
DOUBLE POISSON ALGEBRAS

MICHEL VAN DEN BERGH

Abstract. In this paper we develop Poisson geometry for non-commutative
algebras. This generalizes the bi-symplectic geometry which was recently, and
independently, introduced by Crawley-Boevey, Etingof and Ginzburg.

Our (quasi-)Poisson brackets induce classical (quasi-)Poisson brackets on
representation spaces. As an application we show that the moduli spaces of
representations associated to the deformed multiplicative preprojective alge-
bras recently introduced by Crawley-Boevey and Shaw carry a natural Poisson
structure.
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1. Introduction

In this introduction we assume that k is an algebraically closed field of charac-
teristic zero. We start with our original motivating example (taken from [8]). Let
Q = (Q, I, h, t) be a finite quiver with vertex set I = {1, . . . , n} and edge set Q.
The maps t, h : Q → I associate with every edge its starting and ending vertex.
We let Q̄ be the double of Q. Q̄ is obtained from Q by adjoining for every arrow a
an opposite arrow a∗. We define ǫ : Q̄→ {±1} as the function which is 1 on Q and
−1 on Q̄−Q.

Let α = (α1, . . . , αn) ∈ N
n be a dimension vector and fix scalars q = (q1, . . . , qn) ∈

(k∗)n. Put Rα =
∏

a∈Q̄Mαt(a)×αh(a)
. The group Glα =

∏

i Glαi
acts on Rα by

conjugation.
Let Sα,q be the Glα invariant subscheme of Rα consisting of matrices (Xa)a∈Q̄

such that 1+XaXa∗ is invertible for all a ∈ Q̄ and such that the following equations
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are satisfied for all i ∈ I.
∏

a∈Q̄,h(a)=i

(1 +XaXa∗)
ǫ(a) = qi

(it is shown in [8] that Sα,q is independent of the ordering on these products). We
prove the following result in this paper.

Theorem 1.1. The GIT quotient Sα,q//Glα is in a natural way a Poisson variety.

This result is not unexpected since if Q is a “star” then it is shown in [8] that
the points in Sα,q//Glα correspond to local systems on P

1 whose monodromy lies
in the closure of specific conjugacy classes. The result then follows from the work
of Atiyah and Bott [3].

Different proofs of the Atiyah-Bott result were given in [1, 2] using quasi-Hamilto-
nian reduction and fusion. It is possible to give a proof of Theorem 1.1 in the same
spirit. First one considers the small quiver consisting of two vertices and two
arrows a, a∗ and one shows that in that case Rα is quasi-Hamiltonian. This is then
extended to general quivers using a process called “fusion”. Finally we obtain a
Poisson structure on Sα,q by quasi-Hamiltonian reduction.

While working out this proof I noticed that all computations could be done
directly in the path algebra kQ̄ of Q̄ (suitably localized). If computations are
organized this way explicit matrices occur, somewhat as an afterthought, only in
the very last step. Trying to understand why this is so then became the second
motivation for writing this paper.

So we restart this introduction! Throughout A is a k-algebra which for simplicity
we assume to be finitely generated. For N ∈ N the associated representation space
of A is defined as

Rep(A,N) = Hom(A,MN (k))

The group GlN acts on Rep(A,N) by conjugation on MN(k).
A well-known philosophy in non-commutative algebraic geometry (probably first

formulated by Maxim Kontsevich) is that for a property of the non-commutative
ring A to have geometric meaning it should induce standard geometric properties
on all Rep(A,N). The case of symplectic geometry was worked out in [4, 11, 12].
In this paper we discuss Poisson geometry. More precisely we work out what kind
of structure we need on A in order that all Rep(A,N) are Poisson varieties.

To motivate our definitions we have to look in more detail at the coordinate
ring O(Rep(A,N)) of Rep(A,N). For every a ∈ A we have a corresponding ma-
trix valued function (aij)i,j=1,...,N on Rep(A,N). It is easy to see that the ring
O(Rep(A,N)) is generated by the functions aij , subject to the relations

(ab)ij = ailblj

(where here and below we sum over repeated indices). Hence to define a Poisson
bracket {−,−} on Rep(A,N) we have to fix the values of {aij , buv} for all a, b ∈ A.
Now {aij , buv} depends on four indices so it is natural to assume that it comes from
an element of A⊗A. This leads to the following definition. A double bracket on A
is a bilinear map

{{−,−}} : A×A→ A⊗A

which is a derivation in its second argument (for the outer bimodule structure on
A) and which satisfies

{{a, b}} = −{{b, a}}◦
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where (u ⊗ v)◦ = v ⊗ u. We say that A is a double Poisson algebra if {{−,−}}
satisfies in addition a natural analog of the Jacobi identity (see §2.3). A special
case of one of our results is the following (see §7.5).

Proposition 1.2. If A, {{−,−}} is a double Poisson algebra then O(Rep(A, n)) is
a Poisson algebra, with Poisson bracket given by

(1.1) {aij , buv} = {{a, b}}′uj{{a, b}}
′′
iv

where by convention we write an element x of A ⊗ A as x′ ⊗ x′′ (i.e. we drop the
summation sign).

Example 1.3. (see Examples 2.3.3,7.5.3) If A = k[t]/(tn) then Rep(A, n) consists
nilpotent n× n matrices. A has double Poisson bracket which is uniquely defined
by the property.

{{t, t}} = t⊗ 1 − 1 ⊗ t

This double bracket induces the standard Poisson bracket on nilpotent matrices.

Let {{−,−}} be a double Poisson bracket on A. We define the associated bracket
as

{−,−} : A×A→ A : (a, b) 7→ {{a, b}}′{{a, b}}′′

Proposition 1.4. Assume that A, {{−,−}} is a double Poisson algebra. Then the
following holds

(1) {−,−} is a derivation in its second argument and vanishes on commutators
in it is first argument.

(2) {−,−} is anti-symmetric modulo commutators.
(3) {−,−} makes A into a left Loday algebra [13, 16]. I.e. {−,−} satisfies the

following version of the Jacobi identity

{a, {b, c}} = {{a, b}, c}+ {b, {a, c}}
(4) {−,−} makes A/[A,A] into a Lie algebra.

In commutative geometry it is customary to describe a Poisson bracket on a
smooth variety X in terms of a bivector field, i.e. in terms of a section P of

∧2
TX

satisfying {P, P} = 0 where {−,−} is the so-called Schouten Nijenhuis bracket on
Γ(X,

∧

TX). Our next aim is to give non-commutative version of this.
In the rest of this introduction we assume for simplicity that A is smooth by which

we mean that A is finitely generated and ΩA = ker(A ⊗ A → A) is a projective
A-bimodule. It is easy to see that this implies that all spaces Rep(A,N) are smooth
over k.

We first have to find the correct non-commutative analogue of a vector field.
There are in fact two good answers to this. If we insist that a vector field on A
induces vector fields on all Rep(A,N) then a vector field on A should simply be a
derivation ∆ : A→ A. The induced derivation δ on O(Rep(A,N)) is then given by

δ(aij) = ∆(a)ij

A second point of view is that a vector field ∆ on A should induce matrix valued
vector fields (∆ij)i,j=1,...,n on all Rep(A,N). Since now ∆ij(auv) depends on four
indices ∆(a) should be an element of A⊗A.

In this paper we accept the second point of view, i.e. vector fields on A will

be elements of DA
def
= Der(A,A ⊗ A) where as usual we put the outer bimodule
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structure on A ⊗ A. The corresponding matrix valued vector fields on Rep(A,N)
are then given by

∆ij(auv) = ∆(a)′uj∆(a)′′iv

DA contains a remarkable element E which acts as E(a) = a⊗ 1 − 1 ⊗ a. We will
call this element the gauge element since we have

Proposition 1.5. The matrix valued vector field (Eji)ij on Rep(A, n) is the de-
rivative of the action of GlN by conjugation.

The importance of Der(A,A ⊗A) was first emphasized in [6].
Starting with DA we define the algebra of poly-vector fields DA on A as the

tensor algebra TADA of DA where we make DA into an A-bimodule by using the
inner bimodule structure on A⊗A.

Another main result of this paper is (see §3.2)

Proposition 1.6. The graded algebra DA has the structure of a double Gersten-
haber algebra i.e. a (super) double Poisson algebra with a double Poisson bracket
{{−,−}} of degree −1.

We call {{−,−}} the Schouten-Nijenhuis bracket on DA. It is somewhat hard to
construct, but as we will see below, in the case of quivers it takes a very trivial
form.

The elements of DA define matrix valued poly-vector fields on Rep(A,N) by the
rule

(δ1 · · · δm)ij = δ1,il1δ1,l1l2 · · · δm,lmj
The compatibility between the matrix valued poly-vector fields and the Schouten
brackets on DA and Γ(Rep(A,N), TRep(A,N)) is given by a formula which is entirely
similar to (1.1)

{Pij , Quv} = {{P,Q}}′uj{{P,Q}}′′iv
Let us write tr(P ) = Pii. Then the previous formula yields a morphism of graded
Lie algebras

tr : DA/[DA,DA] → Γ(Rep(A,N),∧TRep(A,N))
GlN

To reconnect with double Poisson structures on A we show that there is a bijec-
tion

(

DA/[DA,DA]
)

2
↔ {double brackets on A}

which sends δ1δ2 for δ1, δ2 ∈ DA to the double bracket

{{a, b}} = δ2(b)
′δ1(a)

′′ ⊗ δ1(a)
′δ2(b)

′′ − δ1(b)
′δ2(a)

′′ ⊗ δ2(a)
′δ1(b)

′′

An element P ∈ (DA)2 corresponds to a double Poisson bracket if and only if

{P, P} = 0 modulo commutators

Having a rudimentary differential geometric formalism in place we can now define
various related notions. For example we say that µ ∈ A is a moment map for a
double Poisson bracket P if the following identity holds in DA:

{P, µ} = −E
The reason is of course that if µ ∈ A then the corresponding matrix valued function
(µij)ij defines a moment map Rep(A, n) →MN for the action of GlN on Rep(A,N)
(where we identify, as is customary, MN with its dual through the trace map).
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We can also define the corresponding multiplicative notions (see [1]). An element
P ∈ (DA)2 is said to be a quasi-Poisson bracket if the following identity holds

{P, P} =
1

6
E3 modulo commutators

and an element Φ ∈ A∗ is a multiplicative moment map for P if

{P,Φ} = −1

2
(EΦ + ΦE)

in DA. Again these notions induce the corresponding notions on representation
spaces.

Proposition 1.7. (1) Proposition 1.4 goes through unmodified for double quasi-
Poisson algebras.

(2) Let A be either a double Poisson algebra with moment map µ or a double
quasi-Poisson algebra with moment map Φ. Put Aλ = A/(µ−λ) in the first
case with λ ∈ k and Aq = A/(Φ − q) with q ∈ k∗ in the second case. Then
the associated (quasi-)Poisson brackets on O(Rep(A,N)) induces Poisson
brackets on O(Rep(A,N))GlN and O(Rep(Aλ or q, N))GlN .

The second part of this theorem is an application of (quasi) Hamiltonian reduc-
tion [1].

Now we discuss quivers. Thus we return to the setting in the beginning of
this introduction. In order for things to work nicely we must set things up in a
relative setting. I.e. we let B a fixed commutative semi-simple algebra of the form
ke1⊕· · ·⊕ken with e2i = ei. A B algebra is a k-algebraA equipped with a morphism
of k-algebras B → A. For B-algebras we may define relative versions of the notions
introduced above e.g. DA/B = DerB(A,A ⊗ A), DBA = TADA/B. Representation
spaces are now indexed by an n-tuples (α1, . . . , αn) ∈ N

n. By definition

Rep(A,α) = HomB(A,MN (k))

where N = α1 + · · ·+αn and we view B as being diagonally embedded MN(k). Let
us put φ(p) = i for i = 1, . . . , N and p ∈ I if i is in the subinterval corresponding
to p when we decompose [1 . . N ] into intervals of length (αp)p.

Now let A = kQ. In this case the idempotents ei are the paths of length zero
corresponding to the vertices of I. For a ∈ Q we define the element ∂

∂a ∈ DBA
which on b ∈ Q acts as

∂b

∂a
=

{

et(a) ⊗ eh(a) if a = b

0 otherwise

It is clear that DA/B is generated by
(

∂
∂a

)

a∈Q
as an A-bimodule. Hence DBA

is the tensor algebra over A generated by
(

∂
∂a

)

a
. The matrix valued vector field

corresponding to ∂
∂a is given by

(

∂

∂a

)

ij

=







∂

∂aji
if φ(i) = h(a), φ(j) = t(a)

0 otherwise
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The Schouten bracket on A is as follows. Let a, b ∈ Q. Then

{{a, b}} = 0

{{ ∂

∂a
, b

}}

=

{

et(a) ⊗ eh(a) if a = b

0 otherwise
{{ ∂

∂a
,
∂

∂b

}}

= 0

We prove

Theorem 1.8. (Theorem 6.3.1 in the body of the paper) A = kQ̄ has a double
Poisson bracket given by

P =
∑

a∈Q

∂

∂a

∂

∂a∗

and a corresponding moment map

µ =
∑

a∈Q

[a, a∗]

This theorem is more or less a reformulation of known results. The induced Lie
algebra structure on kQ̄/[kQ̄, kQ̄] is the so-called necklace Lie algebra [4, 11, 12].
However it is noteworthy that this Lie algebra structure is induced from a Loday
algebra structure on kQ̄. In §6.4 we work out what it is.

The algebra Aλ introduced in Proposition 1.7 is the so-called deformed prepro-
jective algebra [9] Πλ. The Poisson bracket on Rep(Πλ, α) is obtained from the
standard Poisson bracket on Rα = Rep(kQ̄, α) given by

∑

a∈Q

∂

∂(Xa)ij

∂

∂(Xa∗)ji

in the notations of the first paragraph.
We then prove the main result of this paper.

Theorem 1.9. (Theorem 6.7.1) Let A be obtained from kQ̄ by inverting all ele-
ments (1 + aa∗)a∈Q̄. Fix an arbitrary total ordering on Q̄. Then A has a quasi-
Poisson bracket given by

P =
1

2





∑

a∈Q̄

(

ǫ(a)(1 + a∗a)
∂

∂a

∂

∂a∗

)

−
∑

a<b∈Q̄

(

∂

∂a∗
a∗ − a

∂

∂a

)(

∂

∂b∗
b∗ − b

∂

∂b

)





and a corresponding moment map given by

Φ =
∏

a∈Q̄

(1 + aa∗)ǫ(a)

In the definition of Φ the product is taken with respect to the chosen ordering on Q̄.

The algebra Aq introduced in Proposition 1.7 is now the deformed multiplicative
preprojective algebra Λq as introduced in [8]. Combining the previous theorem with
Proposition 1.7 proves Theorem 1.1 since Sα = Rep(Λq, α).
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Relation with bi-symplectic geometry. The first version of this paper was
written independently of the paper [7] which appeared around the same time on
the ArXiv and which discusses a non-commutative analogue of symplectic geometry.
In an appendix we outline the connection between the two papers. In particular we
prove that an algebra with a bi-symplectic form is a double Poisson algebra. This
allows us to strengthen some results of [7]. For example: if A has a bi-symplectic
form then the associated Lie bracket on A/[A,A] is obtained from a Loday bracket
on A.

Relation with Crawley-Boevey’s Poisson structures. In [5] Crawley-Boevey
introduces non-commutative Poisson structures and shows that they induce classical
Poisson structures on moduli spaces of representations. For commutative algebras
a Poisson structure is the same as a classical Poisson structure.

We show below that a double Poisson bracket or a double quasi-Poisson bracket
induces a Poisson structure (Lemmas 2.6.2 and 5.1.3). By considering commutative
algebras one easily sees that the converse is false.

The concept of a double Poisson structure is usually better suited for algebras
which are smooth in a non-commutative sense [10]. For example a semi-simple
algebra has no Poisson structures [5, Rem. 1.2] but it has many double Poisson
structures [17].

A note on the organization of this paper. The reader will find that this
paper is rather peculiarly organized. we have seen above the most interesting and
motivating example we consider is not actually a double Poisson algebra but only a
double quasi-Poisson algebra. But it seemed difficult to treat double quasi-Poisson
algebras without first introducing the algebra of poly-vector fields and its Schouten
bracket. This Schouten bracket is a graded version of a double Poisson bracket.
But again it seemed unreasonable to start this paper with graded double Poisson
brackets since the many signs would have obscured the simplicity of the theory.
Jean-Louis Loday pointed out to me that the sign problems can be mitigated by
writing the definitions in terms of functions instead of elements. However since the
Schouten bracket has degree −1 some signs would still remain1.

So we have chosen to treat double Poisson brackets first, and then to accept
the (routine) generalizations of our statements to super Poisson brackets without
further proof or discussion.

Acknowledgment. This paper came out of discussions with Crawley-Boevey and
Alexei Bondal during the year on non-commutative algebraic geometry at the
Mittag-Leffler institute. It was Crawley-Boevey who suggested that the element
Φ occurring in the definition of a multiplicative preprojective algebra could per-
haps be interpreted as a multiplicative moment map. I am very grateful for this.
The principle that one can meaningfully study non-commutative notions through
their effect on representation spaces I learned from Lieven Le Bruyn [14].

In addition I wish to thank Victor Ginzburg, Jean-Louis Loday and Geert Van
de Weyer for interesting discussions and comments.

Jean-Louis Loday objected to my use of the term Loday algebra (taken from and
[13]) and wished me to use the original terminology of Leibniz algebras instead.

1Unless one is prepared to raise the level of abstraction by writing the formulas in terms of
operators which take functions as arguments!
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After some consideration I decided that it is never bad to name a concept after its
inventor so I left things as they were.

2. Double brackets and double Poisson algebras

2.1. Generalities. Throughout we work over a field k of characteristic zero al-
though this is not an essential condition. Unadorned tensor products are over k. If
V , W are k-vector spaces then an element a ∈ V ⊗W is written as a′ ⊗ a′′. This
is a short hand for

∑

i a
′
i ⊗ a′′i . A similar convention is sometimes used for longer

tensor products. We put a◦ = a′′ ⊗ a′, i.e. a◦ =
∑

i a
′′
i ⊗ a′i.

If (Vi)i=1,...,n are k-vector spaces and s ∈ Sn then for a = a1 ⊗ · · · ⊗ an ∈
V1 ⊗ · · · ⊗ Vn we put

τs(a) = as−1(1) ⊗ · · · ⊗ as−1(n)

so that τst(a) = τs(τt(a)).
Below we fix a k-algebra A. Throughout we denote the multiplication map

A⊗n → A by m. We will also view A⊗n as an A-bimodule via the outer bimodule
structure

b(a1 ⊗ · · · ⊗ an)c = ba1 ⊗ · · · ⊗ anc

Of course A⊗n has many other bimodule structures. For n = 2 we will frequently
use the inner bimodule structure on A⊗2 given by

b ∗ (a1 ⊗ a2) ∗ c = a1c⊗ ba2

If B is a (not necessarily commutative) k-algebra then a B-algebra will be an k-
algebra equipped with an (unnamed) k-algebra map B → A.

2.2. Double brackets.

Definition 2.2.1. A n-bracket is a linear map

{{−, · · · ,−}} : A⊗n → A⊗n

which is a derivation A→ A⊗n in its last argument for the outer bimodule structure
on A⊗n i.e.
(2.1)
{{a1, a2, . . . , an−1, ana

′
n}} = an{{a1, a2, . . . , an−1, a

′
n}} + {{a1, a2, . . . , an−1, an}}a′n

and which is cyclically anti-symmetric in the sense

τ(1···n) ◦ {{−, · · · ,−}} ◦ τ−1
(1···n) = (−1)n+1{{−, · · · ,−}}

IfA is a B-algebra then an n-bracket is B-linear if it vanishes when its last argument
is the image of B.

Clearly a 1-bracket is just a derivation A→ A. We will call a 2- and a 3-bracket
respectively a double and a triple bracket. A double bracket satisfies.

{{a, b}} = −{{b, a}}◦(2.2)

{{a, bc}} = b{{a, c}} + {{a, b}}c(2.3)

The formulas (2.2) (2.3) imply that {{−,−}} is a derivation A → A⊗ A in its first
argument for the inner bimodule structure on A⊗A. I.e.

(2.4) {{ab, c}} = a ∗ {{b, c}} + {{a, c}} ∗ b
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where by “∗” we mean the inner action. Combining (2.3)(2.4) we obtain
(2.5)

{{a1 · · · am, b1 · · · bn}} =
∑

p,q

b1 · · · bq−1{{ap, bq}}′ap+1 · · ·am⊗a1 · · · ap−1{{ap, bq}}′′bq+1 · · · bn

2.3. The double Jacobi identity. If a ∈ A, b = b1 ⊗ · · · ⊗ bn ∈ A⊗n then we
define

{{a, b}}L = {{a, b1}} ⊗ b2 ⊗ · · · ⊗ bn

{{a, b}}R = b1 ⊗ · · · ⊗ bn−1 ⊗ {{a, bn}}
Associated to a double bracket {{−,−}} we define a tri-ary operation {{−,−,−}} as
follows:

{{a, b, c}} = {{a, {{b, c}}}}L + τ(123){{b, {{c, a}}}}L + τ(132){{c, {{a, b}}}}L
Or in more intrinsic notations

{{−,−,−}} = {{−, {{−,−}}}}L+τ(123){{−, {{−,−}}}}Lτ−1
(123)+τ

2
(123){{−, {{−,−}}}}Lτ−2

(123)

So {{−,−,−}} is cyclically invariant, in the sense that

(2.6) {{−,−,−}} = τ(123) ◦ {{−,−,−}} ◦ τ−1
(123)

Proposition 2.3.1. {{−,−,−}} is a triple bracket.

Proof. The cyclic invariance property has already been established. We now check
the derivation property.

{{a, {{b, cd}}}}L = {{a, {{b, c}}d}}L + {{a, c{{b, d}}}}L
= {{a, {{b, c}}}}Ld+ {{a, c}}{{b, d}} + c {{a, {{b, d}}}}L

(2.7)

where in the second line we use the convention that (x⊗ y)(s⊗ t) = x⊗ ys⊗ t. We
will often use the same convention below.

{{b, {{cd, a}}}}L = {{b, c ∗ {{d, a}}}}L + {{b, {{c, a}} ∗ d}}L
= {{b, {{d, a}}′ ⊗ c{{d, a}}′′}}L + {{b, {{c, a}}′d⊗ {{c, a}}′′}}L
= {{b, {{d, a}}′}}′ ⊗ {{b, {{d, a}}′}}′′ ⊗ c{{d, a}}′′+

{{b, {{c, a}}′}}′ ⊗ {{b, {{c, a}}′}}′′d⊗ {{c, a}}′′ + {{c, a}}′{{b, d}}′ ⊗ {{b, d}}′′ ⊗ {{c, a}}′′

Thus we find
(2.8)
τ(123){{a, {{cd, a}}}}L = cτ(123){{b, {{d, a}}}}L + τ(123){{b, {{c, a}}}}Ld− {{a, c}}{{b, d}}

Finally

{{cd, {{a, b}}}}L = {{cd, {{a, b}}′}} ⊗ {{a, b}}′′

= c ∗ {{d, {{a, b}}′}} ⊗ {{a, b}}′′ + {{c, {{a, b}}′}} ∗ d⊗ {{a, b}}′′

= {{d, {{a, b}}′}}′ ⊗ c{{d, {{a, b}}′}}′′ ⊗ {{a, b}}′′ + {{c, {{a, b}}′}}′d⊗ {{c, {{a, b}}′}}′′ ⊗ {{a, b}}′′

which yields

(2.9) τ(132){{cd, {{a, b}}}}L = cτ(132){{d, {{a, b}}}}L + τ(132){{c, {{a, b}}}}Ld
Taking the sum of (2.7)(2.8)(2.9) yields the desired result. �
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Definition 2.3.2. A double bracket {{−,−}} on A is a double Poisson bracket if
{{−,−,−}} = 0. An algebra with a double Poisson bracket is a double Poisson
algebra.

We will call the identity {{−,−,−}} = 0 the double Jacobi identity.

Example 2.3.3. Put A = k[t]. It is easy to check that up to automorphisms of A
the only double Poisson brackets on A are given by

(2.10) {{t, t}} = t⊗ 1 − 1 ⊗ t

and

(2.11) {{t, t}} = t2 ⊗ t− t⊗ t2

These two brackets are related. Extend (2.10) to k[t, t−1] (this is possible by Propo-
sition 2.5.3 below). It turns out that the resulting double bracket preserves k[t−1]
and the corresponding restriction is precisely (2.11) up to changing the sign and
replacing t by t−1.

Assume that (2.10) holds. An easy computation shows

{{u(t), v(t)}} =
(u(t1) − u(t2))(v(t1) − v(t2))

t1 − t2

where t1 = t⊗ 1, t2 = 1 ⊗ t. From this formula it follows that any quotient of k[t]
has an induced double Poisson bracket. This is for example the case for k[t]/(tn).

2.4. Brackets associated to double brackets. If {{−, · · · ,−}} is an n-bracket
then we put {−, · · · ,−} = m ◦ {{−, · · · ,−}}. If n = 2 then we call {−,−} the
bracket associated to {{−,−}}. By definition {a, b} = {{a, b}}′ · {{a, b}}′′. It is clear
that {−,−} is a derivation in its second argument. I.e.

(2.12) {a, bc} = {a, b}c+ b{a, c}
and furthermore by (2.2)

(2.13) {b, a} ∼= −{a, b} mod [A,A]

Finally an easy computation shows

(2.14) {bc, a} = {cb, a}
Lemma 2.4.1. {−,−} induces well defined maps

(2.15) A/[A,A] ×A→ A

and

(2.16) A/[A,A] ×A/[A,A] → A/[A,A]

where the latter one is anti-symmetric.

Proof. The map (2.15) is well defined by (2.14). From (2.14) together with (2.13)
it follows that {a, bc} is symmetric in b, c modulo commutators. Thus (2.16) is well
defined as well. Its anti-symmetry follows also from (2.13). �

Proposition 2.4.2. If {{−,−}} is a double bracket on A then the following identity
holds in A⊗A.

(2.17) {a, {{b, c}}}− {{{a, b}, c}}− {{b, {a, c}}} = (m⊗ 1){{a, b, c}}− (1⊗m){{b, a, c}}
where m is the multiplication map and {a,−} acts on tensors by {a, u ⊗ v} =
{a, u} ⊗ v + u⊗ {a, v}.
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Proof. First we record a useful identity.

{{a, {{c, b}}}}R = −{{a, {{b, c}}′′ ⊗ {{b, c}}′}}R
= −{{b, c}}′′ ⊗ {{a, {{b, c}}′}}

= −τ(123)
(

{{a, {{b, c}}′}} ⊗ {{b, c}}′′
)

= −τ(123){{a, {{b, c}}}}L

(2.18)

We now compute

{a, {{b, c}}} = {a, {{b, c, }}′} ⊗ {{b, c}}′′ + {{b, c}}′ ⊗ {a, {{b, c}}′′}
= (m⊗ 1){{a, {{b, c}}}}L + (1 ⊗m){{a, {{b, c}}}}R
= (m⊗ 1){{a, {{b, c}}}}L − (1 ⊗m)τ(123){{a, {{c, b}}}}L

{{{a, b}, c}} = −{{c, {a, b}}}◦

= −τ(12)({{c, {{a, b}}′}}{{a, b}}′′ + {{a, b}}′ {{c, {{a, b}}′′}})
= −(m⊗ 1)τ(132){{c, {{a, b}}}}L − (1 ⊗m)τ(123){{c, {{a, b}}}}R
= −(m⊗ 1)τ(132){{c, {{a, b}}}}L + (1 ⊗m)τ(132){{c, {{b, a}}}}L

{{b, {a, c}}} = {{b, {{a, c}}′}}{{a, c}}′′ + {{a, c}}′{{b, {{a, c}}′′}}
= (1 ⊗m){{b, {{a, c}}}}L + (m⊗ 1){{b, {{a, c}}}}R
= (1 ⊗m){{b, {{a, c}}}}L − (m⊗ 1)τ(123){{b, {{c, a}}}}L

Collecting everything we obtain the desired result. �

Definition 2.4.3. A left Loday (or Leibniz) algebra [13, 16] is a vector space L
equipped with a bilinear operation [−,−] such that the following version of the
Jacobi identity is satisfied

[a, [b, c]] = [[a, b], c] + [b, [a, c]]

Corollary 2.4.4. Assume {{−,−}} is a double bracket on A. Then the following
identity holds in A:

(2.19) {a, {b, c}} − {{a, b}, c} − {b, {a, c}} = {a, b, c} − {b, a, c}
If {−,−,−} = 0 (e.g. when A is a double Poisson algebra) then A becomes a left
Loday algebra.

Proof. Applying the multiplication map to (2.17) we obtain (2.19) which in case
{−,−,−} = 0 yields

{a, {b, c}} = {{a, b}, c}+ {b, {a, c}}
i.e. the defining equation for a left Loday algebra. �

Remark 2.4.5. Jean-Louis Loday asks if the relations between {−,−} and {−,−,−}
can be explained by some kind of Leibniz-brace-algebra structure on A.

Corollary 2.4.6. If {{−,−}} is a a double bracket on A such that {−,−,−} = 0
then A/[A,A] equipped with the bracket {−,−} is a Lie algebra.
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2.5. Induced brackets. In this section we discuss the compatibility of double
brackets and double Poisson brackets with some natural constructions.

Proposition 2.5.1. Assume that A, {{−,−}}, A′, {{−,−}} are double brackets over
B then there is a unique double bracket on A ∗B A′ extending the double brackets
on A and A′ with the additional property

∀a ∈ A, ∀a′ ∈ A′ : {{a, a′}} = 0

If A, A′ are double Poisson then so is A ∗B A′.

Proof. Easy. �

A special case is when the bracket on A′ is trivial. In that case we obtain a A′

linear bracket on A ∗B A′. Hence we obtain:

Corollary 2.5.2. Double (Poisson) brackets are compatible with base change.

Quite similarly we have

Proposition 2.5.3. Double (Poisson) brackets are compatible with universal local-
ization. I.e. if S ⊂ A and {{−,−}} is a double bracket on A then there is a unique
extended double bracket on AS. If A is double Poisson then so is AS.

Proof. Left to the reader. �

Proposition 2.5.4. Assume that e ∈ B is an idempotent. Then a B-linear double
bracket {{−,−}} on A induces a eBe-linear double bracket on eAe. If {{−,−}} is
double Poisson then so is the induced bracket on eAe.

Proof. This follows from

{{eae, ebe}} = e{{a, b}}′e⊗ e{{a, b}}′′e �

Example 2.5.5. In [15] Lieven Le Bruyn and Geert Van de Weyer define n
√
A as

the B-algebra which represents the functor of B-algebras to sets given by

HomB(A,Mn(−))

A concrete realization of n
√
A is e(A ∗B Mn(B))e where e is the upper left corner

idempotent of Mn(k). So we obtain that if A, {{−,−}} is a double Poisson algebra

over B then there is an induced double Poisson structure on n
√
A.

Another realization of n
√
A is the algebra generated by symbols aij for a ∈ A

and i, j = 1, . . . , n which are linear in a and which satisfy in addition the following
relations

aijbjk = (ab)ik

bij = δijb if b ∈ B

where we sum over repeated indices. In this realization the double bracket on n
√
A

is given by the formula

(2.20) {{aij , buv}} = {{a, b}}′uj ⊗ {{a, b}}′′iv
Now we discuss “fusion”. This is a procedure which allows one to collapse two

idempotents into one. In the case of quivers it amount to gluing vertices. This is
explained in more detail in §6.
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Assume that e1, e2 ∈ B are orthogonal idempotents. Construct Ā from A
by formally adjoining two variables e12, e21 satisfying the usual matrix relations
euvewt = δwveut (with eii = ei). We have

Ā = A ∗ke1⊕ke2⊕kµ (M2(k) ⊕ kµ) = A ∗B B̄
where µ = 1 − e1 − e2. The fusion algebra of A along e1, e2 is defined as

Af = ǫAǫ

where ǫ = 1 − e2. Clearly Ā is a B̄-algebra and Af is a Bf -algebra. Combining
Corollary 2.5.2 and Proposition 2.5.4 we obtain:

Corollary 2.5.6. If A, {{−,−}} is a double Poisson algebra over B then there are
associated double Poisson algebras Ā and Af over B̄ and Bf respectively.

Remark 2.5.7. Although we will not use it in the sequel we record a different
realization of Af . Since Af does not depend on B we assume B = k. There is a
surjective map

2
√
A→ Af

which sends aij to ǫ1iaǫj1 where

ǫ1i =

{

ǫ if i = 1

e12 if i = 2
ǫi1 =

{

ǫ if i = 1

e21 if i = 2

To see that this map is well-defined one checks that it is compatible with the
relations in 2

√
A.

One now checks that

Af =
n
√
A/(e1,11 − e2,22, e1,12, e1,21, e1,22, e2,11, e2,12, e2,21, µ12, µ21, µ22)

The formula for the induced double Poisson bracket on Af is given by (2.20).

We recall the definition of the trace map. Let e ∈ B be an idempotent such that
BeB = B. Write 1 =

∑

i pieqi. Then we put

Tr : A→ eAe : a 7→
∑

i

eqiapie

The trace map depends on the chosen decomposition 1 =
∑

i pieqi. However it
gives a uniquely defined isomorphism

A/[A,A] → eAe/[eAe, eAe]

which is an inverse to the obvious map

eAe/[eAe, eAe] → A/[A,A]

Proposition 2.5.8. We have for a, b ∈ A

Tr{a, b} = {Tr(a),Tr(b)}
Proof. This is a simple computation.

{{Tr(a),Tr(b)}} = {{
∑

i

eqiapie,
∑

j

eqjbpje}}

=
∑

i,j

eqj(eqi ∗ {{a, b}} ∗ pie)pje

=
∑

i,j

eqj{{a, b}}′pie⊗ eqi{{a, b}}′′pje



14 MICHEL VAN DEN BERGH

and hence

{Tr(a),Tr(b)} =
∑

i,j

eqj{{a, b}}′pieqi{{a, b}}′′pje

=
∑

j

eqj{a, b}pje

= Tr{a, b}
2.6. Poisson structures and moment maps. By DerB(A,A) we denote the B-
derivations A → A and by InnB(A,A) ⊂ DerB(A,A) the subvector space of inner
derivations (i.e. those derivations which are of the form [a,−] for a in the centralizer
of B). For an arbitrary linear map

(2.21) p : A/[A,A] → DerB(A,A)/ InnB(A,A)

and for ā, b̄ ∈ A/[A,A] put

(2.22) {ā, b̄}p = p(ā)̃ (b) ∈ A/[A,A]

where p(ā)̃ is an arbitrary lift of p(ā). It is easy to show that this is well-defined.
Following Crawley-Boevey [5, Rem. 1.3] we define

Definition 2.6.1. [5] If p is as in (2.21) then we say that p is a Poisson bracket
on A over B is {ā, b̄}p is a Lie bracket on A/[A,A].

We then have the following result

Lemma 2.6.2. If A, {{−,−}} is a double Poisson bracket on A then the map

p : A/[A,A] → DerB(A)/ InnB(A) : ā 7→ {a,−}
defines a Poisson bracket of A over B.

Proof. This is a combination of (2.15) and Corollary 2.4.6. �

Remark 2.6.3. Note that a Poisson structure is in fact a map

HH0(A) → HH1(A)

where “HH” denotes Hochschild (co)homology.

The following definition will be motivated afterward. We assume that B =
ke1 ⊕ · · · ⊕ ken is semi-simple.

Definition 2.6.4. Let A, {{−,−}} be a double Poisson algebra. A moment map for
A is an element µ = (µi)i ∈ ⊕ieiAei such that for all a ∈ A we have

{{µi, a}} = aei ⊗ ei − ei ⊗ eia

A double Poisson algebra equipped with a moment map is said to be a Hamiltonian
algebra.

One application of a moment map is the following.

Proposition 2.6.5. Let A, {{−,−}}, µ be a Hamiltonian algebra. Fix λ ∈ B and
put Ā = A/(µ). Then the associated Poisson structure

p : A/[A,A] → DerB(A,A)/ InnB(A,A)

descends to a Poisson structure on Ā/[Ā, Ā]

Proof. Left to the reader. �
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It is easy to verify that the existence of a moment map is compatible with
the induction procedures described in §2.5. For further reference we record the
following.

Proposition 2.6.6. (Fusion) Assume that A, {{−,−}} is a double Poisson algebra
over B with moment map µ. Then Af considered as a double Poisson algebra over
Bf = ke1 ⊕ ke3 ⊕ · · · ⊕ ken has a moment map given by

µfi =

{

µ1 + e12µ2e21 if i = 1

µi if i ≥ 3

Proof. Left to the reader. �

2.7. Super version. As usual it is possible to define Z-graded super versions of
double Poisson algebras. As usual the signs are determined by the Koszul conven-
tion. We write |a| for the degree of a homogeneous element a of a graded vector
space.

If Vi, i = 1, . . . , n are graded vector spaces and a = a1⊗· · ·⊗an is a homogeneous
element of V1 ⊗ · · · ⊗ Vn and s ∈ Sn then

σs(a) = (−1)tas−1(1) ⊗ · · · ⊗ as−1(n)

where

t =
∑

i<j

s−1(i)>s−1(j)

|as−1(i)||as−1(j)|

Let D be a graded algebra. We will call D a double Gerstenhaber algebra if it is
equipped with a graded bilinear map

{{−,−}} : D ⊗D → D ⊗D

of degree −1 such that the following identities hold:

{{a, bc}} = (−1)(|a|−1)|b|b {{a, c}} + {{a, b}}c

{{a, b}} = −σ(12)(−1)(|a|−1)(|b|−1){{b, a}}

0 = {{a, {{b, c}}}}L+(−1)(|a|−1)(|b|+|c|)σ(123){{b, {{c, a}}}}L+(−1)(|c|−1)(|a|+|b|)σ(132){{c, {{a, b}}}}L
We will omit the routine verifications of graded generalizations of the ungraded
statements we have proved. In particular if {{a, b}} = {{a, b}}′{{a, b}}′′ then as in the
ungraded case one proves that if D, {{−,−}} is a double Gerstenhaber algebra then
D/[D,D][1] equipped with {−,−} is a graded Lie algebra.

3. Poly-vector fields and the double Schouten-Nijenhuis bracket

3.1. Generalities. In this section we assume that A is a finitely generated B-
algebra. Following [6] We define

DA/B = HomAe(ΩA/B , A⊗A) = DerB(A,A⊗A)

The bimodule structure on A ⊗ A is the outer structure. The surviving inner
bimodule structure on A⊗2 makesDA/B into an A-bimodule. PutDBA = TADA/B.
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3.2. The double Schouten-Nijenhuis bracket. Our aim is to define the struc-
ture of a double Gerstenhaber algebra on DBA.

Proposition 3.2.1. Let δ,∆ ∈ DA/B. Then

{{δ,∆}}̃ l = (δ ⊗ 1)∆ − (1 ⊗ ∆)δ

{{δ,∆}}̃ r = (1 ⊗ δ)∆ − (∆ ⊗ 1)δ = −{{∆, δ}}̃ l
define B-derivations A → A⊗3, where the bimodule structure on A⊗3 is the outer
structure.

Proof. Left to the reader. �

Since ΩA/B is finitely generated we obtain

DerB(A,A⊗3) ∼= HomAe(ΩA/B , A⊗A) ⊗A

We will view {{δ,∆}}̃ l and {{δ,∆}}̃ r as elements of DA/B ⊗k A and A ⊗k DA/B

respectively. To this end we define

{{δ,∆}}l = τ(23) ◦ {{δ,∆}}̃ l
{{δ,∆}}r = τ(12) ◦ {{δ,∆}}̃ r

and we write

{{δ,∆}}l = {{δ,∆}}′l ⊗ {{δ,∆}}′′l
{{δ,∆}}r = {{δ,∆}}′r ⊗ {{δ,∆}}′′r

(3.1)

with {{δ,∆}}′′l , {{δ,∆}}′r ∈ A, {{δ,∆}}′l, {{δ,∆}}′′r in DA/B. An easy verification shows
that

(3.2) {{δ,∆}}r = −{{∆, δ}}◦l
For a, b ∈ A, δ,∆ ∈ DA/B we put

{{a, b}} = 0

{{δ, a}} = δ(a)

{{δ,∆}} = {{δ,∆}}l + {{δ,∆}}r
(3.3)

Here we consider the righthand sides of (3.3) as elements of DAB.

Theorem 3.2.2. The definitions in (3.3) define a unique structure of a double
Gerstenhaber algebra on DBA.

Proof. Uniqueness is clear. Furthermore it is easy to see that the derivation prop-
erty and anti-symmetry of {{−,−}} have to be checked only on generators. Using (a
graded version of) Proposition 2.3.1 and (2.6) it follows that we have to check the
double Jacobi identity only on generators also. Thus we need to check the following
list of identities. For a ∈ A, α, β, γ ∈ DA/B we need

(3.4) {{α, β}} = −σ(12){{β, α}}

(3.5) {{α, aβ}} = a {{α, β}} + {{α, a}}β

(3.6) {{α, βa}} = {{α, β}}a+ β{{α, a}}

(3.7) 0 = {{a, {{α, β}}}}L + σ(123){{α, {{β, a}}}}L + σ(132){{β, {{a, α}}}}L
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(3.8) 0 = {{α, {{β, γ}}}}L + σ(123){{β, {{γ, α}}}}L + σ(132){{γ, {{α, β}}}}L
Identities (3.4)-(3.6) take place in DA/B ⊗A⊕A⊗DA/B. (3.7) takes place in A⊗3

and (3.8) takes place DA/B ⊗A⊗A⊕A⊗DA/B⊗A⊕A⊗A⊗DA/B. Taking into
account cyclic symmetry it is sufficient to prove (3.4) and (3.8) after projection on
the first factor. So it is sufficient to prove the following identities.

(3.4-1) {{α, β}}l = −σ(12){{β, α}}r

(3.5-1) {{α, aβ}}l = a {{α, β}}l

(3.5-2) {{α, aβ}}r = a {{α, β}}r + {{α, a}}β

(3.6-1) {{α, βa}}r = {{α, β}}ra

(3.6-2) {{α, βa}}l = {{α, β}}la+ β {{α, a}}

(3.7-1) 0 = {{a, {{α, β}}l}}L + σ(123){{α, {{β, a}}}}L + σ(132){{β, {{a, α}}}}L

(3.8-1) 0 = {{α, {{β, γ}}l}}l,L + σ(123){{β, {{γ, α}}r}}L + σ(132){{γ, {{α, β}}l}}r,L
We now check these identities systematically. By convention σ permutes factors
in tensor products of DBA and τ permutes factors in tensor products of A (so no
signs occur in τ).

(3.4-1) This is (3.2).
(3.5-1) We compute

{{α, aβ}}l = τ(23)((α ⊗ 1)(aβ) − (1 ⊗ aβ)α)

= τ(23)((1 ⊗ 1 ⊗ a · −)((α ⊗ 1)(β) − (1 ⊗ β)α))

= (1 ⊗ a · − ⊗ 1)τ(23)((α⊗ 1)(β) − (1 ⊗ β)α)

= a {{α, β}}l
(3.5-2) We compute

{{α, aβ}}r = τ(12)((1 ⊗ α)(aβ) − (aβ ⊗ 1)α)

= τ(12)((1 ⊗ a · − ⊗ 1)((1 ⊗ α)(β) − (β ⊗ 1)α)) + τ(12)ǫ

= (a · − ⊗ 1 ⊗ 1)τ(12)((1 ⊗ α)(β) − (β ⊗ 1)α) + τ(12)ǫ

where ǫ is a map A→ A⊗3 satisfying for c ∈ A:

ǫ(c) = β(c)′ ⊗ α(a)′ ⊗ α(a)′′β(c)′′

and thus

τ(12)ǫ(c) = (α(a)β)(c)

Here α(a) is to be interpreted as an element of A⊗A ⊂ DBA⊗DBA and β ∈ DBA
acts on DBA⊗DBA through the outer bimodule structure.

Thus we obtain

{{α, aβ}}r = (a · − ⊗ 1 ⊗ 1){{α, β}}r + α(a)β

= a {{α, β}}r + α(a)β

= a {{α, β}}r + {{α, a}}β
(3.6-1)(3.6-2) These are similar to (3.5-1)(3.5-2).
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(3.7-1) We compute the individual terms.

{{a, {{α, β}}l}}L = {{a, {{α, β}}′l}} ⊗ {{α, β}}′′l
= −τ(12){{α, β}}′l(a) ⊗ {{α, β}}′′l
= −τ(12)τ(23)((α ⊗ 1)β − (1 ⊗ β)α)(a)

= −τ(123)((α⊗ 1)β − (1 ⊗ β)α)(a)

σ(123){{α, {{β, a}}}}L = τ(123)(α⊗ 1)β(a)

σ(132){{β, {{a, α}}}}L = −τ(132)(β ⊗ 1)τ(12)α(a)

= −τ(132)τ(132)(1 ⊗ β)α(a)

= −τ(123)(1 ⊗ β)α(a)

The sum of these three terms is indeed zero.
(3.8-1) This is the most tedious computation. We compute again the individual
terms.

{{α, {{β, γ}}l}}l,L = {{α, {{β, γ}}′l}}l ⊗ {{β, γ}}′′

= τ(23)((α⊗ 1){{β, γ}}′l − (1 ⊗ {{β, γ}}′l)α) ⊗ {{β, γ}}′′l
= τ(23)((α⊗ 1){{β, γ}}l − (1 ⊗ {{β, γ}}l)α)

= τ(23)((α⊗ 1 ⊗ 1)τ(23)((β ⊗ 1)γ − (1 ⊗ γ)β) − 1 ⊗ τ(23)((β ⊗ 1)γ − (1 ⊗ γ)β)α)

= τ(23)τ(34)((α ⊗ 1 ⊗ 1)((β ⊗ 1)γ − (1 ⊗ γ)β) − 1 ⊗ ((β ⊗ 1)γ − (1 ⊗ γ)β)α)

= τ(234)((α⊗ 1 ⊗ 1)(β ⊗ 1)γ − (α⊗ 1 ⊗ 1)(1 ⊗ γ)β − (1 ⊗ β ⊗ 1)(1 ⊗ γ)α

+ (1 ⊗ 1 ⊗ γ)(1 ⊗ β)α)

σ(132){{β, {{γ, α}}r}}L = τ(13)(24)(β{{γ, α}}′r ⊗ {{γ, α}}′′r )
= τ(13)(24)((β ⊗ 1 ⊗ 1){{γ, α}}r)
= τ(13)(24)(β ⊗ 1 ⊗ 1)τ(12)((1 ⊗ γ)α− (α⊗ 1)γ)

= τ(13)(24)τ(132)(1 ⊗ β ⊗ 1)((1 ⊗ γ)α− (α⊗ 1)γ)

= τ(234)((1 ⊗ β ⊗ 1)(1 ⊗ γ)α− (1 ⊗ β ⊗ 1)(α⊗ 1)γ)

σ(132){{γ, {{α, β}}l}}r,L = τ(1432)(τ(12)((1 ⊗ γ){{α, β}}′l − ({{α, β}}′l ⊗ 1)γ) ⊗ {{α, β}}′′l )
= τ(1432)τ(12)((1 ⊗ γ ⊗ 1){{α, β}}l − τ(34)({{α, β}}l ⊗ 1)γ)

= τ(1432)τ(12)((1 ⊗ γ ⊗ 1)τ(23)((α⊗ 1)β − (1 ⊗ β)α)

− τ(34)τ(23)(((α ⊗ 1)β − (1 ⊗ β)α) ⊗ 1)γ)

= τ(1432)τ(12)τ(243)((1 ⊗ 1 ⊗ γ)((α⊗ 1)β − (1 ⊗ β)α)

− (((α ⊗ 1)β − (1 ⊗ β)α) ⊗ 1)γ)

= τ(234)((1 ⊗ 1 ⊗ γ)(α⊗ 1)β − (1 ⊗ 1 ⊗ γ)(1 ⊗ β)α− (α⊗ 1 ⊗ 1)(β ⊗ 1)γ

+ (1 ⊗ β ⊗ 1)(α⊗ 1)γ)

And again the sum of the three terms is zero. �

Remark 3.2.3. If we equip DBA with the associated single bracket {−,−} then it
follows from the above theorem and Corollary 2.4.4 that DBA is a Loday algebra.
It is easy to see that the Loday bracket on DBA is compatible with the map
DBA→ DerB A when we equip DerB A with the usual commutator bracket.
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3.3. Gauge elements. We now assume in addition that B is commutative semi-
simple. I.e.

B = ke1 ⊕ · · · ⊕ ken

such that e2i = ei. We will define some special elements Ei of DA/B which we call
“gauge elements”. This terminology will be explained in §7.9.

Ei(a) = aei ⊗ ei − ei ⊗ eia

We will also put E =
∑

iEi. Clearly Ei = eiEei.

Proposition 3.3.1. For D ∈ DBA we have

(3.9) {{Ei, D}} = Dei ⊗ ei − ei ⊗ eiD

Proof. Since DBA→ DBA⊗DBA : D → Dei⊗ei−ei⊗eiD is a graded derivation
(of degree zero) it suffices to prove (3.9) for D = a, a ∈ A and D = δ, δ ∈ DA/B.

We compute

{{Ei, a}} = Ei(a) = aei ⊗ ei − ei ⊗ eia

and

{{Ei, δ}}l(a) = τ(23)((Ei ⊗ 1)δ(a) − (1 ⊗ δ)Ei(a))

= τ(23)(δ(a)
′ei ⊗ ei ⊗ δ(a)′′ − ei ⊗ eiδ(a)

′ ⊗ δ(a)′′ + ei ⊗ δ(eia)
′ ⊗ δ(eia)

′′)

= (δei)(a) ⊗ ei

= (δei ⊗ ei)(a)

(where in the third line we use the B-linearity of δ).

{{Ei, δ}}r(a) = τ(12)((1 ⊗ Ei)δ(a) − (δ ⊗ 1)Ei(a))

= τ(12)(δ(a)
′ ⊗ δ(a)′′ei ⊗ ei − δ(a)′ ⊗ ei ⊗ eiδ(a)

′′ − δ(aei)
′ ⊗ δ(aei)

′′ ⊗ ei)

= −ei ⊗ (eiδ)(a)

= −(ei ⊗ eiδ)(a)

Taking the sum of these two expressions and letting a vary we obtain

{{Ei, δ}} = δei ⊗ ei − ei ⊗ eiδ �

3.4. Morita invariance. In this section we show that DBA/[DBA,DBA], with
its Schouten bracket, is invariant under Morita equivalence. The fact that DBA is
invariant under Morita equivalence was already proved in [6] but for the convenience
of the reader we restate the proof. We will only consider the case when the Morita
equivalence is given by an idempotent (since this is the only case we will need). It
is well-known that this implies the general case.

Lemma 3.4.1. Let M be an A bimodule and let e ∈ A be an idempotent such that
AeA = A. Then

(3.10) e(TAM)e = TeAe(eMe)

and furthermore TAMeTAM = TAM . Hence TeAe(eMe) is Morita equivalent to
TAM .
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Proof. Since AeA = A we have Ae ⊗eAe eA ∼= A. Thus for A-bimodules M , N we
obtain

e(M ⊗A N)e = eA⊗AM ⊗A Ae⊗eAe eA⊗AM ⊗A Ae
= eMe⊗eAe eNe

This implies (3.10). The second assertion is clear since TAMeTAM contains A =
AeA. �

Lemma 3.4.2. Assume e ∈ B is an idempotent such that BeB = B. Then

eDA/Be = DeAe/eBe

Proof. There is an obvious map

c : eDA/Be→ DeAe/eBe

We have to construct its inverse c−1. Write

1 =
∑

i

pieqi

with pi, qi ∈ B. Then any element a ∈ A can be written as
∑

i,j,k

pi(eqiapje)qj

Let δ ∈ DeAe/eBe. We put

c−1(δ)(a) =
∑

i,j,k

piδ(eqiapje)qj

It is easy to see that this is a well-defined element of eDA/Be and that c−1 is indeed
a two sided inverse to c. �

Using lemma 3.4.1 we obtain that there is an isomorphism

DeBe(eAe) = eDBAe

Proposition 3.4.3. Assume e ∈ B is an idempotent such that BeB = B. Then
the Schouten bracket on DBA restricted to e(DBA)e = DeBe(eAe) coincides with
the Schouten bracket on DeBe(eAe).

Proof. Since e(DBA)e = TeAe(eDA/Be) it suffices to check that the Schouten
bracket onDeAe/eBe and the restricted Schouten bracket on eDA/Be coincide. Since
δ ∈ eDA/Be restricts to a derivation eAe → eAe ⊗ eAe it is easy to see that both
Schouten brackets are given by the same formulas. �

3.5. Hamiltonian vector fields. Assume that A is a equipped with a B-linear
double bracket. If a ∈ A then we write Ha = {{a,−}}. We call Ha the Hamiltonian
vector field corresponding to a. Using this notation we may write

(3.11) {{a, b}} = Ha(b)

Proposition 3.5.1. The following are equivalent

(1) {{−,−}} is a double Poisson bracket.
(2) The following identity holds for all a, b ∈ A.

{{Ha, Hb}}l = H{{a,b}}′ ⊗ {{a, b}}′′
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(3) The following identity holds for all a, b ∈ A.

{{Ha, Hb}}r = {{a, b}}′ ⊗H{{a,b}}′′′

(4) The following identity holds for all a, b ∈ A.

{{Ha, Hb}} = H{{a,b}}

where we use the convention Hx′⊗x′′ = Hx′ ⊗ x′′ + x′ ⊗Hx′′ .

Proof. We first prove the equivalence of (1) and (2). We have to rewrite the ex-
pression for the associated triple bracket

(3.12) {{a, b, c}} = {{a, {{b, c}}}}L + τ123{{b, {{c, a}}}}L + τ132{{c, {{a, b}}}}L
For the first term we use

{{a, {{b, c}}}}L = (Ha ⊗ 1)Hb(c)

For the second term we use

{{b, {{c, a}}}}L = −(Hb ⊗ 1)((Ha(c))
◦)

and hence

τ123{{b, {{c, a}}}}L = −τ123(Hb ⊗ 1)τ12(Ha(c))

= −τ123τ132(1 ⊗Hb)Ha(c)

= −(1 ⊗Hb)Ha(c)

For the third term we use

{{h, x′ ⊗ x′′}}L = {{h, x′}} ⊗ x′′

= −{{x′, h}}◦ ⊗ x′′

= −(Hx′h)◦ ⊗ x′′

and thus

{{c, {{a, b}}}}L = −(H{{a,b}}′c)◦ ⊗ {{a, b}}′′

and hence

τ132{{c, {{a, b}}}}L = −τ132τ12(H{{a,b}}′c) ⊗ {{a, b}}′′

= −τ23(H{{a,b}}′c⊗ {{a, b}}′′)
So we get that {{a, b, c}} is equal to

(Ha ⊗ 1)Hb(c) − (1 ⊗Hb)Ha(c) − τ23(H{{a,b}}′c⊗ {{a, b}}′′) = {{Ha, Hb}}̃l − τ23(H{{a,b}}′c⊗ {{a, b}}′′)
= τ23({{Ha, Hb}}l −H{{a,b}}′(−) ⊗ {{a, b}}′′)(c)

To prove the implication (2)⇒(3) we use (3.2). Assuming (2) we obtain

{{Ha, Hb}}r = −{{Hb, Ha}}◦l
= −{{b, a}}′′ ⊗H{{b,a}}′

= {{a, b}}′ ⊗H{{a,b}}′′

The implication (3)⇒(2) is proved in the same way. (4) is the sum of (2) and (3).
To go back we regard (4) as an identity in DBA ⊗A + A ⊗DBA. The projection
on the two terms yields (2) and (3). �
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4. The relation between poly-vector fields and brackets

4.1. Generalities. We assume that A is a finitely generated B-algebra.

Proposition 4.1.1. There is a well defined linear map

(4.1) µ : (DBA)n → {B-linear n-brackets on A} : Q 7→ {{−, · · · ,−}}Q
which on Q = δ1 · · · δn is given by

{{−, · · · ,−}}Q =
n−1
∑

i=0

(−1)(n−1)iτ i(1···n) ◦ {{−, · · · ,−}}̃Q ◦ τ−i(1···n)

where

(4.2) {{a1, · · · , an}}̃Q = δn(an)
′δ1(a1)

′′⊗δ1(a1)
′δ2(a2)

′′⊗· · ·⊗δn−1(an−1)
′δn(an)

′′

This map factors through DBA/[DBA,DBA].

Proof. This follows easily from the following alternative formula

{{a1, · · · , an}}δ1···δn
=

n−1
∑

i=0

(−1)(n−1)i{{a1, · · · , an}}̃ δn−i+1···δn···δ1···δn−i
�

Slightly generalizing [10] let us say that A/B is smooth ifA/B is left and right flat
and ΩA/B is a projective A-bimodule (in addition to A/B being finitely generated).

Proposition 4.1.2. If A/B is smooth then µ is an isomorphism.

Proof. To prove this it will be convenient to work in slightly greater generality.
Let M be an A-bimodule. We put M∗ = HomAe(M,A ⊗ A) where we use the

outer bimodule structure on A⊗2. We view M∗ as an A-bimodule through the inner
bimodule structure on A⊗2.

We will consider M⊗n as a (Ae)⊗n-modules where the the i’th copy of Ae acts
on the i’th copy of M . We will also consider an (Ae)⊗n-module [A⊗(n+1)] which is
equal to A⊗n+1 as vector space and where the i’th copy of Ae act as follows

(a′ ⊗ a′′)(a1 ⊗ · · · ⊗ an) = a1 ⊗ · · · ⊗ aia
′′ ⊗ a′ai+1 ⊗ · · · ⊗ an

All these bimodule structures commute with the outer bimodule structure on [A⊗(n+1)].
There is a morphism of A-bimodules

Ψ : (M∗)⊗An → Hom(Ae)⊗n(M⊗n, [A⊗(n+1)])

given by

φ1⊗· · ·⊗φn 7→
(

m1⊗· · ·⊗mn 7→ φ1(m1)
′′⊗φ1(m1)

′φ2(m2)
′′⊗· · ·⊗φn−1(mn−1)

′φn(mn)
′′⊗φn(mn)

′
)

In case M is a finitely generated projective bimodule then this is an isomorphism.
To prove this one may assume M = A⊗k A, in which case it is easy.

Let [A⊗n] be the (Ae)⊗n-module which is A⊗n as a vector space and where the
i’th copy of Ae for i = 1, . . . , n− 1 acts as on [A⊗n+1] but where the n’t copy acts
by the outer bimodule structure. The map

a1 ⊗ · · · ⊗ an+1 → an+1a1 ⊗ · · · ⊗ an

gives an isomorphism

[A⊗(n+1)] ⊗Ae A ∼= [A⊗n]
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We define ψ as the composition

(M∗)⊗An ⊗Ae A
Ψ⊗1−−−→ Hom(Ae)⊗n(M⊗n, [A⊗(n+1)]) ⊗Ae A

can.−−→ Hom(Ae)⊗n(M⊗n, [A⊗(n+1)] ⊗Ae A) ∼= Hom(Ae)⊗n(M⊗n, [A⊗n])

It is clear that ψ will also be an isomorphism if M is finitely generated projective.
The cyclic group Cn acts on (M∗)⊗An ⊗Ae A by

σ(1···n)(φ1 ⊗ · · · ⊗ φn) = (−1)n−1φn ⊗ φ1 ⊗ · · ·φn−1

An easy verification shows that the following diagram is commutative.

(M∗)⊗An ψ−−−−→ Hom(Ae)⊗n(M⊗n, [A⊗n)])

σ(1···n)





y





y

(−1)n−1τ(1···n)−τ
−1
(1···n)

(M∗)⊗An ψ−−−−→ Hom(Ae)⊗n(M⊗n, [A⊗n)])

Let inv and coinv denote respectively the signed invariants and coinvariants for the
action of Cn. We view TAM

∗ as a graded ring with M∗ in degree 1. In that case
we have

(TAM
∗/[TAM

∗, TAM
∗])n = coinv

(

(M∗)⊗An ⊗Ae A
)

where [−,−] means signed commutators.
We define µ as the composition of the maps.

(TAM
∗/[TAM

∗, TAM
∗])n = coinv

(

(M∗)⊗An ⊗Ae A
) ψ−→ coinv Hom(Ae)⊗n(M⊗n, [A⊗n)])

trace−−−→ inv Hom(Ae)⊗n(M⊗n, [A⊗n)])

If M is finitely generated projective then µ is an isomorphism. φ1 ⊗A · · · ⊗A φn is
mapped under µ to

(4.3)
∑

i

(−1)(n−1)iτ i(1···n) ◦ Φ ◦ τ−i(1···n)

where

Φ(m1⊗· · ·⊗mn) = φn(mn)
′φ1(m1)

′′⊗φ1(m1)
′φ2(m2)

′′⊗· · ·⊗φn−1(mn−1)
′φn(mn)′′

Now consider the case M = ΩA/B. In that case there is an isomorphism

inv Hom(Ae)⊗n(Ω⊗n, [A⊗n)]) ∼= {B-linear n-brackets on A} :

which maps θ ∈ Hom(Ae)⊗n(Ω⊗n, [A⊗n)]) to the bracket

{{a1, . . . , an}} = θ(da1 ⊗ · · · ⊗ dan)

Composing this identification with the map µ defined by (4.3) gives us precisely
(4.1). �

4.2. Compatibility.

Proposition 4.2.1. For Q ∈ (DBA)n the following identity holds

{{a1, . . . , an}}Q = (−1)
n(n−1)

2 {{a1, . . . , {{an−1, {Q, an}}}L · · ·}}L
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Proof. It suffices to prove this for Q = δ1 · · · δn with δi ∈ DBA. We compute

{δ1 · · · δn, an} = (−1)n−1δ1(an)
′δ2 · · · δnδ1(an)′′+(−1)n−2δ2(an)

′δ3 · · · δnδ1δ2(an)′′+· · ·
+ δn(an)

′δ1 · · · δn−1δn(an)′′

We concentrate on the last term. The other terms are obtained by cyclically per-
muting the δ’s. We find

{{a1, . . . , {{an−1, δn(an)
′δ1 · · · δn−1δn(an)

′′}}L · · ·}}L
= (−1)

n(n−1)
2 δn(an)′δ1(a1)

′′⊗δ1(a1)
′δ2(a2)

′′⊗δ2(a2)
′ · · · δn−1(an−1)

′′⊗δn−1(an−1)
′δn(an)

′′

= (−1)
n(n−1)

2 {{a1, . . . , an}}̃ δ1···δnδn

We find

{{a1, . . . , {{an−1, {δ1 · · · δn, an}}}L · · ·}}L = (−1)
n(n−1)

2 {{a1, . . . , an}}δ1···δn

which is what we want. �

Proposition 4.2.2. Let P ∈ (DBA)2. We have the following identity for a, b, c ∈
A:

−(1/2){{a, {{b, {{P, P}, c}}}}}L = {{a, {{b, c}}P }}P,L+τ(123){{b, {{c, a}}P }}P,L+τ(132){{c, {{a, b}}P }}P,L
Proof. By (the graded version of) (2.19) we have

{{P, P}, c} = 2{P, {P, c}}
and by (2.17)

{{b, {P, {P, c}}}} = −{P, {{b, {P, c}}}} + {{{P, b}, {P, c}}}
We now apply {{a,−}}L to the individual terms.

{{a, {P, {{b, {P, c}}}}}}L = {{a, {P, {{b, {P, c}}}′}}} ⊗ {{b, {P, c}}}′′

= {{{P, a}, {{b, {P, c}}}′}} ⊗ {{b, {P, c}}}′′

= {{a, {{b, c}}P }}P,L
where in the second line we have used the graded version of (2.17) in the form of
the formula

(4.4) {{{P, a}, x} = {{a, {P, x}}}
In the third line we have once more used this identity.

Recall that the grading on DBA is shifted so P, a both have odd degree. This
explains the signs.

A similar computation yields

{{a, {{{P, b}, {P, c}}}}}L = −σ(123){{{P, b}, {{{P, c}, a}}}}L − σ(132){{{P, c}, {{a, {P, b}}}}}L
= −τ(123){{b, {{c, a}}P }}P,L − τ(132){{c, {{a, b}}P }}P,L

Collecting everything proves the proposition. �

Summarizing we obtain

Theorem 4.2.3. Let P ∈ (DBA)2. Then one has

{{a, b, c}}1/2{P,P} = {{a, {{b, c}}P }}P,L+τ(123){{b, {{c, a}}P }}P,L+τ(132){{c, {{a, b}}P }}P,L
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4.3. The trace map. As above let e ∈ B be an idempotent such that BeB. We
have an associated trace map

Tr : DBA/[DBA,DB] → eDBAe/[eDBAe, eDBe] = DeBe(eAe)/[DeBe(eAe), DeBe(eAe)]

respecting {−,−} by Propositions 2.5.8 and 3.4.3.
Furthermore one has

{{−, · · · ,−}}Q = {{−, · · · ,−}}Tr(Q)

since Tr(Q) =
∑

i eqiQpie (with the notations of §2.5) and hence

{{−, · · · ,−}}Tr(Q) = {{−, · · · ,−}}P

i eqiQpie

= {{−, · · · ,−}}P

i pieqiQ

= {{−, · · · ,−}}Q

4.4. Differential double Poisson algebras.

Definition 4.4.1. We say that A is a differential double Poisson algebra (DDP)
over B if it is equipped an element P ∈ (DBA)2 (a differential double Poisson
bracket) such that

(4.5) {P, P} = 0 mod [DBA,DBA]

If A,P is a differential double Poisson algebra then by Theorem 4.2.3 A is a
double Poisson algebra with double bracket {{−,−}}P . From Proposition 4.1.2 it
follows that in the smooth case the notions of differential double Poisson algebra
and double Poisson algebra are equivalent. This is not true in the non-smooth case
as the following example shows.

Example 4.4.2. Let A = k[ǫ]/(ǫ2), B = k. According to Example 2.3.3 A has a
double Poisson bracket given by {{ǫ, ǫ}} = ǫ⊗ 1 − 1 ⊗ ǫ.

On the other hand it easy to check that every element of Der(A,A⊗A) sends ǫ
to kǫ⊗ ǫ. Using (4.2) we deduce that if P ∈ (DBA)2 then {{ǫ, ǫ}}P = 0. So {{−,−}}
is not differential.

Proposition 4.4.3. If P ∈ (DBA)2 is a differential double Poisson bracket then
µ ∈ ⊕ieiAei is a moment map (cfr. Definition 2.6.4) for {{−,−}}P if and only if

{P, µi} = −Ei
Proof. By Proposition 4.2.1 and (4.4) we have

{{µi, a}}P = −{{{P, µi}, a}} = −{P, µi}(a)

Thus µ is indeed a moment map if and only if {P, µi} = −Ei. �

It seems logical to call a differential double Poisson algebra equipped with a
moment map a differential Hamiltonian algebra.

5. Double quasi-Poisson algebras

We now we introduce a twisted version of double Poisson algebras. For simplicity
we assume throughout that B = ke1 ⊕ · · · ⊕ ken is semi-simple.



26 MICHEL VAN DEN BERGH

5.1. General definitions.

Definition 5.1.1. A double quasi-Poisson bracket on A (over B) is a B-linear
bracket {{−,−}} such that

{{−,−,−}} =
1

12

∑

i

{{−,−,−}}E3
i

We say that A is a double quasi-Poisson algebra over A if A is equipped with a
double quasi-Poisson bracket.

Proposition 5.1.2. If A, {{−,−}} is a double quasi-Poisson algebra then A, {−,−}
is a left Loday algebra.

Proof. According to Corollary 2.4.4 we have to show

{−,−,−}E3
i

= 0

This identity is immediate from the definition. �

In a similar way we obtain

Lemma 5.1.3. If A, {{−,−}} is a double quasi-Poisson algebra then {−,−} induces
a Poisson structure on A.

Proof. This is proved as Lemma 2.6.2. �

Definition 5.1.4. Let A, {{−,−}} be a double quasi-Poisson algebra. A multiplica-
tive moment map for A is an element Φ = (Φi)i ∈ ⊕ieiAei such that for all a ∈ A
we have

{{Φi, a}} =
1

2
(ΦiEi + EiΦi)(a)

A double quasi-Poisson algebra equipped with a moment map is said to be a quasi-
Hamiltonian algebra.

Proposition 5.1.5. Let A, {{−,−}},Φ be a quasi-Hamiltonian algebra. Fix q ∈ B∗

and put Ā = A/(Φ − q). Then the associated Poisson structure

p : A/[A,A] → DerB(A,A)/ InnB(A,A)

descends to a Poisson structure on Ā/[Ā, Ā]

Proof. Left to the reader. �

5.2. Differential versions.

Definition 5.2.1. We say that A is a differential double quasi-Poisson algebra
(DDQP-algebra) over B-algebra A if A is equipped with an element P ∈ (DBA)2
(a differential double quasi-Poisson bracket) such that

(5.1) {P, P} =
1

6

n
∑

i=1

E3
i mod [DBA,DBA]

It follows from Theorem 4.2.3 that a DDQP-algebra is a double quasi-Poisson
algebra. For smooth algebras the two notions are equivalent by Proposition 4.1.2.
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Proposition 5.2.2. If P ∈ (DBA)2 is a double quasi-Poisson bracket then Φ ∈
⊕ieiAei is a multiplicative moment map for {{−,−}}P if and only if

{P,Φi} = −1

2
(EiΦi + ΦiEi)

in DA/B.

Proof. This is similar to the proof of 4.4.3. �

A differential quasi-Hamiltonian algebra is a quasi-Hamiltonian algebra where
the double bracket coming from an element of (DBA)2.

5.3. Calculus on fusion algebras. In this section the notations are as in §2.5.
Our aim is to show that if A is double quasi-Poisson algebra or a quasi-Hamiltonian
algebra over B then the same is true for the fused algebra Af . Why this is to be
expected will be explained in §7.10. The methods in this section are basically
translations of the methods in [1, §5].

The non-quasi-versions of these methods are easy and have been treated in Corol-
lary 2.5.6 and Proposition 2.6.6. The quasi-case is more tricky notation wise. For
this reason we will restrict ourselves to the differential case.

Extending derivations yields a canonical map

DA/B → DĀ/B̄

and hence a corresponding map

¯(−) : DBA→ DB̄Ā

We will often identify DBA with its image in DB̄Ā. It is easy to see that ¯(−) is
compatible with the Schouten bracket.

By composition we define a map

(−)f : DBA→ DBf (Af ) : P 7→ Tr(P̄ )

where we compute Tr using the decomposition 1 = 1 · ǫ ·1− e21ǫe12. It follows from
§4.3 that (−)f is compatible with Schouten brackets.

For convenience we now define some operators in DĀ/B̄. In order to avoid con-

fusing notations we define Fi ∈ DǫBǫ(ǫAǫ) for i 6= 2 by Fi(a) = aei ⊗ ei − ei ⊗ eia

Note that Efi = Fi for i > 2 but this is not case for i = 1.
In this section we prove the following two results.

Theorem 5.3.1. Assume that A,P is a differential double quasi-Poisson algebra
over B. Then Af , P ff with

(5.2) P ff = P f − 1

2
Ef1E

f
2

is a differential double quasi-Poisson algebra.

Theorem 5.3.2. Assume that A,P,Φ is a differential quasi-Hamiltonian algebra
over B. Then Af , P ff ,Φff with P ff as in (5.2) and with

Φffi =

{

Φf1Φf2 if i = 1

Φfi if i > 2

is a differential quasi-Hamiltonian algebra over Bf .
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The proof of these theorems needs some preparation. We put

E = Ē1

Ê = e12Ē2e21

Lemma 5.3.3. We have for a ∈ ǫĀǫ

(E + Ê)(a) = ae1 ⊗ e1 − e1 ⊗ e1a

Proof. Both sides of the equation are derivations in a. Hence it suffices to check the
identity on generators for ǫĀǫ. It is easy to check that these generators are given
by

t for t ∈ ǫAǫ

e12u for u ∈ e2Aǫ

ve21 for v ∈ ǫAe2

e12we21 for w ∈ e2Ae2

We compute

(E + Ê)(t) = Ē1(t) + (e12Ē2e21)(t)

= te1 ⊗ e1 − e1 ⊗ e1t

(E + Ê)(e12u) = e12Ē1(u) + e12(e12Ē2e21)(u)

= e12ue1 ⊗ e1 − e1 ⊗ e12u

(E + Ê)(ve21) = Ē1(v)e21 + (e12Ē2e21)(v)e21

= −e1 ⊗ e1ve21 + ve21 ⊗ e1

(E + Ê)(e12we21) = e12Ē1(w)e21 + e12(e12Ē2e21)(w)e21

= e12we21 ⊗ e1 − e1 ⊗ e12we21

In each of the cases we find the correct result. �
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We now compute the Schouten brackets between the operators E, Ē.

{{E,E}} = {{Ē1, Ē1}}
= {{E1, E1}}
= E1 ⊗ e1 − e1 ⊗ E1 (by (3.9))

= E ⊗ e1 − e1 ⊗ E

{{E, Ê}} = e12{{Ē1, Ē2}}e21
= e12 {{E1, E2}} e21
= e12 (E2e1 ⊗ e1 − e1 ⊗ e1E2) e21

= 0

{{Ê, Ê}} = e12(e12 ∗ {{Ē2, Ē2}} ∗ e21)e21
= e12(e12 ∗ {{E2, E2}} ∗ e21)e21
= e12(e12 ∗ (Ē2 ⊗ e2 − Ē2 ⊗ e2) ∗ e21)e21
= e12Ē2e21 ⊗ e1 − e1 ⊗ e12Ē2e21

= Ê ⊗ e1 − e1 ⊗ Ê

We also need the following Schouten bracket.

{{EÊ,EÊ}} = {{EÊ,E}}Ē − E{{EÊ, Ê}}
= ({{E,E}} ∗ Ê)Ê − E(E ∗ {{Ê, Ê}})
= EÊ ⊗ Ê + Ê ⊗ EÊ + EÊ ⊗ E + E ⊗ EÊ

Hence

{EÊ,EÊ} = 2EÊ2 + 2E2Ê mod [DB̄Ā,DB̄Ā]

For P ∈ (DBA)2 we compute

{{EÊ, P̄}} = −{{E, P̄}} ∗ Ê + E ∗ {{Ê, P̄}}
= −{{E1, P}} ∗ Ê + E ∗ (e12 ∗ {{E2, P}} ∗ e21)
= −(P̄ e1 ⊗ e1 − e1 ⊗ e1P̄ ) ∗ Ê + E ∗ (e12 ∗ (P̄ e2 ⊗ e2 − e2 ⊗ e2P̄ ) ∗ e21)
= −P̄ Ê ⊗ e1 + Ê ⊗ e1P̄ + P̄ e21 ⊗ Ee12 − e21 ⊗ Ee12P̄

Hence

{EÊ, P̄} = 0 mod [DB̄Ā,DB̄Ā]

Proof of Theorem 5.3.1. Note that Ef1 = E, Ef2 = Ê and Ef1E
f
2 = EÊ (here and

below we view E, Ê, EÊ as elements of DeBe(eAe)).
The result of Lemma 5.3.3 may be rewritten as

(5.3) Ef1 + Ef2 = F1

Using the fact that ǫĒ2 = 0 we have

(En2 )f = Tr(Ēn2 ) = e12Ē
n
2 e21 = Ên

A similar computation yields.

(En1 )f = Tr(Ēn1 ) = En
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Finally we have for i > 2

(Eni )f = Fni

Applying (−)f to the identity

{P, P} =
1

6

∑

i

E3
i

yields

{P f , P f} =
1

6
E3 +

1

6
Ê3 +

1

6

∑

i>2

F 3
i

We compute (modulo commutators)

{

P f − 1

2
Ef1E

f
2 , P

f − 1

2
Ef1E

f
2

}

=

{

P f − 1

2
EÊ, P f − 1

2
EÊ

}

= Tr

{

P̄ − 1

2
EÊ, P̄ − 1

2
EÊ

}

= Tr{P̄ , P̄} +
1

2
Tr(EÊ2) +

1

2
Tr(E2Ê)

= {P f , P f} +
1

2
EÊ2 +

1

2
E2Ê

=
1

6
(E + Ê)3 +

1

6

∑

i>2

F 3
i

=
1

6
F 3

1 +
1

6

∑

i>2

F 3
i

=
1

6

∑

i6=2

F 3
i

This finishes the proof. �

Proof of Theorem 5.3.2. We need to prove

{P ff ,Φffi } = −1

2
(FiΦi + ΦiFi)

Since the case i > 2 is easy we assume i = 1. In that case we have to prove.

(5.4)

{

P f − 1

2
Ef1E

f
2 ,Φ

f
1Φf2

}

= −1

2
(F1Φ

f
1Φf2 + Φf1Φf2F1)

We compute the left hand side of this equation. We have
{

P f − 1

2
Ef1E

f
2 ,Φ

f
1Φf2

}

= Tr

{

P̄ − 1

2
EÊ,ΦΦ̂

}

where Φ = Φ̄1, Φ̂ = e12Φ̄2e21.
We compute

{P̄ ,ΦΦ̂} = {P̄ ,Φ}Φ̂ + Φ{P̄ , Φ̂}
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where

{P̄ ,Φ} = {P,Φ1}

= −1

2
(E1Φ1 + Φ1E1)

= −1

2
(EΦ + ΦE)

and

{P̄ , Φ̂} = {P̄ , e12Φ̄2e21}
= e12 {P,Φ2} e21

= −1

2
e12(E2Φ2 + Φ2E2) e21

= −1

2
(ÊΦ̂ + Φ̂Ê)

Taking things together we find

{P̄ ,ΦΦ̂} = −1

2
(EΦ + ΦE)Φ̂ − 1

2
Φ(ÊΦ̂ + Φ̂Ê)

= −1

2
EΦΦ̂ − 1

2
ΦEΦ̂ − 1

2
ΦÊΦ̂ − 1

2
ΦΦ̂Ê

(5.5)

Next we compute {EÊ,ΦΦ̂}. We need the following preliminary results.

{{E,Φ}} = {{E1,Φ1}}
= Φ ⊗ e1 − e1 ⊗ Φ

{{E, Φ̂}} = e12 {{E1,Φ2}} e21
= e12 (Φ2 ⊗ e1 − e1 ⊗ Φ2) e21

= 0

{{Ê,Φ}} = e12 ∗ {{E2,Φ1}} ∗ e21
= e12 ∗ (Φ1 ⊗ e2 − e2 ⊗ Φ1) ∗ e21
= 0

{{Ê, Φ̂}} = e12(e12 ∗ {{E2,Φ2}} ∗ e21)e21
= e12(e12 ∗ (Φ2 ⊗ e2 − e2 ⊗ Φ2) ∗ e21)e21
= Φ̂ ⊗ e1 − e1 ⊗ Φ̂

We then compute

{{EÊ,ΦΦ̂}} = Φ{{EÊ, Φ̂}} + {{EÊ,Φ}}Φ̂
= Φ(E ∗ {{Ê, Φ̂}} − {{E, Φ̂}} ∗ Ê) + (E ∗ {{Ê,Φ}} − {{E,Φ}} ∗ Ê)Φ̂

= Φ(E ∗ (Φ̂ ⊗ e1 − e1 ⊗ Φ̂)) − ((Φ ⊗ e1 − e1 ⊗ Φ) ∗ Ê)Φ̂

= ΦΦ̂ ⊗ E − Φ ⊗ EΦ̂ − ΦÊ ⊗ Φ̂ + Ê ⊗ ΦΦ̂

and hence

(5.6) {EÊ,ΦΦ̂} = ΦΦ̂E − ΦEΦ̂ − ΦÊΦ̂ + ÊΦΦ̂
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Combining (5.5) and (5.6) we obtain
{

P̄ − 1

2
EÊ,ΦΦ̂

}

= −1

2
EΦΦ̂ − 1

2
ΦEΦ̂ − 1

2
ΦÊΦ̂ − 1

2
ΦΦ̂Ê

− 1

2
ΦΦ̂E +

1

2
ΦEΦ̂ +

1

2
ΦÊΦ̂ − 1

2
ÊΦΦ̂

= −1

2
EΦΦ̂ − 1

2
ΦΦ̂E − 1

2
ÊΦΦ̂ − 1

2
ΦΦ̂Ê

and hence we obtain

LHS (5.4) = Tr

{

P̄ − 1

2
EÊ,ΦΦ̂

}

= −1

2
Ef1 Φf1Φf2 − 1

2
Φf1Φf2E

f
1 − 1

2
Ef2 Φf1Φf2 − 1

2
Φf1Φf2E

f
2

= −1

2
F1Φ

f
1Φf2 − 1

2
Φf1Φf2F1

= RHS (5.4) �

6. Quivers

6.1. Generalities. Below Q = (Q, I, h, t) is a finite quiver with vertex set I =
{1, . . . , n} and edge set Q. The maps t, h : Q → I associate with every edge its
start and end. We extend the definitions of h, t to paths in Q. By ei we denote
the idempotent associated to the vertex i and we put B = ⊕ikei. We let Q̄ be
the double of Q. Q̄ is obtained from Q by adjoining for every arrow a an opposite
arrow a∗. We define ǫ : Q̄ → {±1} as the function which is 1 on Q and −1 on
Q̄−Q. Note that kQ/B is smooth so we don’t have to make a difference between
differential and ordinary notions (see §5.2) in the case of quivers.

6.2. Vector fields and the Schouten bracket. Let A = kQ. For a ∈ Q we
define the element ∂

∂a ∈ DBA which on b ∈ Q acts as

∂b

∂a
=

{

et(a) ⊗ eh(a) if a = b

0 otherwise

It is clear that DA/B is generated by
(

∂
∂a

)

a∈Q
as an A-bimodule. Hence DBA is

the tensor algebra over A generated by
(

∂
∂a

)

a
.

Proposition 6.2.1. Let a, b ∈ Q. Then

{{a, b}} = 0

{{ ∂

∂a
, b

}}

=

{

et(a) ⊗ eh(a) if a = b

0 otherwise
{{ ∂

∂a
,
∂

∂b

}}

= 0

Proof. Only the third equality is not immediately obvious. But a quick check of
the definitions reveals that {{ ∂∂a , ∂∂b}}(c) = 0 for any c ∈ Q. �

Proposition 6.2.2. (1) For δ ∈ DA/B we have the equality in DBA:

(6.1) δ =
∑

a∈Q

δ(a)′′
∂

∂a
δ(a)′
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(2) For i = 1, . . . , n we have the equality:

(6.2) Ei =
∑

a∈Q,h(a)=i

∂

∂a
a−

∑

a∈Q,t(a)=i

a
∂

∂a

Proof. (1) Let b ∈ Q. Evaluated on b (6.1) can be rewritten as

δ(b) = δ(b)′′ ∗ (et(b) ⊗ eh(b)) ∗ δ(b)′

The right hand side of this equation is equal to et(b)δ(b)
′ ⊗ δ(b)′′eh(b) =

δ(et(b)beh(b)) = δ(b).
(2) If we substitute δ = Ei in (6.1) then we obtain

Ei =
∑

a∈Q

ei
∂

∂a
aei − eia

∂

∂a
ei

=
∑

a∈Q,h(a)=i

∂

∂a
a−

∑

a∈Q,t(a)=i

a
∂

∂a

�

Remark 6.2.3. The expression for Ei can be conveniently rewritten as follows. Put
E =

∑

iEi. Then

E =
∑

a∈Q

[

∂

∂a
, a

]

6.3. Hamiltonian structure.

Theorem 6.3.1. A = kQ̄ has a Hamiltonian structure given by

(6.3) P =
∑

a∈Q

∂

∂a

∂

∂a∗

µ =
∑

a∈Q

[a, a∗]

Proof. The fact that {P, P} = 0 is trivial. For the moment map property we
compute

{{P, a}} = −(et(a) ⊗ eh(a)) ∗
∂

∂a∗

{{P, a∗}} =
∂

∂a
∗ (eh(a) ⊗ et(a))

whence

{P, a} = − ∂

∂a∗

{P, a∗} =
∂

∂a
Thus

{P, µ} =
∑

a∈Q

[{P, a}, a∗] + [a, {P, a∗}]

=
∑

a∈Q

−
[

∂

∂a∗
, a∗

]

+

[

a,
∂

∂a

]

= −E �
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6.4. The necklace Loday algebra. A simple computation yields the following
formula for the induced double Poisson bracket on kQ̄. Let a ∈ Q.

{{a, a∗}}P = eh(a) ⊗ et(a)

{{a∗, a}}P = −et(a) ⊗ eh(a)

and all other double brackets are zero.
The double bracket on paths is pictorially given as follows:





















































































a

x

y

,
a∗

z

t





















































































=

∑

a∈Q̄

ǫ(a)

y

z

⊗

x

t

where the black and white dots represent identical vertices.
The double Poisson structure on kQ̄ induces a left Loday algebra structure

{−,−} on kQ̄.

Proposition 6.4.1. For oriented paths x, y in Q̄ we have {x, y} = 0 if x is not
closed. Otherwise the bracket can be pictorially represented as follows











































a
,

a∗











































=

∑

a∈Q̄

ǫ(a)

If we restrict this bracket to closed paths we obtain the so-called necklace Lie
algebra structure on kQ̄/[kQ̄, kQ̄] [4, 11, 12].
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6.5. Quasi-Hamiltonian structure for a very simple quiver. In this section
we consider the quiver Q given by

1
a

**
2

a∗

jj

We let A be the path algebra of kQ with e1+aa∗ and e2+a∗a inverted. By inverted
we mean that we introduce elements I, J such that I = Ie1 = e1I, J = Je2 = e2J
and I(e1 + aa∗) = (e1 + aa∗)I = e1 and J(e2 + a∗a) = (e2 + a∗a)J = e2. Below we
denote use the notation (e1 + aa∗)−1 and (e2 + a∗a)−1 for I and J (commiting an
abuse of notation).

Theorem 6.5.1. A has a quasi-Hamiltonian structure given by

P =
∂

∂a

∂

∂a∗
+

1

2

(

a
∂

∂a

∂

∂a∗
a∗ − a∗

∂

∂a∗
∂

∂a
a

)

(6.4)

=
1

2
(1 + a∗a)

∂

∂a

∂

∂a∗
− 1

2
(1 + aa∗)

∂

∂a∗
∂

∂a
mod [−,−](6.5)

Φ = (1 + aa∗)(1 + a∗a)−1(6.6)

Proof. We first consider the quasi-Poisson structure. For simplicity we introduce
the following elements of DA/B.

U = a
∂

∂a

V =
∂

∂a
a

U∗ = a∗
∂

∂a∗

V ∗ =
∂

∂a∗
a∗

Then P becomes

P =
∂

∂a

∂

∂a∗
+

1

2
(UV ∗ − U∗V )

We have to prove

(6.7) {P, P} =
1

6
(E3

1 + E3
2 ) mod [−,−]

By (6.2) we have

E1 =
∂

∂a∗
a∗ − a

∂

∂a
= V ∗ − U

E2 =
∂

∂a
a− a∗

∂

∂a∗
= V − U∗

We compute

{{UV ∗, UV ∗}} = {{UV ∗, U}}V ∗ − U{{UV ∗, V ∗}}
= ({{U,U}} ∗ V ∗)V ∗ − U(U ∗ {{V ∗, V ∗}})
= ((e1 ⊗ U − U ⊗ e1) ∗ V ∗)V ∗ − U(U ∗ (−e1 ⊗ V ∗ + V ∗ ⊗ e1))

= −V ∗ ⊗ UV ∗ − UV ∗ ⊗ V ∗ + U ⊗ UV ∗ + UV ∗ ⊗ U
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Here {{U,U}} and {{V ∗, V ∗}} have been computed using Lemma 6.5.2 below. Hence
we obtain

{UV ∗, UV ∗} = −2U(V ∗)2 + 2U2V ∗ mod [−,−]

Similarly

{U∗V, U∗V } = −2U∗V 2 + 2(U∗)2V mod [−,−]

It is also clear from Lemma 6.5.2 that {{UV ∗, U∗V }} = 0. Hence

{UV ∗, U∗V } = 0

We need some more computations
{{

UV ∗,
∂

∂a

∂

∂a∗

}}

=
{{

UV ∗,
∂

∂a

}} ∂

∂a∗
− ∂

∂a

{{

UV ∗,
∂

∂a∗

}}

=
({{

U,
∂

∂a

}}

∗ V ∗
) ∂

∂a∗
− ∂

∂a

(

U ∗
{{

V ∗,
∂

∂a∗

}})

=
((

− ∂

∂a
⊗ e1

)

∗ V ∗
) ∂

∂a∗
− ∂

∂a

(

U ∗
(

−e1 ⊗
∂

∂a∗

))

= − ∂

∂a
V ∗ ⊗ ∂

∂a∗
+
∂

∂a
⊗ U

∂

∂a∗

Hence
{

UV ∗,
∂

∂a

∂

∂a∗

}

= − ∂

∂a
V ∗ ∂

∂a∗
+
∂

∂a
U
∂

∂a∗

= − ∂

∂a

∂

∂a∗
a∗

∂

∂a∗
+
∂

∂a
a
∂

∂a

∂

∂a∗

Similarly, computing modulo commutators we obtain
{

U∗V,
∂

∂a

∂

∂a∗

}

= −
{

U∗V,
∂

∂a∗
∂

∂a

}

=
∂

∂a∗
∂

∂a
a
∂

∂a
− ∂

∂a∗
a∗

∂

∂a∗
∂

∂a

If follows that
{

UV ∗ − U∗V,
∂

∂a

∂

∂a∗

}

= 0 mod [−,−]

Combining everything we find

{P, P} =
1

2
(−U(V ∗)2 + U2V ∗ − U∗V 2 + (U∗)2V ) mod [−,−]

On the other hand we have

E3
1 = (V ∗)3 − U3 − 3U(V ∗)2 + 3U2V ∗

E3
2 = V 3 − (U∗)3 − 3U∗V 2 + 3(U∗)2V

mod [−,−]

and also

U3 = V 3

(U∗)3 = (V ∗)3
mod [−,−]

It follows

1

6
(E3

1 + E3
2 ) =

1

2
(−U(V ∗)2 + U2V ∗ − U∗V 2 + (U∗)2V ) mod [−,−]

So it follows that (6.7) is indeed true.
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Now we prove that Φ is a multiplicative moment map. We have Φ = Φ1 + Φ2

where

Φ1 = e1 + aa∗

Φ2 = (e2 + a∗a)−1

We have to prove

{P,Φi} = −1

2
(EiΦi + EiΦi)

We will first consider Φ1. We compute

{{UV ∗, aa∗}} = {{UV ∗, a}}a∗ + a{{UV ∗, a∗}}
= −({{U, a}} ∗ V ∗)a∗ + a(U ∗ {{V ∗, a∗}})
= −((e1 ⊗ a) ∗ V ∗)a∗ + a(U ∗ (a∗ ⊗ e1))

= −V ∗ ⊗ aa∗ + aa∗ ⊗ U

So

{UV ∗, aa∗} = −V ∗aa∗ + aa∗U

= − ∂

∂a∗
a∗aa∗ + aa∗a

∂

∂a

Similarly

{{U∗V, aa∗}} = {{U∗V, a}}a∗ + a{{U∗V, a∗}}
= (U∗ ∗ {{V, a}})a∗ − a({{U∗, a∗}} ∗ V )

= (U∗ ∗ (a⊗ e2))a
∗ − a((e2 ⊗ a∗) ∗ V )

= a⊗ U∗a∗ − aV ⊗ a∗

which yields

{U∗V, aa∗} = aU∗a∗ − aV a∗

= aa∗
∂

∂a∗
a∗ − a

∂

∂a
aa∗

We obtain

{UV ∗ − U∗V, aa∗} = − ∂

∂a∗
a∗aa∗ + aa∗a

∂

∂a
− aa∗

∂

∂a∗
a∗ + a

∂

∂a
aa∗

= −E1aa
∗ − aa∗E1

We also have
{{ ∂

∂a

∂

∂a∗
, aa∗

}}

= {{ ∂
∂a

∂

∂a∗
, a

}}

a∗ + a
{{ ∂

∂a

∂

∂a∗
, a∗

}}

= −
(

(e1 ⊗ e2) ∗
∂

∂a∗

)

a∗ + a
( ∂

∂a
∗ (e2 ⊗ e1)

)

= − ∂

∂a∗
⊗ a∗ + a⊗ ∂

∂a

which yields
{ ∂

∂a

∂

∂a∗
, aa∗

}

= −E1
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Taking everything together we obtain

{P,Φ1} = {P, aa∗}

= −E1 −
1

2
(E1aa

∗ + aa∗E1)

= −1

2
(E1Φ1 + Φ1E1)

Now we consider Φ2. Applying the automorphism of order two e1 ↔ e2, a ↔ a∗

has the effect P 7→ −P (up to commutators) and E1 7→ E2, E2 7→ E1.
Hence we obtain the following identity for Ψ = e2 + a∗a:

−{P,Ψ} = −1

2
(E2Ψ + ΨE2)

Since Φ2 = Ψ−1 and {P,−} is a derivation we obtain

{P,Φ2} = −Ψ−1{P,Ψ}Ψ−1

= −1

2
(Ψ−1E2 + E2Ψ

−1)

= −1

2
(Φ2E2 + E2Φ2) �

Lemma 6.5.2. Let Q be an arbitrary quiver, a ∈ Q and h(a) 6= t(a) (i.e. a is not
a loop). Put e = et(a), f = eh(a). If X is in the subring of DBA generated by a

and ∂
∂a then

{{U,X}} = −Xe⊗ e+ e⊗ eX

{{V,X}} = Xf ⊗ f − f ⊗ fX

Proof. By (6.2) we obtain

{{Et(a), X}} = −{{U,X}}
{{Eh(a), X}} = {{V,X}}

Using (3.9) this implies what we want. �

6.6. Fusion for quivers. We now discuss what happens if we perform fusion on
path algebras. This will be used in the next section. Put A = kQ. It is clear that
Ā is generated over B by a ∈ Q and e12, e21, subject to the relations e12e21 = e1,
e21e12 = e2. Then it is not hard to see that Af is freely generated over Bf by

a h(a) 6= 2, t(a) 6= 2

ae21 h(a) = 2, t(a) 6= 2

e12a h(a) 6= 2, t(a) = 2

e12ae21 h(a) = 2, t(a) = 2

Now let Qf be the quiver obtained from Q by “fusing” vertices 1 and 2. I.e. Qf

has the same edges as a and vertices If = I − {2}. The maps t, h are redefined as
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follows.

hf (a) =

{

1 if h(a) = 2

h(a) otherwise

tf (a) =

{

1 if t(a) = 2

t(a) otherwise

The following result is easy to prove

Proposition 6.6.1. The map

(kQ)f → k(Qf)

which is defined by (for a ∈ Q)

a 7→ a h(a) 6= 2, t(a) 6= 2

ae21 7→ a h(a) = 2, t(a) 6= 2

e12a 7→ a h(a) 6= 2, t(a) = 2

e12ae21 7→ a h(a) = 2, t(a) = 2

is an isomorphism.

We need a slight extension of this result.

Proposition 6.6.2. Let S ⊂
⋃

i,j eiAej and let AS be the algebra obtained from

A by formally adjoining for all s ∈ S an element s−1 which satisfies the relations
s−1s = eh(s), ss

−1 = et(s). Then one has

(AS)f = Af
Sf

where

Sf = {sf | s ∈ S}

Proof. Left to the reader. �

6.7. Quasi-Hamiltonian structure for general quivers. In this section we
prove the following result.

Theorem 6.7.1. Let A be obtained from kQ̄ by inverting all elements (1+aa∗)a∈Q̄.

Fix an arbitrary total ordering on Q̄. Then A has a quasi-Hamiltonian structure
given by

P =
1

2





∑

a∈Q̄

(

ǫ(a)(1 + a∗a)
∂

∂a

∂

∂a∗

)

−
∑

a<b∈Q̄

(

∂

∂a∗
a∗ − a

∂

∂a

)(

∂

∂b∗
b∗ − b

∂

∂b

)





Φ =
∏

a∈Q̄

(1 + aa∗)ǫ(a)

In the definition of Φ the product is taken with respect to the chosen ordering on Q̄.

Proof. We will deduce this result from Theorem 6.5.1 using fusion (as discussed in
§6.6).
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Let Qsep be the quiver with the same edges as Q̄ but with vertices (va)a∈Q̄. The
head and tail of an edge are defined by

t(a) = va

h(a) = t(a∗) = va∗

Thus Qsep is a disjoint union of little quivers of the form

va
a

++ va∗

a∗

kk

Let Asep be the algebra obtained from kQsep by inverting all (1+aa∗)a∈Qsep . By
Theorem 6.5.1 kQsep has a quasi-Hamiltonian structure (P sep,Φsep) where

P sep =
1

2

∑

a∈Qsep

ǫ(a)(1 + a∗a)
∂

∂a

∂

∂a∗

and

Φsep
va

= (eva
+ aa∗)ǫ(a)

To obtain kQ̄ from kQsep we need to fuse certain vertices. More precisely for a
vertex i ∈ I we need to fuse the vertices va such that t(a) = i. The fusing process
depends on the order in which we perform it. To fix this we fix a total ordering of
all edges in Q̄. We put the same total ordering on the vertices va.

By Theorems 5.3.15.3.2 and (6.2) we see that fusing the vertices va with t(a) = i
has the effect of adding

−1

2

∑

a<b∈Q̄,t(a)=t(b)=i

FaFb

to P sep where

Fa =
∂

∂a∗
a∗ − a

∂

∂a

and to replace (Φsep
va

)t(a)=i by the product

Φi =
∏

a∈Q̄,t(a)=i

(ei + aa∗)ǫ(a)

where the order on the product is given by the ordering of the edges. Performing
this for all vertices in Q̄ proves the theorem. �

Remark 6.7.2. The total ordering on the edges of Q̄ actually contains too much
information. It is sufficient to order for every vertex i the edges starting in i.

Remark 6.7.3. It follows from the formulas for P and Φ that kQ̄ has always double
quasi-Poisson structure. However in order to have a quasi-Hamiltonian structure
we need to invert the elements (1 + aa∗)a∈Q̄.

6.8. Preprojective algebras and multiplicative preprojective algebras. Fix
λ ∈ B. The algebra

Πλ = kQ̄/
(

∑

a∈Q

[a, a∗] − λ
)
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is the so-called “deformed preprojective algebra” It was introduced by Crawley-
Boevey and Holland in [9]. A multiplicative version was introduced by Crawley-
Boevey and Shaw in [8]. Let Fix q ∈ B∗ and put

Λq = kQ̄(1+aa∗)a∈Q̄

/(

∏

a∈Q̄

(1 + aa∗)ǫ(a) − q

)

The product is taken with respect to an arbitrary ordering of Q̄ but it is shown in
[8] that the resulting algebra is independent of this ordering.

Combining Propositions 2.6.5,5.1.5,6.3.1 and Theorem 6.5.1 we obtain:

Proposition 6.8.1. Both the ordinary deformed preprojective algebra and the de-
formed multiplicative preprojective algebra have a Poisson structure (as in Defini-
tion 2.6.1).

7. Representation spaces

7.1. General principles. We put I = {1, . . . , n}. Let α = (α1, . . . , αn) ∈ N
n and

put |α| =
∑

i αi. Define the function

φ : [ 1 . . |α| ] → I

by the property

φ(p) = i ⇐⇒ α1 + · · · + αi−1 + 1 ≤ p ≤ α1 + · · · + αi

Throughout we assume that B = ke1 ⊕ · · · ⊕ ken is semi-simple. As usual A is a
finitely generated B algebra.

We view an element X of M|α|(k) as a block matrix (Xuv)uv with u, v = 1, . . . , n
and Xuv ∈ Mαu×αv

(k). We will also consider B as being diagonally embedded in
M|α|(k) where ei is the identity matrix in Mαi×αi

(k).
We define Rep(A,α) as the affine scheme representing the functor

R 7→ HomB(A,M|α|(R))

from commutative k-algebras to sets. The coordinate ring of Rep(A,α) is generated
by symbols apq for a ∈ A, p, q = 1, . . . , |α| which are linear in a and satisfy the
relations

apqbqr = (ab)pr

(ei)pq = δpqδφ(p),i

A map f ∈ HomB(A,M|α|(R)) corresponds to the point x ∈ Rep(A,α)(R) if the
following relation holds for a ∈ A, p, q = 1, . . . , |α|

apq(x) = f(a)pq

Below we identify Rep(A,α)(R) and HomB(A,M|α|(R)).
For a ∈ A it will be convenient to introduce the M|α|(k)-valued function X(a)

on Rep(A,α) by the rule X(a)ij = aij . The defining relations on Rep(Q,α) may
then be written as

X(ab) = X(a)X(b)

X(ei) = ei
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Put Glα =
∏

i Glαi
. Glα acts by conjugation on M|α|. This induces an ac-

tion on Rep(Q,α). To work out what this action is let x ∈ Rep(Q,α)(R) =
HomB(A,M|α|(R)). We have for a ∈ A.

aij(x) = x(a)ij

and hence for g ∈ Glα(R)

(g · aij)(x) = aij((g
−1 − g) ◦ x)

= (g−1x(a)g)ij

= (g−1)iux(a)uvgvj

= (g−1)iuauv(x)gvj

In terms of the X(a) we may write:

g ·X(a) = g−1X(a)g

where the “·” means that we apply the action of g entry wise.
Let Mα =

∏

iMαi
. We consider Mα as being diagonally embedded in M|α|. Mα

is the Lie algebra of Glα. The derivative of the Glα-action on Rep(A,α) yields an
Mα action which has the following formula for v ∈Mα(k):

(7.1) v ·X(a) = [X(a), v]

We now indicate how some of the possible properties of A we have introduced
induce standard geometrical properties on Rep(Q,α).

7.2. Functions. We have already seen that a ∈ A induces functions (aij)ij on
Rep(Q,α).

7.3. Differential forms. If ω = f1df2 · · · dfn ∈ (ΩBA)n then we define

(7.2) ωij = f1,ia1df2,a1a2 · · ·dfn,an−1j

(ωij)ij is a matrix valued differential form on Rep(Q,α). If we write it as X(ω)
then (7.2) may be rewritten as

X(ω) = X(f1)dX(f2) · · · dX(fn)

7.4. Poly-vector fields. If δ ∈ DA/B then we define corresponding vector fields
δij ∈ on Rep(Q,α) by the rule

(7.3) δij(auv) = δ(a)′ujδ(a)
′′
iv

If δ = δ1 · · · δn ∈ (DBA)n then we put

δij = δ1,ia1δ2,a1a2 · · · δn,an−1j ∈
∧

O(Rep(A,α))

Der(O(Rep(A,α)))

or in the standard matrix notation

X(δ) = X(δ1) · · ·X(δn)
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7.5. Brackets. We have the following result.

Proposition 7.5.1. Assume that {{−,−}} : A × A → A ⊗ A is a B-linear double
bracket on A. Then there is a unique antisymmetric biderivation

{−,−} : O(Rep(A,α)) ×O(Rep(A,α)) → O(Rep(A,α))

with the property

(7.4) {aij , buv} = {{a, b}}′uj{{a, b}}
′′
iv

for a, b ∈ A.

Proof. It is a routine verification that (7.4) is compatible with the defining relations
of O(Rep(A,α)). The antisymmetry of {−,−} may be checked on the generators
(aij)ij where it follows from the corresponding property of {{−,−}}. �

The following proposition gives the connection between the double Jacobi iden-
tity in A and the Jacobi identity on Rep(A,α).

Proposition 7.5.2. The following identity holds for a, b, c ∈ A.

(7.5) {apq, {brs, cuv}} + {brs, {cuv, apq}} + {cuv, {apq, brs}} =

{{a, b, c}}′uq{{a, b, c}}
′′
ps{{a, b, c}}

′′′
rv − {{a, c, b}}′rq{{a, c, b}}

′′
pv{{a, c, b}}

′′′
us

In particular, if A, {{−,−}} is a double Poisson algebra then O(Rep(A,α)), {−,−}
is a Poisson algebra.

Proof. We compute

{apq, {brs, cuv}} = {apq, {{b, c}}′us{{b, c}}
′′
rv}

= {apq, {{b, c}}′us}{{b, c}}
′′
rv + {{b, c}}′us{apq, {{b, c}}

′′
rv}

= {{a, {{b, c}}′}}′uq{{a, {{b, c}}
′}}′′ps{{b, c}}

′′
rv + {{b, c}}′us{{a, {{b, c}}

′′}}′rq{{a, {{b, c}}
′′}}′′pv

= {{a, {{b, c}}′}}′uq{{a, {{b, c}}
′}}′′ps{{b, c}}

′′
rv − {{a, {{c, b}}′}}′rq{{a, {{c, b}}

′}}′′pv{{c, b}}
′′
us

and hence

{brs, {cuv, apq}} = {{b, {{c, a}}′}}′ps{{b, {{c, a}}
′}}′′rv{{c, a}}

′′
uq − {{b, {{a, c}}′}}′us{{b, {{a, c}}

′}}′′rq{{a, c}}
′′
pv

{cuv, {apq, brs}} = {{c, {{a, b}}′}}′rv{{c, {{a, b}}
′}}′′uq{{a, b}}

′′
ps − {{c, {{b, a}}′}}′pv{{c, {{b, a}}

′}}′′us{{b, a}}
′′
rq

Taking the sum yields (7.5). �

Example 7.5.3. Recall that if g is a Lie algebra then the functions on g
∗ carry a

Poisson bracket defined by

{evv, evw} = ev[v,w]

where v, w ∈ g and evv is the evaluation of an element of g
∗ at v. Clearly evv

defines a set generating functions for O(g∗).
Since Mn(k) can be identified with its dual through the trace pairing it follows

that the functions on Mn have a canonical Poisson bracket. On the other hand
Mn(k) = Rep(k[t],Mn(k)). It is then easy to show that this Poisson bracket on
O(Mn(k)) comes from the double Poisson bracket on k[t] given by

{{t, t}} = t⊗ 1 − 1 ⊗ t

which we considered in Example 2.3.3.
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7.6. The Schouten bracket. The idea is that constructions in A are compatible
with the corresponding constructions on Rep(A,α). This is usually clear. For the
Schouten bracket it requires some work.

Proposition 7.6.1. Let P,Q ∈ DBA. Then

(7.6) {Pij , Quv} = {{P,Q}}′uj{{P,Q}}′′iv
where {{−,−}} denotes the Schouten bracket on DBA and {−,−} is the Schouten
bracket between poly-vector fields on Rep(A,α).

Proof. We claim that the correctness of (7.6) is multiplicative in both arguments.
To check this put first Q = RS and assume that P , R, S are homogeneous. Assume
that (7.6) holds for Q = R,S. We compute

{Pij , (RS)uv} = {Pij , RuwSwv}
= {Pij , Ruw}Swv + (−1)|R|(|P |−1)Ruw{Pij , Swv}
= {{P,R}}′uj{{P,R}}

′′
iwSwv + (−1)|R|(|P |−1)Ruw{{P, S}}′wj{{P, S}}

′′
iv

= {{P,R}}′uj({{P,R}}
′′S)iv + (−1)|R|(|P |−1)(R{{P, S}}′)uj{{P, S}}′′iv

= {{P,RS}}′uj{{P,RS}}
′′
iv

We now check multiplicativity in the other argument. Put P = UV and assume
that (7.6) holds with P = U, V .

{(UV )ij , Quv} = {UikVkj , Quv}
= Uik{Vkj , Quv} + (−1)|V |(|Q|−1){Uik, Quv}Vkj
= Uik{{V,Q}}′uj{{V,Q}}′′kv + (−1)|V |(|Q|−1){{U,Q}}′uk{{U,Q}}′′ivVkj
= {{V,Q}}′uj(U{{V,Q}}′′)iv + (−1)|V |(|Q|−1)({{U,Q}}′V )uj{{U,Q}}′′iv
= {{UV,Q}}′uj{{UV,Q}}′′iv

If follows that we have check (7.6) only on elements of (DBA)i with i = 0, 1.
If P,Q ∈ A then there is nothing to prove. So assume P = δ ∈ DA/B and

Q = a ∈ A. Then we need to prove

δij(auv) = δ(a)′ujδ(a)
′′
iv

but this is precisely (7.3).
The case P ∈ A and Q ∈ DBA follows from the previous case by antisymmetry

of both {−,−} and {{−,−}}. Hence we concentrate on the final case P = δ ∈ DA/B

and Q = ∆ ∈ DA/B. Let a be an arbitrary element of A. We will show

{δij ,∆uv}(apq) = ({{δ,∆}}′uj{{δ,∆}}′′iv)(apq)
This equation translates into
(7.7)
δij∆uv(apq)−∆uvδij(apq) = {{δ,∆}}′l,uj(apq){{δ,∆}}′′l,iv + {{δ,∆}}′r,uj{{δ,∆}}′′r,iv(apq)
We compute

δij∆uv(apq) = δij(∆(a)′pv∆(a)′′uq)

= δij(∆(a)′pv)∆(a)′′uq + ∆(a)′pvδij(∆(a)′′uq)

= δ(∆(a)′)′pjδ(∆(a)′)′′iv∆(a)′′uq + ∆(a)′pvδ(∆(a)′′)′ujδ(∆(a)′′)′′iq
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and in the same way

∆uvδij(apq) = ∆(δ(a)′)′pv∆(δ(a)′)′′ujδ(a)
′′
iq + δ(a)′pj∆(δ(a)′′)′iv∆(δ(a)′′)′′uq

We deduce

δij∆uv(apq) − ∆uvδij(apq)

= [δ,∆]̃ l(a)
′
pj [δ,∆]̃ l(a)

′′
iv[δ,∆]̃ l(a)

′′′
uq + [δ,∆]̃ r(a)

′
pv[δ,∆]̃ r(a)

′′
uj [δ,∆]̃ r(a)

′′′
iq

Now we look at the righthand side of (7.7).

{{δ,∆}}′l,uj(apq){{δ,∆}}′′l,iv = {{δ,∆}}′l(a)′pj{{δ,∆}}′l(a)′′uq{{δ,∆}}′′l,iv
= [δ,∆]̃ l(a)

′
pj [δ,∆]̃ l(a)

′′
iv[δ,∆]̃ l(a)

′′′
uq

and similarly

{{δ,∆}}′r,uj{{δ,∆}}′′r,iv(apq) = {{δ,∆}}′r,uj{{δ,∆}}′′r (a)′pv{{δ,∆}}′′r (a)′′iq
= [δ,∆]̃ r(a)

′
pv[δ,∆]̃ r(a)

′′
uj [δ,∆]̃ r(a)

′′′
iq

which finishes the proof. �

7.7. Invariant functions. We leave it to the reader to check the following prop-
erty. Let a ∈ A, ω ∈ (ΩBA)n, δ ∈ (DBA)n. Then TrX(a), TrX(ω), TrX(δ)
depend only on the value of a, ω, δ, modulo commutators. For simplicity we write
tr(−) = TrX(−).

The famous Artin, Le Bruyn, Procesi theorem reformulated in this language
reads.

Theorem 7.7.1. O(Rep(A,α)Glα is the ring generated by the functions tr(a) for
a ∈ A.

The following result was proved by Crawley-Boevey [5].

Proposition 7.7.2. If A is equipped with a Poisson structure (see 2.6) with as-
sociated Lie bracket {−,−} then O(Rep(A,α))Glα has a unique Poisson structure
with the property

{tr(a), tr(b)} = tr{ā, b̄}
Traces are also compatible with the Schouten bracket.

Proposition 7.7.3. For P,Q ∈ DBA one has

{tr(P ), tr(Q)} = tr{P,Q}
Proof. This is an easy computation.

{tr(P ), tr(Q)} = {Pii, Qjj}
= {{P,Q}}′ji{{P,Q}}′′ij
= {P,Q}ii
= tr{P,Q}

�

Corollary 7.7.4. The map

tr : DBA/[DBA,DBA] →
∧

O(Rep(A,a))

Der(O(Rep(A, a)))

is a Lie algebra homomorphism if both sides are equipped with the Schouten bracket.
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7.8. Compatibility. Assume that P ∈ (DBA)2. Then P induces a double bracket
{{−,−}}P on A and hence a corresponding antisymmetric {−,−}P biderivation on
O(Rep(A,α)). On the other hand tr(P ) also induces an antisymmetric biderivation
on O(Rep(A,α)). We claim that these are the same. More precisely we want to
show for f, g ∈ O(Rep(A,α)) that

{f, g}P = tr(P )(f, g)

It suffices to check this for P = δ∆ with δ,∆ ∈ DA/B. Recall that we have for
a, b ∈ A

{{a, b}}P = −{{a, {δ∆, b}}}
= −(δb)′(∆a)′′ ⊗ (∆a)′(δb)′′ + (∆b)′(δa)′′ ⊗ (δa)′(∆b)′′

Hence we compute

{aij , buv}P = {{a, b}}′uj{{a, b}}
′′
iv

= −(δb)′uw(∆a)′′wj(∆a)
′
iz(δb)

′′
zv + (∆b)′uw(δa)′′wj(δa)

′
iz(∆b)

′′
zw

= −δzw(buv)∆wz(aij) + ∆zw(buv)δwz(aij)

= (δwz ∧ ∆zw)(aij , buv)

= tr(δ∆)(aij , buv)

7.9. Base change.

Proposition 7.9.1. Let fij ∈ Mα = Lie(Glα) be the elementary matrix which
is 1 in the (i, j)-entry and zero everywhere else. Then (Ep)ij acts as fji on
O(Rep(A,α)) if φ(i) = φ(j) = p and else as zero.

Proof. Consider first the case φ(i) = φ(j) = p. The formula (7.1) becomes:

fjiauv = δivauj − δjuaiv

(here δ is the Kronecker delta).

(Ep)ij(auv) = Ep(a)
′
ujEp(a)

′′
iv

= (aep)uj(ep)iv − (ep)uj(epa)iv

= aujδiv − δujaiv

where we have used (aep)uj = auw(ep)wj = auwδwj = auj . If it is not true that
φ(i) = φ(j) = p then a similar computation shows that (Ep)ij acts as zero. �

Remark 7.9.2. The previous proposition explains why we have called the elements
(Ep)p ∈ (DBA)1 “gauge elements” in §3.3. They correspond to gauge transforma-
tions on O(Rep(A,α)).

7.10. Fusion. In this section the notations are as in §2.5.

Lemma 7.10.1. Assume that α1 = α2 and let αf = (α1, α3, . . . , αn). Consider
Glαf as being embedded in Glα where the embedding on the first factor is diagonal
and on the other factors the identity.

There is a canonical isomorphism between Rep(A,α) and Rep(Af , αf ) such that
the induced Glαf

action on Rep(A,α) is obtained by restriction from the Glα-action.

Proof. Left to the reader. �
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7.11. Hamiltonian structure. We have showed in Proposition 7.5.2 that if A is
a double Poisson algebra then O(Rep(A,α)) is a Poisson algebra. In this section
we discuss the Hamiltonian structure.

If G is an algebraic group, with Lie algebra g, acting on an (affine) Poisson
variety X then a moment map for this action is by definition an invariant map
ψ : X → g

∗ such that for all v ∈ g and f ∈ O(X) we have

(7.8) {〈v,−〉 ◦ ψ, f} = v(f)

Proposition 7.11.1. Let A, {{−,−}}, µ be a Hamiltonian algebra. Then

X(µp)p : Rep(A,α) →Mα

is a moment map for Rep(A,α) equipped with the associated bracket {−,−} (as in
§7.5).

Proof. We verify this (7.8) in the case X = Rep(A,α) and ψ = X(µp)p. It suffices
to check (7.8) with v = fji with φ(p) = i = j and f = auv, a ∈ A. Then (7.8)
becomes

∑

p

{Tr(fjiX(µp)p), auv} = (Ep)ij(auv)

We compute the left hand side of this equation
∑

p

{Tr(fjiX(µp)p), auv} = {µp,ij , auv}
= {{µp, a}}′uj{{µp, a}}

′′
iv

= Ep(a)
′
ujEp(a)

′′
iv

= (Ep)ij(auv)

This finishes the proof. �

7.12. Quasi-Poisson structure. Let g be a Lie algebra equipped with an invari-
ant non-degenerate symmetric bilinear form (−,−). Let (fa)a, (fa)a be dual bases
of g. Then there is a canonical invariant element φ ∈ ∧3

g given by

1

12
cabcfa ∧ fb ∧ fc

where

cabc = (fa, [f b, f c])

If G acts on an affine variety then we have an induced three vector field φX on
X . Following [1] an element P ∈ ∧2

O(X) Der(O(X)) is said to be a quasi-Poisson

bracket if

{P, P} = φX

Now we compute φ for Mα with the trace pairing. In that case (fa)a = (fij)ij ,
(fa)a = (fji)ij . Hence

cij,kl,mn = Tr(fji[flk, fnm])

= Tr(fjiflkfnm − fjifnmflk)

= δilδknδjm − δinδlmδjk
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We can now compute φ.

12φ = (δilδknδjm − δinδlmδjk)fij ∧ fkl ∧ fmn
= fij ∧ fki ∧ fjk − fij ∧ fjl ∧ fli
= 2fij ∧ fki ∧ fjk

From Proposition 7.9.1 we obtain.

Proposition 7.12.1. The three vector field on Rep(A,α) induced by φ is given by

1

6

∑

i

tr(E3
i )

We obtain

Theorem 7.12.2. Assume that A,P is a differential double-Poisson algebra. Then
tr(P ) is a quasi-Poisson bracket on Rep(A,α).

Proof. This follows by applying taking the trace of the defining property

{P, P} =
1

6

n
∑

i=1

E3
i mod [DBA,DBA]

(see §5.2) together with Propositions 7.7.3 and 7.12.1. �

Remark 7.12.3. By a somewhat tedious verification using Proposition 7.5.2 it fol-
lows that Theorem 7.12.2 is also true in the non-differential case. We omit this.

7.13. Quasi-Hamiltonian structure. Let G,X, g, (−,−) be as in the beginning
of the previous section.

For v ∈ g let vL, vR be the associated left and right invariant vector fields.
According to the conventions in [1, p2,3], if g is a function on G then

vL(g)(z) =
d

dt
g(z exp(tv))t=0(7.9)

vR(g)(z) =
d

dt
g(exp(tv)z)t=0(7.10)

If v ∈ g then vX is by definition the vector field on X defined by

vX(g)(x) =
d

dt
g(exp(−tv)x)t=0

for a function g on X .

Definition 7.13.1. [1] Assume that O(X), P is a quasi-Poisson algebra Let (fa)a
be (fa)a be a pair of dual bases for g. An Ad-equivariant map

Φ : X → G

is a multiplicative moment map if for all functions g on G we have

{g ◦ Φ,−} =
1

2
faX

(

(fLa + fRa )(g) ◦ Φ
)

We can now prove the following result.
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Proposition 7.13.2. Let A,P be a double differential quasi-Poisson algebra. let
Φ = (Φp)p ∈ ⊕pepAep be a multiplication moment map. Then

X(Φp)p : Rep(A,α) →Mα

is a multiplicative moment map for Rep(A,α) equipped with the Poisson bracket
tr(P ).

Proof. As dual bases (for the trace pairing on Mα) we choose (fij)ij and (fji)ij .
We apply (7.9) with v = fij and g = guv where guv is the projection on the uv’th

entry of Mα and u, v are such that φ(u) = φ(v) = q. This yields

fLij(guv)(z) = guv(zfij)

= δjvzui

and hence

fLij(guv) = δjvgui

Similarly

fRij (guv)(z) = guv(fijz)

= δiuzjv

and hence

fRij (guv) = δiugjv

From this computation we obtain (with X = Rep(A,α))

1

2
(fji)X

(

((fij)
L + (fij)

R)(guv) ◦ Φ
)

=
1

2
(fji)X((δjvgui + δiugjv) ◦ Φ)

=
1

2
((fvi)XΦq,ui + (fju)XΦq,jv)

=
1

2
(Eq,ivΦq,ui + Eq,ujΦq,jv)

=
1

2
(ΦqEq + EqΦq)uv

Thus for a ∈ A:
(7.11)
1

2
(fji)X

(

((fij)
L + (fij)

R)(guv) ◦ Φ
)

(ars) =
1

2
(ΦqEq+EqΦq)(a)

′
rv(ΦqEq+EqΦq)(a)

′′
us

On the other hand

(7.12) {guv ◦X(Φ), ars} = {Φq,uv, ars} = {{Φq, a}}′rv{{Φq, a}}
′′
us

We obtain that (7.11) is indeed equal to (7.12) from the defining identity for a
multiplicative moment map.

{{Φq, a}} =
1

2
(ΦqEq + EqΦq)(a) �
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7.14. Interpretation for quivers. It follows from Proposition 6.8.1 together with
Proposition 7.7.2 that if A is either a deformed preprojective algebra or a deformed
multiplicative preprojective algebra then O(Rep(A,α))Gl(α) has a Poisson struc-
ture. The explicit formulas for the Poisson bracket may be obtained from (6.3) and
(6.4) provided we can interpret the partial derivatives that occur.

It is easy to see that Rep(kQ, α) is the polynomial algebra with generators aij
for a ∈ Q and φ(i) = h(a), φ(j) = t(a). It may be convenient to set aij = 0 if this
last condition is not satisfied.

Lemma 7.14.1. We have

(

∂

∂a

)

ij

=







∂

∂aji
if φ(i) = h(a), φ(j) = t(a)

0 otherwise

Proof. By the definition of ∂
∂a it follows that ep

∂
∂a = 0 for p 6= h(a) and ∂

∂aeq = 0

for q 6= t(a). From this it follows that if φ(i) 6= h(a) or φ(j) 6= t(a) then
(

∂
∂a

)

ij
= 0.

So let us assume that φ(i) = h(a) and φ(j) = t(a).
We have for a, b ∈ Q

(

∂

∂a

)

ij

(buv) =

(

∂b

∂a

)′

uj

(

∂b

∂a

)′′

iv

If a 6= b then we obtain
(

∂

∂a

)

ij

(buv) = 0

So assume b = a. Then

(7.13)

(

∂

∂a

)

ij

(auv) = (et(a))uj(eh(a))iv

if φ(u) 6= t(a) or φ(v) 6= h(a) then both sides of (7.13) are zero. So let us assume
that φ(u) = t(a) or φ(v) = h(a). Then (7.13) becomes

(

∂

∂a

)

ij

(auv) = δujδiv

=
∂auv
∂aji

�

In the case of the deformed preprojective algebra we obtain the classical result
that the Poisson bracket is given by

∑

a∈Q

∂

∂aij

∂

∂a∗ji

For the deformed multiplicative preprojective algebra we obtain (using (6.4)) a
similar but more complicated Poisson bracket.

Appendix A. Relation to the theory of bi-symplectic forms

In this appendix we relate our theory of double Poisson brackets to the theory
of bi-symplectic forms introduced in [7]. The analogous, but more involved, theory
for double quasi-Poisson brackets will be deferred to separate note.
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We assume as usual that A/B is finitely generated. Let ΩBA be the tensor
algebra over A of ΩA/B. This is a DG-algebra. Assume that A is equipped with a
B-linear bi-symplectic form ω (see Definition A.3.1 below). We prove:

(1) The Lie bracket on A/[A,A] associated to ω on A [7, Prop. 4.4.1] comes
from a B-linear double differential Poisson bracket P on A (and hence, by
Proposition 2.4.4, from the structure of a left Loday algebra on A).

(2) The algebras ΩBA and DBA become isomorphic DG-algebras if we equip
DBA with the differential {P,−}.

The formalism we will outline is remarkably similar to the commutative case. For
example in Theorem A.6.1 below we prove that the condition dω = 0 for a bi-
symplectic form is precisely equivalent to the condition {P, P} = 0 for the corre-
sponding Poisson bracket.

A.1. Differentials and double derivations. We recall some definitions from [7].
We also give some properties which we will need afterward.

Let δ ∈ DA/B. Then we may define double derivations

iδ : ΩBA→ ΩBA⊗ ΩBA

Lδ : ΩBA→ ΩBA⊗ ΩBA

in the usual way: for a ∈ A define

iδ(a) = 0 iδ(da) = δ(a)

Lδ(a) = δ(a) Lδ(da) = d(δ(a))

where here and below we use the convention that d acts on tensor products by
means of the usual Leibniz rule.

If C is a graded k-algebra and c = c1 ⊗ c2 then we put

◦c = (−1)|c1||c2|c2c1

and if φ : C → C⊗2 is a linear map then we define

◦φ : C/[C,C] → C : c 7→ ◦(φ(c))

We apply this with C = ΩBA. Following [7] we put

ıδ = ◦iδ

Lδ = ◦Lδ

Now we discuss some commutation relations between these operators. Checking on
the generators a ∈ A and da ∈ ΩA/B of ΩBA we find the usual Cartan formula [7,
eq. (2.7.2)]

Lδ = diδ + iδd

from which one obtains by applying the operation ◦(−) [7, Lemma 2.8.8(i)]

(A.1) Lδ = dıδ + ıδd

As the (iδ)δ are double derivations one can take their Schouten brackets. One has
for δ,∆ ∈ DA/B.

(A.2) {{iδ, i∆}}l = {{iδ, i∆}}r = 0

To see this note that both {{iδ, i∆}}̃l and {{iδ, i∆}}̃r are derivations ΩBA→ (ΩB)⊗BA

of degree −2. Hence they must vanish on A and ΩA/B. This means that they must
vanish on the whole of ΩBA.



52 MICHEL VAN DEN BERGH

We will also use the following identities

(A.3)
{{iδ, L∆}}l = i{{δ,∆}}′l

⊗ {{δ,∆}}′′l

{{iδ, L∆}}r = {{δ,∆}}′r ⊗ i{{δ,∆}}′′
r

which are proved by checking them on the generators of ΩBA.
Let C be a k-algebra and δ,∆ be double C-derivations. The straightforward

proof of the next formula is left to the reader.

(A.4) δ ◦ ◦∆ − τ12 ◦ ∆ ◦ ◦δ = ◦,l{{δ,∆}}l + ◦,r{{∆, δ}}r
where ◦,l(ǫ′ ⊗ ǫ′′) = ◦ǫ′ ⊗ ǫ′′ and ◦,r(µ′ ⊗ µ′′) = µ′ ⊗ ◦µ′′.

From the graded version of (A.4) together with (A.2) we obtain the following
formula

(A.5) iδı∆ + σ12i∆ıδ = 0

Finally assume that δ is an inner double A-derivation of the form [b,−] for b ∈
B ⊗k B. Then for all η ∈ ΩBA one has

(A.6) Lδη = 0

To prove this note first that

(A.7) Lδη = bη − ηb

As usual this is checked on generators. (A.6) follows immediately from (A.7).

A.2. The Koszul bracket. Assume that {{−,−}} is a B-linear double bracket
on A. One has the following result.

Proposition A.2.1. There is a unique double bracket {{−,−}}ΩBA of degree −1 on
ΩBA commuting with d which satisfies for a, b ∈ A

{{da, b}}ΩBA = {{a, b}}
If {{−,−}} is Poisson then so is {{−,−}}.

Proof. The various asserted properties may be checked on generators. We leave the
full proof to the reader. �

Following the commutative case we call {{−,−}}ΩBA the Koszul bracket associ-
ated to {{−,−}}.

For use below we give some formulas which are easy consequences of the definition

(A.8)

{{a, b}}ΩBA = 0

{{da, b}}ΩBA = {{a, db}}ΩBA = {{a, b}}
{{da, db}}ΩBA = d{{a, b}}

Proposition A.2.2. Assume that {{−,−}} is a double bracket on A. Then there is
a well defined map of graded A-algebras

Σ : ΩBA→ DBA : da 7→ Ha

(see §3.5 for notation). If {{−,−}} is Poisson then this map sends the Koszul bracket
on the left to the Schouten bracket on the right.
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Proof. That Σ is well defined is easy to see by checking on generators. To prove
that Σ is compatible with the brackets we have to show that the following analogues
of (A.8) hold in DBA.

(A.9)

{{a, b}}DBA = 0

{{Ha, b}}DBA = {{a,Hb}}DBA = {{a, b}}
{{Ha, Hb}}DBA = H{{a,b}}

where to avoid confusion we have denoted the Schouten bracket by {{−,−}}DBA.
The first equations is obvious. The second equation follows from (3.11). The third
equation follows from Proposition 3.5.1. �

A.3. Bi-symplectic forms. Following [7] we put DRB(A) = ΩBA/[ΩBA,ΩBA].
The differential on ΩBA descends to a differential on DRB(A).

Definition A.3.1. [7] An element ω ∈ DRB(A)2 is a bi-non-degenerate if the map
of A-bimodules

ı(ω) : DA/B → ΩA/B : δ 7→ ıδω

is an isomorphism. If in addition ω is closed in DRB(A) then we say that ω is
bi-symplectic.

Assume that ω ∈ DRB(A)2 is a bi-non-degenerate. Let a ∈ A. Following [7] we
define the Hamiltonian vector field Ha ∈ DA/B corresponding to a via

ıHa
ω = da

and we put

{{a, b}}ω = Ha(b)

Since Ha(b) = iHa
(db) we may also write

(A.10) {{a, b}}ω = iHa
ıHb

(ω)

Lemma A.3.2. {{a, b}}ω is a bracket on A.

Proof. It is clear that {{a, b}}ω a derivation in its second argument. So we only need
to prove anti-symmetry. This follows immediately from (A.10) and (A.5). �

According to [7, Prop. 4.4.1] if ω is bi-symplectic then the associated simple
bracket {−,−}ω induces a Lie algebra structure on A/[A,A]. We will prove the
following stronger result.

Proposition A.3.3. Assume that ω ∈ (ΩBA)2 is bisymplectic. Then {{−,−}}ω is
a double Poisson bracket on A.

Proof. To simplify the notations we write {{−,−}} for {{−,−}}ω. According to
Proposition 3.5.1 we have to prove

{{Ha, Hb}}l = H{{a,b}}′ ⊗ {{a, b}}′′

Appying ı(ω) ⊗ 1 this is equivalent to

ı{{Ha,Hb}}
′
l
(ω) ⊗ {{Ha, Hb}}′′l = d{{a, b}}′l ⊗ {{a, b}}′′l

Applying (A.3) this is equivalent to

◦,l{{iHa
, LHb

}}l(ω) = d{{a, b}}′l ⊗ {{a, b}}′′l
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This equality takes place in ΩA/B ⊗ A. It would follow by projection from the
equality

(◦,l{{iHa
, LHb

}}l + ◦,r{{iHa
, LHb

}}r)(ω) = d{{a, b}}
Applying (A.4) we find that this is equivalent to

(A.11) (iHa
LHb

− τ12LHb
ıHa

)(ω) = d{{a, b}}
Now

ıHa
(ω) = da

and

LHb
(ω) = dıHb

(ω) + ıHb
dω = ddg = 0

(this is the place where the assumption that ω is closed is used).
It follows that the left hand side of (A.11) is equal to

−τ12LHb
(da) = −τ12d{{b, a}} = d{{a, b}}

which is indeed equal to the righthand side of (A.11). �

A.4. Duality yoga for bimodules. Below A is a k-algebra and M is an A-
bimodule. Later we take M = ΩBA but in this section this is not necessary.

If m ∈M then there is a double derivation of degree −1

im : TA(M∗) → TA(M∗) ⊗ TA(M∗)

which on σ ∈M∗ is given by

im(σ) = σ(m)′′ ⊗ σ(m)′

Similarly for σ ∈M∗ there is an associated double derivation of degree −1

iσ : TA(M) → TA(M) ⊗ TA(M)

with the property

iσ(m) = σ(m)

for m ∈M . As before we put ım = ◦im and ıσ = ◦iσ.

Proposition A.4.1. Assume there is an element ω ∈ M ⊗A M such that the
induced map

ı(ω) : M∗ →M : σ 7→ ıσω

is an isomorphism. Define P = −(ı(ω)−1 ⊗ ı(ω)−1)(ω). Then one has for m ∈M

ı(P ) = ı(ω)−1

where ı(P ) is the map

ı(P ) : M →M∗ : m 7→ ımP

Proof. Put θ = ı(ω) and ψ = ı(ω)−1. We have to prove ψ = ı(P ). We have
explicitly for σ ∈M∗

(A.12) θ(σ) = σ(ω′)′′ω′′σ(ω′)′ − σ(ω′′)′′ω′σ(ω′′)′

and hence for τ ∈M∗

τ(θ(σ)) = σ(ω′)′′τ(ω′′)σ(ω′)′ − σ(ω′′)′′τ(ω′)σ(ω′′)′

We deduce

(A.13) τ(θ(σ)) = −σ(θ(τ))◦
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Put τ = ψ(n) and σ = ψ(m). We deduce from (A.13):

(A.14) ψ(n)(m) = −ψ(m)(n)◦

Taking into account that P = −ψ(ω′) ⊗ ψ(ω′′) we find

ımP = −ψ(ω′)(m)′ψ(ω′′)ψ(ω′)(m)′′ψ(ω′′)(m)′ψ(ω′)ψ(ω′′)(m)′′

Hence

θ(ımP ) = −ψ(ω′)(m)′ω′′ψ(ω′)(m)′′ + ψ(ω′′)(m)′ω′ψ(ω′′)(m)′′

= −θ(ψ(−)(m)◦)

where in the last line we have used (A.12). Hence for n ∈M

(ımP )(n) = −ψ(n)(m)◦ = ψ(m)(n)

where we have used (A.14). �

A.5. Compatibility of brackets. Let ω ∈ (ΩBA)2 be a bi-non-degenerate form
Putting M = ΩA/B and M∗ = DA/B we define P ∈ (DBA)2

P = −(ı(ω)−1 ⊗ ı(ω)−1)(ω)

as in the previous section.

Proposition A.5.1. One has

{{−,−}}P = {{−,−}}ω
Proof. Using Proposition A.4.1 one has

{{f, g}}ω = Hf (g) = ı(P )(df)(g) = (ıdfP )(g)

The result now follows from Lemma A.5.2 below. �

Lemma A.5.2. Let P be an arbitrary element of (DBA)2. Then

{{f, g}}P = (ıdfP )(g)

Proof. It is sufficient to check this for P = δ∆ with δ,∆ ∈ DA/B. We have

{{f, g}}δ∆ = ∆(g)′δ(f)′′ ⊗ δ(f)′∆(g)′′ − δ(g)′∆(f)′′ ⊗ ∆(f)′δ(g)′′

and

idf(δ∆) = (idfδ)∆ − δ(idf∆)

= δ(f)′′ ⊗ δ(f)′∆ − δ∆(f)′′ ⊗ ∆(f)′

Thus
ıdf (δ∆) = δ(f)′∆δ(f)′′ − ∆(f)′δ∆(f)′′

and hence

ıdf(δ∆)(g) = ∆(g)′δ(f)′′ ⊗ δ(f)′∆(g)′′ − δ(g)′∆(f)′′ ⊗ ∆(f)′δ(g)′′

finishing the proof. �

The following result will be used below.

Lemma A.5.3. Let {{−,−}} be the double bracket associated to a bi-non-degenerate
form ω and let P be the element of (DBA)2 associated to ω (as in §A.5). Let
Σ : ΩBA→ DBA as in Proposition A.2.2. Then Σ is an isomorphism of A-algebras
and furthermore

(A.15) Σ(ω) = −P
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Proof. Let ı(P ) be the A algebra morphism obtained by extending ı(P ). We claim
that Σ = ı(P ). For a ∈ A we need Σ(da) = ı(P )(da). By definition Σ(da) = Ha

and ı(P )(da) = ıda(P ) = Ha by Lemma A.5.2. In particular Σ is an isomorphism
of algebras. We also deduce

Σ(ω) = (ı(P ) ⊗ ı(P ))(ω) = (ı(ω)−1 ⊗ ı(ω)−1)(ω) = −P �

A.6. The relation between Poisson brackets and bi-symplectic forms. In
this section we prove the following result.

Theorem A.6.1. Assume that ω ∈ (ΩBA)2 is a bi-non-degenerate form and let P
be the corresponding element of DBA. Then the following are equivalent:

(1) ω is bi-symplectic, i.e.
dω = 0

in DRB(A).
(2) P is differential Poisson, i.e.

{P, P} = 0

in DBA/[DBA,DBA].

Proof. Let {{−,−}} = {{−,−}}ω = {{−,−}}P be the corresponding bracket on A and
let

Σ : ΩBA→ DBA

be as in Proposition A.2.2. Below we assume that either dω = 0 or {P, P} = 0. It
follows by Proposition A.3.3 and Theorem 4.2.3 that in both these cases {{−,−}}
is Poisson. Hence by Proposition A.2.2 Σ intertwines the Koszul bracket and the
Schouten bracket.

Assume first that P is Poisson. We claim that the following diagram is commu-
tative

(A.16)

ΩBA
Σ−−−−→ DBA

d





y





y
{P,−}

ΩBA
Σ−−−−→ DBA

It is sufficient to check this on generators. Let a ∈ A. We have

(Σ ◦ d)(a) = Σ(da) = Ha

and
({P,−} ◦ Σ)(a) = {P, a}

We need to see {P, a} = Ha. Evaluating on b ∈ A it is sufficient to prove

(A.17) {P, a}(b) = {{a, b}}P
Using Proposition 4.2.1 we find that the left hand side of (A.17) is equal to

−{{b, {P, a}}}◦ = −{{b, a}}◦P = {{a, b}}P
This is equal to the right hand side of (A.17) because of Lemma A.5.2.

Now we consider the generators of the type da, a ∈ A. We have

(Σ ◦ d)(da) = 0

and

({P,−} ◦ Σ)(da) = {P,Ha} = {P, {P, a}} = (1/2){{P, P}, a}} = 0
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We conclude

Σ(dω) = {P,Σ(ω)} = −{P, P} = 0

where we have used Lemma A.5.3. Since Σ is an isomorphism it follows dω = 0.

Now assume that dω = 0. We claim d = −{ω,−}ΩBA. Let a ∈ A. First we need
to check da = −{ω, a}ΩBA. Applying Σ this is equivalent to Ha = {P, a}. This we
have checked above.

Now we need to check {ω, da}ΩBA = 0. This is the following verification.

{ω, da}ΩBA = d{ω, a}ΩBA − {dω, a}ΩBA = dda = 0

From d = −{ω,−}ΩBA we deduce 0 = dω = {ω, ω}ΩBA. Applying Σ we obtain
{P, P} = 0 (using Lemma A.5.3 again), finishing the proof. �

We obtain the following consequence of (A.16).

Corollary A.6.2. Assume that A is has a bi-symplectic form ω with corresponding
differential Poisson bracket P . If we equip DBA with the differential {P,−} then
ΩBA and DBA become isomorphic DG-Gerstenhaber algebras.

The De Rham cohomology of A is the cohomology of DRB(A) for the differ-
ential d. Likewise the Poisson cohomology of (A,P ) [17] is the cohomology of
the complex DB/[DBA,DBA] for the differential {P,−}. We obtain the following
corollary.

Corollary A.6.3. If A is equipped with a bi-symplectic form then its Poisson
cohomology coincides with its De Rham cohomology.

This is an analogue of a well-known commutative result.

A.7. The moment map. We keep the assumptions of the previous section. We
assume in addition that B = ke1 + · · ·+ ken.

2 In [7] the very beautiful observation
is made that if A is equipped with a bi-symplectic form ω then A is automati-
cally Hamiltonian in a suitable sense (and hence this is true for all representation
spaces). For completeness we give the construction of the moment map in our
present context. No originality is intended.

According to Definition 2.6.4 we need to find µi such that for all a one has

{{µi, a}}ω = Ei(a)

Or in other words

Hµi
= Ei

Applying ı(ω) this is equivalent to

dµi = ıEi
(ω)

Since ΩBA is acyclic in degrees ≥ 1 (see [7, §2.5]) it is sufficient to prove dıEi
(ω) = 0.

By (A.1) and the fact that ω is closed we have

dıEi
(ω) = LEi

(ω) = 0

where we have also used (A.6).

2In [7] it is only assumed that B is semi-simple. The role of the (ei)i is played by a separability
idempotent.
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