some X ∈ Hilbn(P2) as a Hilbert
function of degree n. The set of all Hilbert functions of degree n (or equivalently
the set of all Castelnuovo diagrams of weight n) will be denoted by Γn.

For ϕ,ψ ∈ Γn we have that ψ(t) − ϕ(t) is a polynomial, and we write ϕ ≤ ψ if
its coefficients are non-negative. In this way ≤ becomes a partial ordering on Γn
and we call the associated directed graph the Hilbert graph, also denoted by Γn.

If s, t ∈ Γn are Castelnuovo diagrams such that s ≤ t then it is easy to see that
t is obtained from s by making a number of squares “jump to the left” while, at
each step, preserving the Castelnuovo property.
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Example 1.2. There are two Castelnuovo diagrams of weight 3.

≤

These distinguish whether three points are collinear or not. The corresponding
Hilbert functions are 1, 2, 3, 3, 3, 3, . . . and 1, 3, 3, 3, 3, 3, . . ..

Remark 1.3. The number of Castelnuovo diagrams with weight n is equal to the
number of partitions of n with distinct parts (or equivalently the number of parti-
tions of n with odd parts) [7]. In loc. cit. there is a table of Castelnuovo diagrams
of weight up to 6 as well as some associated data. The Hilbert graph is rather
trivial for low values of n. The case n = 17 is more typical (see Appendix A).

Hilbert functions provide a natural stratification of the Hilbert scheme. For any
Hilbert function ψ of degree n one defines a smooth connected subscheme [7, 9] Hψ

of Hilbn(P2) by
Hψ = {X ∈ Hilbn(P2) | hX = ψ}.

The family {Hψ}ψ∈Γn forms a stratification of Hilbn(P2) in the sense that

Hψ ⊂
⋃
ϕ≤ψ

Hϕ

It follows that if Hϕ ⊂ Hψ then ϕ ≤ ψ. The converse implication is in general false
and it is still an open problem to find necessary and sufficient conditions for the
existence of an inclusion Hϕ ⊂ Hψ [2, 3, 4, 13]. This problem is sometimes referred
to as the incidence problem.

Guerimand in his PhD-thesis [11] introduced two additional necessary conditions
for incidence of strata which we now discuss.

(1.2) the dimension condition: dimHϕ < dimHψ

This criterion can be used effectively since there are formulas for dimHψ [7, 9].
The tangent function tϕ of a Hilbert function ϕ ∈ Γn is defined as the Hilbert

function of IX ⊗P2 TP2 , where X ∈ Hϕ is generic. Semi-continuity yields:

(1.3) the tangent condition: tϕ ≥ tψ

Again it is possible to compute tψ from ψ (see [11, Lemme 2.2.4] and also Propo-
sition 3.3.1 below).

Let us say that a pair of Hilbert functions (ϕ,ψ) of degree n has length zero if
ϕ < ψ and there are no Hilbert functions τ of degree n such that ϕ < τ < ψ.1 It is
easy to see (ϕ,ψ) has length zero if and only if the Castelnuovo diagram of ψ can
be obtained from that of ϕ by making a minimal movevement to the left of one
square [11, Proposition 2.1.7].

Example 1.4. Although in the following pair sψ is obtained from sϕ by moving
one square, it is not length zero since sϕ may be obtained from sψ by first doing
movement 1 and then 2.

1This is a minor deviation of Guerimand’s definition.



4 KOEN DE NAEGHEL AND MICHEL VAN DEN BERGH

ϕ ψ

1
2

In general a movement of a square by one column is always length zero. A
movement by more than one column is length zero if and only if it is of the form

(1.4)

The dotted lines represent zero or more squares.

The following theorem is the main result of this paper.

Theorem 1.5. Assume that (ϕ,ψ) has length zero. Then Hϕ ⊂ Hψ if and only if
the dimension condition and the tangent condition hold.

This result may be translated into a purely combinatorial (albeit technical) cri-
terion for the existence of an inclusion Hϕ ⊂ Hψ (see Appendix B).

Guerimand proved Theorem 1.5 under the additional hypothesis that (ϕ,ψ) is
not of “type zero”. A pair of Hilbert series (ϕ,ψ) has type zero if it is obtained by
moving the indicated square in the diagram below.2

The dotted lines represent zero or more squares.
From the results in Appendix B one immediately deduces

Proposition 1.6. Let ϕ,ψ be Hilbert functions of degree n such that (ϕ,ψ) has
type zero. Then Hϕ ⊂ Hψ.

Remark 1.7. The smallest, previously open, incidence problem of type zero seems
to be

2It is easy to see that this definition of type zero is equivalent to the one in [11].
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ϕ = 1, 3, 6, 10, 14, 15, 16, 17, 17, . . . ψ = 1, 3, 6, 10, 14, 16, 17, 17, . . .

(see [11, Exemple A.4.2]).

Remark 1.8. Theorem 1.5 if false without the condition of (ϕ,ψ) being of length
zero. See [11, Exemple A.2.1].

The authors became interested in the incidence problem while they were studying
the deformations of the Hilbert schemes of P2 which come from non-commutative
geometry, see [15, 6, 7].

It seems that the geometric methods of Guerimand do not apply in a non-
commutative context and therefore we developed an alternative approach to the
incidence problem based on deformation theory (see §2). In this approach the type
zero condition turned out to be unnecessary. For this reason we have decided to
write down our results first in a purely commutative setting. In a forthcoming
paper we will describe the corresponding non-commutative theory.

2. Outline of the proof of the main theorem

Here and in the rest of this papers we work in the graded category. Thus the
notations Hom, Ext etc. . . never have their ungraded meaning.

2.1. Generic Betti numbers. Let X ∈ Hilbn(P2). It is easy to see that the
graded ideal IX associated to X admits a minimal free resolution of the form

(2.1) 0 → ⊕iA(−i)bi → ⊕iA(−i)ai → IX → 0

where (ai), (bi) are sequences of non-negative integers which have finite support,
called the graded Betti numbers of IX (and X). They are related to the Hilbert
series of IX as

(2.2) hIX
(t) = hA(t)

∑
i

(ai − bi)ti =
∑
i(ai − bi)ti

(1− t)3

So the Betti numbers determine the Hilbert series of IX . For generic X (in a
stratum Hψ) the converse is true since in that case ai and bi are not both non-zero.
We will call such (ai)i, (bi)i generic Betti numbers.

2.2. Four sets of conditions. We fix a pair of Hilbert series (ϕ,ψ) of length zero.
Thus for the associated Castelnuovo functions we have

(2.3) sψ(t) = sϕ(t) + tu − tv+1

for some integers 0 < u ≤ v. To prove Theorem 1.5 we will show that 4 sets of
conditions on (ϕ,ψ) are equivalent.

Condition A. Hϕ ⊂ Hψ.

Condition B. The dimension and the tangent condition hold for (ϕ,ψ).
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Let (ai)i and (bi)i be the generic Betti numbers associated to ϕ. The next
technical condition restricts the values of the Betti numbers for i = u, u+ 1, v+ 2,
v + 3.

Condition C. au 6= 0, bv+3 6= 0 and

bu+1 ≤ au ≤ bu+1 + 1 and bv+3 = av+2

or if v = u+ 1
au = bu+1 + 1 and bv+3 = av+2 − 1

au = bu+1 + 1 and bv+3 = av+2 if v ≥ u+ 2

The last condition is of homological nature. Let I ⊂ A be a graded ideal corre-
sponding to a generic point of Hϕ. Put

Â =
(
A A
0 A

)
For an ideal J ⊂ I put

Ĵ =
(
J I

)
This is a right Â-module.

Condition D. There exists an ideal J ⊂ I, hJ(t) = ψ such that

dimk Ext1
Â
(Ĵ , Ĵ) < dimk Ext1A(J, J)

In the sequel we will verify the implications

A⇒ B ⇒ C ⇒ D ⇒ A

Here the implication A ⇒ B is clear and the implication B ⇒ C is purely combi-
natorial.

The implication C ⇒ D is based on the observation that I/J must be a so-called
truncated point module (see §4.1 below). This allows us to construct the projective
resolution of J from that of I and in this way we can compute dimk Ext1A(J, J). To
compute Ext1

Â
(Ĵ , Ĵ) we view it as the tangent space to the moduli-space of pairs

(J, I).

The implication D ⇒ A uses elementary deformation theory. Assume that
D holds. Starting from some ζ ∈ Ext1A(J, J) (which we view as a first order
deformation of J), not in the image of Ext1

Â
(Ĵ , Ĵ) we construct a one-parameter

family of ideals Jθ such that J0 = J and pdJθ = 1 for θ 6= 0. Since I and J = J0

have the same image in Hilbn(P2), this shows that Hϕ is indeed in the closure of
Hψ.

3. The implication B ⇒ C

In this section we translate the length zero condition, the dimension condition
and the tangent condition in terms of Betti numbers. As a result we obtain that
Condition B implies Condition C.

To make the connection between Betti numbers and Castelnuovo diagrams we
frequently use the identities

(3.1)
∑
i≤l

(ai − bi) = 1 + sl−1 − sl if l ≥ 0
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(3.2) al − bl = −sl + 2sl−1 − sl−2 if l > 0

Throughout we fix a pair of Hilbert functions (ϕ,ψ) of degree n and length zero
and we let s = sϕ, s̃ = sψ be the corresponding Castelnuovo diagrams. Thus we
have

(3.3) ψ(t) = ϕ(t) + tu + tu+1 + · · ·+ tv

and

(3.4) s̃ = s+ tu − tv+1

for some 0 < u ≤ v.
The corresponding generic Betti numbers (cfr §2.1) are written as (ai), (bi) resp.

(ãi), (b̃i). We also write

σ = min{i | si ≥ si+1} = min{i | ai > 0}
σ̃ = min{i | s̃i ≥ s̃i+1} = min{i | ãi > 0}

3.1. Translation of the length zero condition. The proof of the following result
is left to the reader.

Proposition 3.1.1. If v ≥ u+ 1 then we have

i . . . u u+ 1 u+ 2 . . . v + 1 v + 2 v + 3 . . .

ai . . . ∗ 0 0 . . . 0 ∗ ∗ . . .
bi . . . ∗ ∗ 0 . . . 0 0 ∗ . . .

where
au ≤ bu+1 + 1, av+2 > 0, bv+3 ≤ av+2.

This result is based on the identity (3.2). The zeroes among the Betti numbers
are caused by the “plateau” in s between the u’th and the v + 1’th column (see
(1.4)).

3.2. Translation of the dimension condition. The following result allows us
to compare the dimensions of the strata Hϕ and Hψ.

Proposition 3.2.1. One has

(3.5) dimHψ = dimHϕ +
v∑
i=u

(ai − bi)−
v+3∑
i=u+3

(ai − bi) + e

and
dimHψ = dimHϕ − su−2 + su−1 + su+1 − su+2

+ sv−1 − sv − sv+2 + sv+3 + e
(3.6)

where

e =

 −1 if v = u
1 if v = u+ 1
0 if v ≥ u+ 2

Proof. The proof uses only (3.4). One has the formula [7]

dimHϕ = 1 + n+ cϕ

where cϕ is the constant term of

fϕ(t) = (t−1 − t−2)sϕ(t−1)sϕ(t)
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We find

fψ(t) = (t−1 − t−2)sψ(t−1)sψ(t)

= (t−1 − t−2)(sϕ(t−1) + t−u − t−v−1)(sϕ(t) + tu − tv+1)

= (t−1 − t−2)
(∑

i

sit
−i + t−u − t−v−1

)(∑
j

sjt
j + tu − tv+1

)

= fϕ(t) + (t−1 − t−2)
(∑

i

sit
u−i −

∑
i

sit
v+1−i

+
∑
j

sjt
j−u −

∑
j

sjt
j−v−1 − tv+1−u − tu−v−1 + 2

)
Taking constant terms we obtain (3.6). Applying (3.1) finishes the proof. �

We obtain the following rather strong consequence of the dimension condition.

Corollary 3.2.2. If v ≥ u+ 2 then

dimHϕ < dimHψ ⇔ au = bu+1 + 1 and av+2 = bv+3

and if this is the case then we have in addition

dimHψ = dimHϕ + 1 and u = σ, au > 0 av+2 = bv+3 > 0

Proof. Due to Proposition 3.1.1 we have su+1 = su+2 and sv−1 = sv so (3.6)
becomes

dimHϕ < dimHψ ⇔ (su−2 − su−1) + (sv+2 − sv+3) < 0

We have that 1 ≤ σ ≤ u, which implies sv+2 ≥ sv+3, and either su−2 ≥ su−1 or
su−1 = su−2 + 1. From this it is easy to see that we have (su−2 − su−1) + (sv+2 −
sv+3) < 0 if and only if su−1 = su−2 + 1 and sv+2 = sv+3.

First assume that this is the case. Then it follows from (3.1) and Proposition
3.1.1 that σ = u hence au > 0, bu = 0. Equation (3.1) together with su = su+1

gives
∑
i≤u+1(ai − bi) = 1 and since au+1 = 0 (see Proposition 3.1.1) we have

au = bu+1 +1. Further, (3.1) together with sv+2 = sv+3 gives
∑
i≤v+3(ai− bi) = 1.

Combined with
∑
i≤u+1(ai − bi) = 1 and Proposition 3.1.1 we get av+2 + (av+3 −

bv+3) = 0 where av+2 > 0. This gives av+2 = bv+3 > 0.
Conversely, assume that au = bu+1 + 1 and av+2 = bv+3. Observe that Proposi-

tion 3.1.1 implies su = su+1 and au+1 = 0, so using (3.1) yields

1 =
∑
i≤u+1

(ai − bi) =
∑
i≤u−1

(ai − bi) + au − bu+1

Since we assumed that au = bu+1 + 1, we find that
∑
i≤u−1(ai − bi) = 0 and

using (3.1) again we get su−2 + 1 = su−1. Next, the fact that sv = sv+1 (see
Proposition 3.1.1) together with (3.1) yields

∑
i≤v+1(ai − bi) = 1. In combination

with equation (3.1) for l = v + 3 and Proposition 3.1.1 we get that sv+2 − sv+3 =
av+2 + (av+3 − bv+3) = 0. Since we assumed that av+2 = bv+3 this implies that
sv+2 − sv+3 = av+3. Further, since bv+3 = av+2 > 0 (see Proposition 3.1.1) we
have av+3 = 0. We conclude that su−2 + 1 = su−1 and sv+2 = sv+3 which finishes
the proof. �
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3.3. Translation of the tangent condition. Recall from the introduction that
the tangent function tϕ is the Hilbert function of IX ⊗P2 TP2 for X ∈ Hϕ generic.

Proposition 3.3.1. (See also [11, Lemme 2.2.24]) We have

(3.7) tϕ(t) = hTP2
(t)− (3t−1 − 1)ϕ(t) +

∑
i

bi+3t
i

Proof. From the exact sequence

0 → TP2 → O(2)3 → O(3) → 0

we deduce

(3.8) H1(P2, TP2(n)) =

{
k if n = −3
0 otherwise

Let I = IX (X generic) and consider the associated resolution.

0 → ⊕jO(−j)bj → ⊕iO(−i)ai → I → 0

Tensoring with TP2(n) and applying the long exact sequence forH∗(P2,−) we obtain
an exact sequence

0 → ⊕jΓ(P2, T (n− j)bj ) → ⊕iΓ(P2, T (n− i)ai) → Γ(P2, I ⊗ T (n)) →

⊕j H1(P2, T (n− j)bj ) → ⊕iH1(P2, T (n− i)ai)

It follows from (3.8) that the rightmost arrow is zero. This easily yields the required
formula. �

Remark 3.3.2. The previous proposition has an easy generalization which is perhaps
useful and which is proved in the same way. Let M be the second syzygy of a finite
dimensional graded A-module F and let M be the associated coherent sheaf. Write
hM (t) = qM (t)/(1− t)3. Then the Hilbert series of IX ⊗M is given by

qM (t)hIX
(t) + hTorA

1 (F,IX)(t)

The case where M is the tangent bundle corresponds to F = k(3).

Proposition 3.3.3. We have
(1) tψ(l) ≤ tϕ(l) for l 6= u− 3, v
(2) tψ ≤ tϕ ⇔ au 6= 0 and bv+3 6= 0

Proof. The proof uses only (3.4). Comparing (3.7) for ϕ and ψ gives

(3.9) tϕ(t)− tψ(t) = 3tu−1 + 2(tu + tu+1 + . . .+ tv−1)− tv +
∑
i

(bi+3 − b̃i+3)ti

where we have used (3.3). In order to prove the statements, we have to estimate
the polynomial

∑
i(bi+3 − b̃i+3)ti. For this, substituting (2.2) for ϕ and ψ in (3.3)

gives ∑
i

(ãi − b̃i)ti =
∑
i

(ai − bi)ti − (tu − tv+1)(1− t)2

=
∑
i

(ai − bi)ti − tu + 2tu+1 − tu+2 + tv+1 − 2tv+2 + tv+3
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hence

ãu − b̃u = au − bu − 1

ãu+1 − b̃u+1 = au+1 − bu+1 +
{

3 if v = u
2 if v ≥ u+ 1

ãu+2 − b̃u+2 = au+2 − bu+2 +

 −3 if v = u
0 if v = u+ 1
−1 if v ≥ u+ 2

ãv+1 − b̃v+1 = av+1 − bv+1 +

 3 if v = u
0 if v = u+ 1
1 if v ≥ u+ 2

ãv+2 − b̃v+2 = av+2 − bv+2 +
{
−3 if v = u
−2 if v ≥ u+ 1

ãv+3 − b̃v+3 = av+3 − bv+3 + 1

ãl − b̃l = al − bl if l 6∈ {u, u+ 1, u+ 2, v + 1, v + 2, v + 3}

(3.10)

To obtain information about the differences bi+3 − b̃i+3, we observe that for c ≥ 0
and for all integers l we have

ãl − b̃l = al − bl + c⇒ b̃l ≤ bl

ãl − b̃l = al − bl − c⇒ b̃l ≤ bl + c
(3.11)

Indeed, first let ãl − b̃l = al − bl + c. In case 0 ≤ bl ≤ c then 0 = b̃l ≤ bl. And in
case c < bl then b̃l = bl − c ≤ bl.
Second, let ãl − b̃l = al − bl − c. In case 0 ≤ al ≤ c then ãl = 0 hence
b̃l = bl + c − al ≤ bl + c. And in case c < al then 0 = b̃l ≤ c = bl + c. So
this proves (3.11).

Applying (3.11) to (3.10) yields

b̃u ≤ bu + 1

b̃u+1 ≤ bu+1

b̃u+2 ≤ bu+2 +

 3 if v = u
0 if v = u+ 1
1 if v ≥ u+ 2

b̃v+1 ≤ bv+1

b̃v+2 ≤ bv+2 +
{

3 if v = u
2 if v ≥ u+ 1

b̃v+3 ≤ bv+3

b̃l ≤ bl if l 6∈ {u, u+ 1, u+ 2, v + 1, v + 2, v + 3}

(3.12)

Now we are able to prove the first statement. Combining (3.12) and (3.9) gives

tϕ(t)− tψ(t) ≥

 −tu−3 − tv if v = u
−tu−3 + 3tu−1 − tv if v = u+ 1
−tu−3 + 2(tu−1 + tu + . . .+ tv−2)− tv if v ≥ u+ 2

(3.13)
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and therefore tϕ(t) − tψ(t) ≥ −tu−3 − tv which concludes the proof of the first
statement.

For the second part, assume that tψ ≤ tϕ. Equation (3.9) implies that

b̃u ≤ bu

b̃v+3 ≤ bv+3 − 1
(3.14)

Since b̃v+3 ≥ 0 we clearly have bv+3 > 0. Assume, by contradiction, that au = 0.
From (3.10) we have ãu − b̃u = au − bu − 1 hence ãu = 0 and b̃u = bu + 1. But this
gives a contradiction with (3.14). Therefore

tψ ≤ tϕ ⇒ au > 0 and bv+3 > 0

To prove the converse let au > 0 and bv+3 > 0. Due to the first part we only need
to prove that tψ(u− 3) ≤ tϕ(u− 3) and tψ(v) ≤ tϕ(v). Equation (3.9) gives us

tϕ(u− 3)− tψ(u− 3) = bu − b̃u

tϕ(v)− tψ(v) = bv+3 − b̃v+3 − 1
(3.15)

while from (3.10) we have

ãu − b̃u = au − bu − 1

ãv+3 − b̃v+3 = av+3 − bv+3 + 1

Since au > 0, bv+3 > 0 we have bu = 0, av+3 = 0 hence

ãu − b̃u = au − 1

ãv+3 − b̃v+3 = −bv+3 + 1

which implies ãu−b̃u ≥ 0, ãv+3−b̃v+3 ≤ 0 hence b̃u = 0, ãv+3 = 0. Thus bu = b̃u = 0
and b̃v+3 = bv+3− 1. Combining with (3.15) this proves that tϕ(u− 3) = tψ(u− 3)
and tϕ(v) = tψ(v), finishing the proof. �

3.4. Combining everything. In this section we prove that Condition B implies
Condition C. So assume that Condition B holds.

Since the tangent condition holds we have by Proposition 3.3.3

au 6= 0 and bv+3 6= 0

This means there is nothing to prove if u = v. We discuss the two remaining cases.

Case 1. v = u+ 1

The fact that au 6= 0, bv+3 6= 0 implies bu = 0, av+3 = 0. Proposition 3.2.1
combined with Proposition 3.1.1 now gives

dimHψ = dimHϕ + au − bu+1 − av+2 + bv+3 + 1

Hence 0 ≤ (au − bu+1) + (bv+3 − av+2). But Proposition 3.1.1 also states that
au ≤ bu+1 + 1, av+2 > 0 and bv+3 ≤ av+2. Therefore either we have that

bu+1 ≤ au ≤ bu+1 + 1 and bv+3 = av+2

or
au = bu+1 + 1 and bv+3 = av+2 − 1

Case 2. v ≥ u+ 2



12 KOEN DE NAEGHEL AND MICHEL VAN DEN BERGH

It follows from Corollary 3.2.2 that

au = bu+1 + 1 and av+2 = bv+3

This finishes the proof.

Remark 3.4.1. The reader will have noticed that our proof of the implication B ⇒ C
is rather involved. Since the equivalence ofB and C is purely combinatorial it can be
checked directly for individual n. Using a computer we have verified the equivalence
of B and C for n ≤ 70.

As another independent verification we have a direct proof of the implication
C ⇒ B (i.e. without going through the other conditions).

Remark 3.4.2. The reader may observe that in case v = u we have

tψ ≤ tϕ ⇒ dimHϕ < dimHψ(3.16)

while if v ≥ u+ 2 we have

dimHϕ < dimHψ ⇒ tψ ≤ tϕ(3.17)

It is easy to construct counter examples which show that the reverse implications
do not hold, and neither (3.16) nor (3.17) is valid in case v = u+ 1.

4. The implication C ⇒ D

In this section (ϕ,ψ) will have the same meaning as in §3 and we also keep the
associated notations.

4.1. Truncated point modules. A truncated point module of length m is a
graded A-module generated in degree zero with Hilbert series 1 + t+ · · ·+ tm−1.

If F is a truncated point module of length > 1 then there are two independent
homogeneous linear forms l1, l2 vanishing on F and their intersection defines a point
p ∈ P2. We may choose basis vectors ei ∈ Fi such that

xei = xpei+1, yei = ypei+1, zei = zpei+1

where (xp, yp, zp) is a set of homogeneous coordinates of p. It follows that if f ∈ A
is homogeneous of degree d and i+ d ≤ m− 1 then

fei = fpei+d

where (−)p stands for evaluation in p (with respect to the homogeneous coordinates
(xp, yp, zp)).

If G = ⊕iA(−i)ci then we have

(4.1) HomA(G,F ) = ⊕0≤i≤m−1F
ci
i
∼= k

P
0≤i≤m−1 ci

where the last identification is made using the basis (ei)i introduced above.

In the sequel we will need the minimal projective resolution of a truncated point
module F of length m. It is easy to see that it is given by
(4.2)

0→ A(−m−2)

0B@l1
l2
ρ

1CA·
−−−−−→

f3
A(−m−1)

2⊕A(−2)

0B@ 0 −ρ l2
ρ 0 −l1
−l2 l1 0

1CA·
−−−−−−−−−−−−−−−−→

f2
A(−1)

2⊕A(−m)

“
l1 l2 ρ

”
·

−−−−−−−−−−−→
f1

A → F → 0

where l1, l2 are the linear forms vanishing on F and ρ is a form of degree m such
that ρp 6= 0 for the point p corresponding to F . Without loss of generality we may
and we will assume that ρp = 1.



ON INCIDENCE BETWEEN STRATA OF THE HILBERT SCHEME OF POINTS ON P2 13

4.2. A complex whose homology is J. In this section I is a graded ideal cor-
responding to a generic point in Hϕ. The following lemma gives the connection
between truncated point modules and Condition D.

Lemma 4.2.1. If an ideal J ⊂ I has Hilbert series ψ then I/J is a (shifted by
grading) truncated point module of length v + 1− u.

Proof. Since F = I/J has the correct (shifted) Hilbert function, it is sufficient to
show that F is generated in degree u.

If v = u then there is nothing to prove. If v ≥ u + 1 then by Proposition 3.1.1
the generators of I are in degrees ≤ u and ≥ v+2. Since F lives in degrees u, . . . , v
this proves what we want. �

Let J, F be as in the previous lemma. Below we will need a complex whose
homology is J . We write the minimal resolution of F as

0 → G3
f3−→ G2

f2−→ G1
f1−→ G0 −→ F → 0

where the maps fi are as in (4.2), and the minimal resolution of I as

0 → F1 → F0 → I → 0

The map I → F induces a map of projective resolutions

0 −−−−−→ F1
M−−−−−→ F0 −−−−−→ I −−−−−→ 0

γ1

??y γ0

??y ??y
0 −−−−−→ G3

f3−−−−−→ G2
f2−−−−−→ G1

f1−−−−−→ G0
f0−−−−−→ F −−−−−→ 0

(4.3)

Taking cones yields that J is the homology at G1 ⊕ F0 of the following complex

(4.4) 0 → G3

0@f3
0

1A
−−−−→ G2 ⊕ F1

0@f2 γ1

0 −M

1A
−−−−−−−−−→ G1 ⊕ F0

“
f1 γ0

”
−−−−−−−→ G0 → 0

Note that the rightmost map is split here. By selecting an explicit splitting we may
construct a free resolution of J , but it will be convenient not to do this.

For use below we note that the map J → I is obtained from taking homology of
the following map of complexes.

(4.5) 0 // G3

0@f3
0

1A
// G2 ⊕ F1“

0 −1
”

��

0@f2 γ1

0 −M

1A
// G1 ⊕ F0“

0 1
”

��

“
f1 γ0

”
// G0

// 0

0 // F1
M

// F0
// 0

4.3. The Hilbert scheme of an ideal. In this section I is a graded ideal corre-
sponding to a generic point in Hϕ.

Let V be the Hilbert scheme of graded quotients F of I with Hilbert series
tu + · · ·+ tv. To see that V exists one may realize it as a closed subscheme of

ProjS(Iu ⊕ · · · ⊕ Iv)

where SV is the symmetric algebra of a vector space V . Alternatively see [1].
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We will give an explicit description of V by equations. Here and below we use
the following convention: if N is a matrix with coefficients in A representing a map
⊕jA(−j)dj → ⊕iA(−i)ci then N(p, q) stands for the submatrix of N representing
the induced map A(−q)dq → A(−p)cp .

We now distinguish two cases.
v = u In this case it is clear that V ∼= Pau−1.

v ≥ u+ 1 Let F ∈ V and let p ∈ P2 be the associated point. Let (ei)i be a basis for
F as in §4.1. The map I → F defines a map

λ : A(−u)au → F

such that the composition

(4.6) A(−u− 1)bu+1
M(u,u+1)·−−−−−−−→ A(−u)au → F

is zero.
We may view λ as a scalar row vector as in (4.1). The fact that (4.6)

has zero composition then translates into the condition

(4.7) λ ·M(u, u+ 1)p = 0

It is easy to see that this procedure is reversible and that the equations
(4.7) define V as a subscheme of Pau−1×P2.

Proposition 4.3.1. Assume that Condition C holds. Then V is smooth and

dimV =

{
au − 1 if v = u

au + 1− bu+1 if v ≥ u+ 1

Proof. The case v = u is clear so assume v ≥ u + 1. If we look carefully at (4.7)
then we see that it describes V as the zeroes of bu+1 generic sections in the very
ample line bundle OPau−1(1) �OP2(1) on Pau−1×P2. It follows from Condition C
that bu+1 ≤ dim(P2×Pau−1) = au + 1. Hence by Bertini (see [12]) we deduce that
V is smooth of dimension au + 1− bu+1. �

4.4. Estimating the dimension of Ext1A(J, J). In this section I is a graded ideal
corresponding to a generic point of Hϕ. We prove the following result

Proposition 4.4.1. Assume that Condition C holds. Then there exists F ∈ V such
that for J = ker(I → F ) we have
(4.8)

dimk Ext1A(J, J) ≥


dimHψ + av+3 = dimHψ if v = u

dimHψ + av+2 − bv+3 + 1 if v = u+ 1
dimHψ + av+2 − bv+3 + 2 = dimHψ + 2 if v ≥ u+ 2

It will become clear from the proof below that in case v ≥ u + 1 the righthand
side of (4.8) is one higher than the expected dimension.

Below let J ⊂ I be an arbitrary ideal such that hJ = ψ. Put F = I/J .

Proposition 4.4.2. We have

dimk Ext1A(J, J) = dimHψ + dimk HomA(J, F (−3))
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Proof. For M,N ∈ grA write

χ(M,N) =
∑
i

(−1)i dimk ExtiA(M,N)

Clearly χ(M,N) only depends on the Hilbert series of M , N . Hence, taking J ′ to
be an arbitrary point in Hψ we have

χ(J, J) = χ(J ′, J ′) = 1− dimk Ext1A(J ′, J ′) = 1− dimHψ

where in the third equality we have used that Ext1A(J ′, J ′) is the tangent space to
Hψ [7].

Since J has no socle we have pd J ≤ 2. Therefore ExtiA(J, J) = 0 for i ≥ 3. It
follows that

dimk Ext1A(J, J) = −χ(J, J) + 1 + dimk Ext2A(J, J)

= dimHψ + dimk Ext3A(F, J)

By the approriate version of Serre duality we have

Ext3A(F, J) = HomA(J, F ⊗ ωA)∗ = HomA(J, F (−3))∗

This finishes the proof. �

Proof of Proposition 4.4.1. It follows from the previous result that we need to con-
trol dimk HomA(J, F (−3)). Of course we assume throughout that Condition C
holds and we also use Proposition 3.1.1.

Case 1. Assume v = u. For degree reasons any extension between F and F (−3)
must be split. Thus we have HomA(F, F (−3)) = Ext1A(F, F (−3)) = 0. Applying
HomA(−, F (−3)) to

0 → J → I → F → 0
we find

HomA(J, F (−3)) = HomA(I, F (−3))
Hence

dimk HomA(J, F (−3)) = av+3 = 0

Case 2. Assume v = u + 1. As in the previous case we find HomA(J, F (−3)) =
HomA(I, F (−3)).

Thus a map J → F (−3) is now given (using Proposition 3.1.1) by a map

β : A(−v − 2)av+2 → F (−3)

(identified with a scalar vector as in (4.1)) such that the composition

A(−v − 3)bv+3
M(v+2,v+3)−−−−−−−−→ A(−v − 2)av+2 β−→ F (−3)

is zero. This translates into the condition

(4.9) β ·M(v + 2, v + 3)p = 0

where p is the point corresponding to F . Now M(v + 2, v + 3) is a av+2 × bv+3

matrix. Since bv+3 ≤ av+2 (by Proposition 3.1.1) we would expect (4.9) to have
av+2 − bv+3 independent solutions. To have more, M(v + 2, v + 3) has to have
non-maximal rank. I.e. there should be a non-zero solution to the equation

(4.10) M(v + 2, v + 3)p · δ = 0
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This should be combined with (see (4.7))

(4.11) λ ·M(u, u+ 1)p = 0

We view (4.10) and (4.11) as a system of av+2+bu+1 equations in Pau−1×P2×Pbv+3−1.
Since (Condition C)

av+2 + bu+1 ≤ dim(Pau−1×P2×Pbv+3−1) = au + bv+3

the system (4.10)(4.11) has a solution provided the divisors in Pau−1×P2×Pbv+3−1

determined by the equations of the system have non-zero intersection product.
Let r, s, t be the hyperplane sections in Pau−1, P2 and Pbv+3−1 respectively. The

Chow ring of Pau−1×P2×Pbv+3−1 is given by

(4.12) Z[r, s, t]/(rau , s3, tbv+3)

The intersection product we have to compute is

(s+ t)av+2(r + s)bu+1

This product contains the terms

tav+2−2s2rbu+1

tav+2−1s2rbu+1−1

tav+2s2rbu+1−2

at least one of which is non-zero in (4.12) (using Condition C).

Case 3. Now assume v ≥ u + 2. We compute Hom(J, F (−3)) as the homology
of HomA((eq.4.4), F (−3)). Since G0 = A(−u) we have HomA(G0, F (−3)) = 0 and
hence a map J → F (−3) is given by a map

G1 ⊕ F0 → F (−3)

such that the composition

G2 ⊕ F1

0@f2 γ1

0 −M

1A
−−−−−−−−−→ G1 ⊕ F0 → F (−3)

is zero.
Introducing the explicit form of (Gi)i, (fi)i given by (4.2), and using Proposition

3.1.1 we find that a map J → F (−3) is given by a pair of maps

µ : A(−v − 1) → F (−3)

β : A(−v − 2)av+2 → F (−3)
(identified with scalar vectors as in (4.1)) such that the composition

A(−v−2)2⊕A(−v−3)bv+3

0@−l2 l1 γ1(v + 1, v + 3)
0 0 −M(v + 2, v + 3)

1A
−−−−−−−−−−−−−−−−−−−−−−−−→ A(−v−1)⊕A(−v−2)av+2

“
µ β

”
−−−−−−→ F

is zero.
Let p be the point associated to F . Since (l1)p = (l2)p = 0 we obtain the

conditions

(4.13)
(
µ β

) (
γ1(v + 1, v + 3)p
M(v + 2, v + 3)p

)
= 0
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To use this we have to know what γ1(v+1, v+3) is. From the commutative diagram
(4.3) we obtain the identity

ρ · γ1(v + 1, v + 3) = λ ·M(u, v + 3)

where λ = γ0(u, u). Evaluation in p yields

γ1(v + 1, v + 3)p = λ ·M(u, v + 3)p

so that (4.13) is equivalent to(
µ β

) (
λ ·M(u, v + 3)p
M(v + 2, v + 3)p

)
= 0

Now
(
λ ·M(u, v + 3)p
M(v + 2, v + 3)p

)
is a (av+2 + 1) × bv+3 matrix. Since bv+3 < av+2 + 1

(Proposition 3.1.1) we would expect (4.13) to have av+2 + 1 − bv+3 independent

solutions. To have more,
(
λ ·M(u, v + 3)p
M(v + 2, v + 3)p

)
has to have non-maximal rank. I.e.

there should be a non-zero solution to the equation(
λ ·M(u, v + 3)p
M(v + 2, v + 3)p

)
· δ = 0

which may be broken up into two sets of equations

(4.14) λ ·M(u, v + 3)p · δ = 0

(4.15) M(v + 2, v + 3)p · δ = 0

and we also still have

(4.16) λ ·M(u, u+ 1)p = 0

We view (4.14)(4.15) and (4.16) as a system of 1 + av+2 + bu+1 equations in the
variety Pau−1×P2×Pbv+3−1. Since (Condition C)

1 + av+2 + bu+1 = dim(Pau−1×P2×Pbv+3−1) = au + bv+3

the existence of a solution can be decided numerically. The intersection product we
have to compute is

(r + s+ t)(s+ t)av+2(r + s)bu+1

This product contains the term

s2tav+2−1rbu+1

which is non-zero in the Chow ring (using Condition C). �

4.5. Estimating the dimension of Ext1
Â
(Ĵ , Ĵ). In this section we prove the

following result.

Proposition 4.5.1. Assume that Condition C holds. Let I ∈ Hϕ be generic and
let J be as in Condition D. Then

(4.17) dimk Ext1
Â
(Ĵ , Ĵ) ≤

{
dimHϕ + au − 1 if v = u

dimHϕ + au + 1− bu+1 if v ≥ u+ 1
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Proof. It has been shown in [7] that Hϕ is the moduli-space of ideals in A of projec-
tive dimension one which have Hilbert series ϕ. Let Ĩ ⊂ AHϕ be the corresponding
universal bundle. Let M be the moduli-space of pairs (J, I) such that I ∈ Hϕ and
hJ = ψ. To show that M exists on may realize it as a closed subscheme of

ProjSHϕ
(Ĩu ⊕ · · · ⊕ Ĩv)

Sending (J, I) to I defines a map q : M→ Hϕ. We have an exact sequence

(4.18) 0 → T(J,I)q
−1I → T(J,I)M→ TIHϕ

Assume now that I is generic and put V = q−1I as above. By Proposition 4.3.1 we
know that V is smooth. Hence

dimT(J,I)M≤ dimV + dimHϕ

Applying Proposition 4.3.1 again, it follows that for I generic the dimension of
T(J,I)M is bounded by the right hand side of (4.17).

Since Ext1
Â
(Ĵ , Ĵ) is the tangent space of M at (J, I) for Ĵ = (J I) this finishes

the proof. �

Remark 4.5.2. It is not hard to see that (4.17) is actually an equality. This follows
from the easily proved fact that the map q is generically smooth.

4.6. Tying things together. Combining the results of the previous two sections
we see that if Condition C holds we have for a suitable choice of J

dimk Ext1A(J, J)−dimk Ext1
Â
(Ĵ , Ĵ) ≥


dimHψ − dimHϕ + av+3 − au + 1 if v = u

dimHψ − dimHϕ + av+2 − bv+3 − au + bu+1 if v = u+ 1
dimHψ − dimHϕ + av+2 − bv+3 − au + bu+1 + 1 if v ≥ u+ 2

We may combine this with Proposition 3.2.1 which works out as (using Proposition
3.1.1)

dimHψ − dimHϕ =


au + bv+3 − 1 if v = u

au − bu+1 − av+2 + bv+3 + 1 if v = u+ 1
au − bu+1 − av+2 + bv+3 if v ≥ u+ 2

We then obtain

dimk Ext1A(J, J)− dimk Ext1
Â
(Ĵ , Ĵ) ≥

{
bv+3 if v = u

1 if v ≥ u+ 1

Hence in all cases we obtain a strictly positive result. This finishes the proof that
Condition C implies Condition D.

Remark 4.6.1. As in Remark 3.4.1 it is possible to prove directly the converse
implication D ⇒ C.

5. The implication D ⇒ A

In this section (ϕ,ψ) will have the same meaning as in §3 and we also keep the
associated notations. We assume that Condition D holds. Let I be a graded ideal
corresponding to a generic point in Hϕ. According to Condition D there exists an
ideal J ⊂ I with hJ = ψ such that there is an η ∈ Ext1A(J, J) which is not in the
image of Ext1

Â
(Ĵ , Ĵ).
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We identify η with a one parameter deformation J ′ of J . I.e. J ′ is a flat A[ε]-
module where ε2 = 0 such that J ′⊗k[ε]k ∼= J and such that the short exact sequence

0 → J
ε·−→ J ′ → J → 0

corresponds to η.
In §4.2 we have written J as the homology of a complex. It follows for example

from (the dual version of) [14, Thm 3.9], or directly, that J ′ is the homology of a
complex of the form
(5.1)

0 → G3[ε]

0@f ′3
Pε

1A
−−−−−→ G2[ε]⊕ F1[ε]

0@f ′2 γ′1
Qε −M ′

1A
−−−−−−−−−−→ G1[ε]⊕ F0[ε]

“
f ′1 γ′0

”
−−−−−−−→ G0[ε] → 0

where for a matrix U over A, U ′ means a lift of U to A[ε]. Recall that G3 =
A(−v − 3).

Lemma 5.1. We have P (v + 3, v + 3) 6= 0.

Proof. Assume on the contrary P (v + 3, v + 3) = 0. Using Proposition 3.1.1 it
follows that P has its image in F11 = ⊕j≤u+1A(−j)bj .

The fact that (5.1) is a complex implies that Qf3 = MP . Thus we have a
commutative diagram

0 −−−−→ G3
f3−−−−→ G2

f2−−−−→ G1
f1−−−−→ G0

P1

y yQ
F11

M11−−−−→ F0

P2

y ∥∥∥
F1 −−−−→

M
F0

where P2 is the inclusion and M11 = MP2, P = P2P1. Put

D = coker(F11 → F1)

Then (P1, Q) represents an element of Ext2A(F,D) = Ext1A(D,F (−3))∗ = 0,
where the last equality is for degree reasons.

It follows that there exist maps

R : G1 → F0

T1 : G2 → F11

such that

Q = Rf2 +M11T1

P1 = T1f3

Putting T = P2T1 we obtain

Q = Rf2 +MT

P = Tf3
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We can now construct the following lifting of the commutative diagram (4.5):

0 // G3[ε]

0@f ′3
Pε

1A
// G2[ε]⊕ F1[ε]“

Tε −1
”

��

0@f ′2 γ′1
Qε −M ′

1A
// G1[ε]⊕ F0[ε]“

−Rε 1
”

��

“
f ′1 γ′0

”
// G0[ε] // 0

0 // F1[ε]
M ′+Rγ1ε

// F0[ε] // 0

Taking homology we see that there is a first order deformation I ′ of I together with
a lift of the inclusion J → I to a map J ′ → I ′. But this contradicts the assumption
that η is not in the image of Ext1

Â
(Ĵ , Ĵ). �

In particular, Lemmma 5.1 implies that bv + 3 6= 0. It will now be convenient to
rearrange (5.1). Using the previous lemma and the fact that the rightmost map in
(5.1) is split it follows that J ′ has a free resolution of the form

0 → G3[ε]

0@ ε
α0 + α1ε

1A
−−−−−−−−−→ G3[ε]⊕H1[ε]

“
β0 + β1ε δ0 + δ1ε

”
−−−−−−−−−−−−−−−−→ H0[ε] → J ′ → 0

which leads to the following equations

δ0α0 = 0
β0 + δ1α0 + δ0α1 = 0

Using these equations we can construct the following complex Ct over A[t]

0 → G3[t]

0@ t
α0 + α1t

1A
−−−−−−−−−→ G3[t]⊕H1[t]

“
β0 − δ1α1t δ0 + δ1t

”
−−−−−−−−−−−−−−−−−−→ H0[t]

For θ ∈ k put Cθ = C ⊗k[t] k[t]/(t − θ). Clearly C0 is a resolution of J . By semi-
continuity we find that for all but a finite number of θ, Cθ is the resolution of a
rank one A-module Jθ. Furthermore we have J0 = J and pdJθ = 1 for θ 6= 0.

Let Jθ be the rank one OP2-module corresponding to Jθ. Jθ represents a point of
Hψ. Since I/J has finite length, J0 = J and I define the same object in Hilbn(P2).
Hence we have constructed a one parameter family of objects in Hilbn(P2) connect-
ing a generic object in Hϕ to an object in Hψ. This shows that indeed Hϕ is in the
closure of Hψ.

Appendix A. Hilbert graphs

For low values of n the Hilbert graph is rather trivial. But when n becomes
bigger the number of Hilbert functions increase rapidly (see Remark 1.3) and so
the Hilbert graphs become more complicated. As an illustration we have included
the Hilbert graph for n = 17 where we used Theorem 1.5 to solve the incidence
problems of length zero (the picture gives no information on more complicated
incidence problems). By convention the minimal Hilbert series is on top.

The reader will notice that the Hilbert graph contains pentagons. This shows
that the Hilbert graph is not catenary and also contradicts [11, Lemme 2.1.2].
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means Hϕ ⊂ Hψ

means Hϕ 6⊂ Hψ

means (ϕ,ψ) has type zero
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Appendix B. A visual criterion for incidence problems of length
zero

In this appendix we provide a visual criterion for the three conditions in Theorem
1.5. The reader may easily check these using Condition C, Proposition 3.1.1 and
(3.1). As before we let (ϕ,ψ) be a pair of Hilbert series of degree n and length
zero. Then Hϕ ⊂ Hψ if and only if the Castelnuovo diagram sϕ of ϕ has one of the
following forms, where the diagram sψ is obtained by moving the upper square as
indicated.

6

?

-�

≥ 2

≥ 0

≥ 1

-�

3

6

?

6

?
≥ 0

-�

3

6

?

-�

≥ 1

≥ 2

6

?

-�

≥ 2

≥ 0

≥ 1
6

?

-�

≥ 4
-�

≥ 2

≥ 1

-�

3

6

?

6

?

≥ 1

-�

≥ 2

6

?
≥ 0

6

?
6

?

-�

C ≥ 1

D ≥ 0
where C > D

≥ 1
-�

2

6

?
≥ 0

6

?
6

?

C ≥ 1

D ≥ 0
where C > D

6

?
6

?

A ≥ 0

B ≥ 1
where A < B
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