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Abstract. In this paper we study rings of differential operators
for modules of covariants for one-dimensional tori. In particular
we analyze when they are Morita equivalent, when they are sim-
ple, and when they have finite global dimension. As a side result
we obtain an extension of the Bernstein-Beilinson equivalence to
weighted projective spaces.

1. Introduction

Let k be an algebraically closed field of characteristic zero and let A
be a finitely generated commutative algebra over k. Let D(A) denote
the ring of differential operators of A. If A is regular then D(A) is
simple, finitely generated left and right Noetherian. If A is not regular,
all of these properties can fail [1].

One particularly interesting case is when A is a ring of invariants.
Let R be a polynomial ring k[x1, x2, · · · , xn] and let G be a reductive
group acting linearly on R. Then RG is a finitely generated k-algebra.

If G is finite then it is relatively easy to see that D(RG) is simple,
finitely generated, left and right Noetherian [7][8]. Furthermore, as T.
Stafford pointed out to me, D(RG) has finite global dimension.

In an interesting paper T. Levasseur and T. Stafford showed that if
G is a classical group, and R is the symmetric algebra of a classical
G-representation then again RG is simple, finitely generated left and
right Noetherian [9]. No mention is made of the global dimension of
D(RG).

In [11] I. Musson showed that if G is a torus then D(RG) is finitely
generated left and right Noetherian. Recently G. Schwartz proved the
same result for general reductive groups, provided that the action of G
on R satisfies some mild conditions [12]. However, neither I. Musson
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nor G. Schwartz looks at the question whether D(RG) is simple or
has finite global dimension. Knowing that D(RG) is simple would be
important in view of Theorem 6.2.5 which says that if D(A) is simple
then A is Cohen-Macaulay.

Given this incomplete understanding of D(RG), I decided to analyze
the first non-trivial case, namely G = T = Gm, a one-dimensional
torus. Then we obtain a grading

R =
⊕
l

Rl

on R where

Rl = {r ∈ R | z.r = zlr}
TheRl are so-called modules of semi-invariants or modules of covariants
for T . They are studied in [13][15] and for general reductive groups in
[14][16].

Let DRT (Rl) be the ring of differential operators on Rl. (I.e. we
extend our setting slightly.) It follows easily, by a slight generalization
of the methods in [12], that DRT (Rl) is finitely generated, left and right
Noetherian.

For our results we will have to put a minor restriction on the action
of T on R that can probably be circumvented with some extra work
(conditions 6.1.1 and 6.2.1 of Section 6).

We define a partition Z = A∪B∪C where B is a finite set, containing
0 and we prove

Theorem 1.1. DRT (Rl) is simple if and only if l ∈ B. DRT (Rl) has
finite global dimension if and only if l ∈ A ∪ C. Furthermore for l ∈
A ∪ C all DRT (Rl) are Morita equivalent. The same is true for l ∈ B.

When we specialize to l = 0 we obtain

Corollary 1.2. D(RT ) is simple, but has infinite global dimension.

Hence the situation for general G is less nice than the situation for
finite G.

Finally, using the definition of B and [13, Th 3.3 and Cor 3.4] one
may restate Theorem 1.1 in the following, somewhat curious form

Theorem 1.3. Rl is a Cohen-Macaulay RT -module if and only if
DRT (Rl) is simple, if and only if DRT (Rl) does not have finite global
dimension.

A result like this can probably not be expected in general, but it
nevertheless illustrates the close connection between the homological
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properties of modules of covariants and the ring theoretic behaviour of
their rings of differential operators.

We will also give a different application of our methods. Let Y = Pn
and let DY and DY be respectively the sheaf and the ring of differen-
tial operators on Y . Then the famous Bernstein-Beilinson equivalence
(which was proved more generally for homogeneous spaces) states

Theorem 1.4. The functors Γ(Y,−), DY ⊗DY − define mutually in-
verse equivalences between the category of quasi-coherent sheaves of left
DY -modules and the category of left DY -modules.

Then, using our methods, we can generalize this theorem to weighted
projective spaces (Proj’s of polynomial rings in which not every vari-
able has degree one). To my knowledge there are no other examples in
the literature of projective varieties where the Berstein-Beilinson equiv-
alence holds, that are not homogeneous spaces. It should be pointed
out that our proof, when specialized to Pn, resembles somewhat [5].
However no use is made of Lie algebra actions.

Finally we also prove a result similar to Theorem 1.1 for rings of
twisted differential operators on weighted projective spaces.

It should be pointed out that although we restrict ourselves in this
paper to one-dimensional tori, all of our proofs are written in such a
way that they can be easily extended to actions of higher dimensional
tori.
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2. Preliminaries

In the sequel, k will be an algebraically closed field of characteristic
zero.

If A is a commutative k-algebra and M is an A-module then D(A)
and DA(M) will denote the rings of differential operators of A and M .
If A and M are Z-graded, then it is easy to see that this grading carries
over to a Z-grading on D(A) and DA(M).

If A is a Z-graded ring and M is an A-module then for l ∈ Z Al and
Ml will be the parts of degree l of A and M .

In the sequel we fix a set of elements (ai)i=1,...,n in Z. We will always
make the following assumption

Condition 2.1. There is at least one ai different from 0.

Let R = k[x1, x2, . . . , xn] be a polynomial ring in n variables. We
will put a Z-grading on R by defining deg xi = ai. Then

D(R) = k[x1, . . . , xn, ∂1, . . . , ∂n]

where ∂i = ∂
∂xi

, is Z-graded via

deg xi = ai

deg ∂i = −ai
Let π =

∑
aixi∂i. Then it is easily verified that for h ∈ D(R)l

[π, h] = lh

or

(1) πh = h(π + l)

In particular, we deduce that π lies in the center of D(R)0. For λ ∈ k
we define

Dλ = D(R)0/D(R)0(π − λ)

Dλ is a finitely generated k-algebra. Note that if condition 2.1 would
not hold then

Dλ =

{
D(R) if λ = 0
0 if λ 6= 0

It is clear that these represent trivial cases.
If l ∈ Z then we also define

(2) Dλ(l) = D(R)l/(π − λ)D(R)l

From (1) and (2) it is clear that Dλ(l) is a Dλ-Dλ−l bimodule, finitely
generated on both sides.
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Furthermore, there are pairings

i : Dλ(l)⊗Dλ−l Dλ−l(−l)→ Dλ

j : Dλ−l(−l)⊗Dλ Dλ(l)→ Dλ−l

induced by the multiplication in D(R).
It is easy to see that

(3) (Dλ, Dλ−l, Dλ(l), Dλ−l(−l), i, j)

is a Morita context between Dλ and Dλ−l. Furthermore, i is surjective
if and only if

(4) (π − λ)D(R)0 +D(R)lD(R)−l = D(R)0

and j is surjective if and only if

(5) (π − λ+ l)D(R)0 +D(R)−lD(R)l = D(R)0

Now we prove some basic facts about Dλ. For some of the results
below, it will be convenient to look at rings, slightly more general than
Dλ.

Let f be a homogeneous element of R. Then we define

Dλ
f = D(Rf )0/D(Rf )0(π − λ)

Proposition 2.2. (1) Dλ
f is a Noetherian domain and hence a Goldie

ring.
(2) Dλ

f is a maximal order.
(3) The natural map

(6) Dλ → Dλ
f

is an injection, and both rings have the same field of fractions.
(4) Let l ∈ Z and let Q(Dλ) denote the quotient field of Dλ. Then

there is a k-algebra injection

φ : Dλ−l → Q(Dλ)

and a Dλ-module injection

ψ : Dλ(l)→ Q(Dλ)

such that for a ∈ Dλ(l), b ∈ Dλ−l

(7) ψ(ab) = ψ(a)φ(b)

I.e. ψ(Dλ(l)) becomes a Dλ − φ(Dλ−l) fractional ideal.



6MICHEL VAN DEN BERGH DEPT. OF MATHEMATICS UNIVERSITY OF ANTWERP (UIA) UNIVERSITEITSPLEIN 1 2610 WIRIJK BELGIUM

Proof. We may assume that at least two of the ai are non-zero, other-
wise the result follows by direct computation. The filtration on D(R)
by order of differential operators is compatible with the grading on
D(R), and hence it induces a filtration on Dλ.

Because π − λ = π is not a zero divisor in grD(R)0, we deduce that

(8) grDλ
f = grD(Rf )0/ grD(Rf )0π = (grD(R)/ grD(R)π)f0

Now, under our current hypothesis, grD(R)/ grD(R)π is clearly a Noe-
therian integrally closed domain, and hence the same is true for the
righthand side of (8). This proves 1., 2., using [2]. To prove that (6) is
an injection, it suffices to remark that

grD(R)/grD(R)π −→ (grD(R)/grD(R)π)f

is an injection since f is obviously not a zero divisor in grD(R)/grD(R)π.
To prove that Dλ and Dλ

f have the same ring of fractions it suffices

to remark that it follows from (8) that grDλ and grDλ
f have the same

quotient field. This easily yields the result that if a ∈ Dλ
f then there

exists s ∈ Dλ such that sa ∈ Dλ, which is precisely what we want.
To prove the last statement, choose u1, . . . , un ∈ Z such that

∑
aiui =

l and define h = xu1
1 · · ·xunn . Then we use the fact that Dλ

x1···xn has the
same quotient field as Dλ to define

φ : Dλ−l → Dλ
x1···xn : x 7→ hxh−1

ψ : Dλ(l)→ Dλ
x1···xn : y 7→ yh−1

It is clear that φ and ψ have the required properties. �

Besides the Z-grading, we have defined on D(R), D(R) also carries
a canonical Zn-grading, via

deg xi = (0, . . . , 1, . . . , 0)

deg ∂i = (0, . . . ,−1, . . . , 0)

where ±1 occurs in the i’th position. The part of degree zero for this
new grading will be denoted by D. We have that

D = k[π1, . . . , πn]

where πi = xi∂i. Clearly π =
∑
aiπi ∈ D. This Zn-grading is compat-

ible with the Z-grading and hence it goes over to D(R)0 and Dλ.
If h ∈ D(R) is of degree (u1, . . . , un) then it is easy to see that

(9) [πi, h] = uih

For u ∈ Z let

x(u) =

{
xui if u ≥ 0
∂−ui if u < 0
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Then it is easy to see that the Zn-grading on D is given by the decom-
position

(10) D(R) =
⊕

u1,...,un∈Z

Dx(u1) · · ·x(un) =
⊕

u1,...,un∈Z

x
(u1)
1 · · ·x(un)

n D

We define

π
(u)
i = x

(u)
i x

(−u)
i =

{
xui ∂

u
i if u ≥ 0

∂−ui x−ui if u < 0

It is easy to see that π
(u)
i is given by

π
(u)
i =

{
πi(πi − 1)(πi − 2) . . . (πi − u+ 1) if u ≥ 0
(πi + 1)(πi + 2) · · · (πi − u) if u < 0

Now we construct some useful isomorphisms between the various Dλ’s.
Let j ∈ {1, . . . , n} and put

(11)
bi = ai if i 6= j
bj = −aj

Let π′ and D′λ be defined as π and Dλ, but with the a’s replaced by
the b’s.

Then it is easy to see that the map

xj → −∂j
∂j → xj

and
xi → xi
∂i → ∂i

for i 6= j

induces an isomorphism between Dλ and D′λ+aj .
We obtain two useful corollaries.

Corollary 2.3. (1) Dλ and D−λ−
P
ai are isomorphic.

(2) For all i let bi = |ai|. Then Dλ and D′λ−
P
ai<0 |ai| are isomor-

phic.

Hence in principle we may always assume that all ai’s are positive.
We end this preliminary section by defining some special subsets of

k. At this moment these definitions may seem arbitrary, but it will
become clear in the next sections that the properties of Dλ depend
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heavily on which of those sets λ is a member.

E = k \ Zgcd(ai)i

Eµ = {µ+ l gcd(ai)i | l ∈ Z} for µ ∈ E
A = {λ ∈ gcd(ai)iZ | ∃(αi)i ∈ Zn :

∑
aiαi = λ and

ai ≤ 0⇒ αi < 0

ai > 0⇒ αi ≥ 0}
C = {λ ∈ gcd(ai)iZ | ∃(αi)i ∈ Zn :

∑
aiαi = λ and

ai ≥ 0⇒ αi < 0

ai < 0⇒ αi ≥ 0}
B = k \ (A ∪ C)

Example 2.4. Assume that all ai are equal to one. Then

E = k \ Z
A = N
C = {l ∈ Z | l ≤ −n}
B = {−1,−2, . . . ,−n+ 1}

Lemma 2.5. (1) A ≥ −
∑

ai<0 ai and C ≤ −
∑

ai>0 ai.
(2) {A,B, C, E} is a decomposition in pairwise disjoint subsets of k.
(3) If there are at least two non-zero ai’s then B is non-empty.
(4) If there are at least two non-zero ai’s with different signs then

0 ∈ B.
(5) B is a finite set

Proof. 1. follows from the definitions of A and C. 2. follows from 1.
and condition 2.1. For 3. let ai1ai2 6= 0. Put

b =

 −|ai1 − ai2| if ai1 > 0, ai2 > 0
0 if ai1ai2 < 0

|ai1 − ai2 | if ai1 < 0, ai2 < 0

Then −
∑

ai>0 ai < b < −
∑

ai<0 ai and hence b ∈ B.
4. is part of the proof of 3. To prove 5. it suffices to remark that for

t� 0

A ⊃ |gcd(ai)i|{i ∈ Z | t ≥ t0}
C ⊃ |gcd(ai)i|{i ∈ Z | t ≤ −t0}

�

Lemma 2.6. Let (bi)i ∈ Zn and let A′, B′, C ′, E ′, E ′µ be defined as A,
B, C, E, Eµ but using the (bi)i instead of the (ai)i.
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(1) Let j ∈ {1, . . . , n} and let (bi)i be defined as in (11). Then

E ′µ = Eµ
A′ = A+ aj

B′ = B + aj

C ′ = C + aj

(2)

Eµ = −E−µ
A = −C −

∑
i

ai

B = −B −
∑
i

ai

C = −A−
∑
i

ai

(3) Let bi = |ai| for all i. Then

Eµ = Eµ
A′ = A−

∑
ai<0

|ai|

B′ = B −
∑
ai<0

|ai|

C ′ = C −
∑
ai<0

|ai|

Proof. 2. and 3. follow by repeated application of 1. which is left to the
reader. �



10MICHEL VAN DEN BERGH DEPT. OF MATHEMATICS UNIVERSITY OF ANTWERP (UIA) UNIVERSITEITSPLEIN 1 2610 WIRIJK BELGIUM

3. The simplicity of Dλ

In this section we will use the same notations as in the previous
section.

From (9) it follows that any two-sided ideal in D(R)0 must be Zn-
graded. Furthermore, since Dλ is a domain (prop. 2.2) and since the
part of degree (u1, . . . , un) of Dλ is non-zero if and only if the part of
degree (−u1, . . . ,−un) is non-zero (using the involution xi → ∂i, ∂i →
xi on grDλ) it is easy to see that any non-zero ideal in Dλ intersects
non-trivially the part of degree zero of Dλ, which is D/D(π − λ).

Using (10) this leads to the following statement :
Dλ is simple if and only if for all f ∈ D, not divisible by π − λ

(π − λ)D +
∑

(u1,...,un)∈ZnP
aiui=0

x
(u1)
1 · · ·x(un)

n fx
(−u1)
1 · · ·x(−un)

n D = D

Now it is easy to see that

x
(u1)
1 · · ·x(un)

n f(π1, . . . , πn)x
(−u1)
1 · · · x(−un)

n = f(π1−u1, . . . , πn−un)π
(u1)
1 · · · π(un)

n

This leads to a tractable criterion for the simplicity of Dλ.
Dλ is simple if and only if for all f ∈ D, not divisible by π − λ, the

polynomials in π1, . . . , πn

π − λ =
∑

aiπi − λ

and all
f(π1 − u1, . . . , πn − un)π

(u1)
1 · · · π(un)

n

where (ui)i ∈ Zn,
∑
aiui = 0, have no common zero.

We will now investigate this condition for a particular f . For H ∈ D,
let Z(H) denote the zeroes of H. Then the above condition may be
rephrased as follows :
Dλ is simple if and only if for all f ∈ D, not divisible by π − λ and

for all (αi)i ∈ kn,
∑
aiαi = λ there exist (ui)i ∈ Zn,

∑
aiui = 0 such

that
(α1 − u1, . . . , αn − un) 6∈ Z(f)

and

(12) for all i
ui ≥ 0 ⇒ αi 6∈ [0, ui − 1] ∩ Z
ui < 0 ⇒ αi 6∈ [ui,−1] ∩ Z

(12) may be restated in a more convenient way as :

(13) for all i either αi 6∈ Z or
αi ≥ 0 ⇒ ui ≤ αi
αi < 0 ⇒ ui > αi

Fix a particular set (αi)i ∈ kn such that
∑
aiαi = λ
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Assume first that some αj 6∈ Z. If aj = 0 then we may, without
changing λ, replace αj by 0, and then condition (13) becomes harder
to satisfy.

Therefore, we must only consider the case aj 6= 0. Then the set of
(u1, . . . , un) satisfying (13) contains

U = {(u1, . . . , un) ∈ Zn |
∑
i

aiui = 0 and ∀i 6= j

αi ≥ 0⇒ ui ≤ αi

αi < 0⇒ ui > αi}
and it follows from lemma 3.4 that U is Zarisky dense in Z(π). To see
this we have to find (ui)i ∈ Qn,

∑
aiui = 0 such that for all i 6= j

αi ≥ 0 ⇒ ui < 0

αi < 0 ⇒ ui > 0

The existence of such (ui)i follows from the fact that ai 6= 0.
From this one concludes that it is possible to choose (u1, . . . , un) ∈ U

such that (α1−u1, . . . , αn−un) ∈ Z(π−λ)\Z(f) since Z(f)∩Z(π−λ) 6=
Z(π−λ). Hence if λ ∈ k \Zgcd(ai)i there will always exist αj 6∈ Z and
hence Dλ is simple.

So we may restrict ourselves to λ ∈ Zgcd(ai) and (α1, . . . , αn) ∈ Zn.
Assume that one of the following conditions holds

(1) ∃αi, αj ≥ 0, aiaj < 0
(2) ∃αi, αj < 0, aiaj < 0
(3) ∃αi ≥ 0, αj < 0, aiaj > 0

Now let U ′ be the set of (u1, . . . , un) ∈ Zn such that (13) holds.
Then it follows again from lemma 3.4 that U ′ is Zarisky dense in
Z(π) which implies that we may choose (u1, . . . , un) ∈ U ′ such that
(α1 − u1, . . . , αn − un) ∈ Z(π − λ) \ Z(f).

It is easily verified that the set of those λ such that for all (α1, . . . , αn) ∈
Zn :

∑
aiαi = λ, condition 1.,2. or 3. holds is exactly B. Hence if λ ∈ B

then Dλ is simple.
Now let λ ∈ A and choose (αi)i ∈ Zn such that

∑
aiαi = λ and

ai ≤ 0 ⇒ αi < 0

ai > 0 ⇒ αi ≥ 0

Then it follows from lemma 3.4 and condition 2.1 that U ′ is not Zarisky
dense in Z(π). Hence we may find f ∈ D, zero on all (α1−u1, . . . , αn−
un) for (u1, . . . , un) ∈ U ′ but not zero on the whole of Z(π − λ). Such
an f will generate a non-trivial ideal in Dλ.

The case λ ∈ C is treated similarly.
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Hence we have proved the following theorem

Theorem 3.1. Dλ is simple if and only if λ ∈ B ∪ E.

Remark 3.2. It is possible to give a different proof of this result with
the following method.

Let S = k[y1, . . . , yn] and embed R in S via x
|ai|
i = yi and let G =

Z/(a1) × · · · × Z/(an). Then R = SG and hence D(S)G ↪→ D(R)
(not equality since S/R is ramified in codimension one). Also π =∑
aixi∂i =

∑
εyiδi where δi = ∂

∂yi
, εi = ai

|ai| .

Then one can prove that the natural map

(D(S)0/D(S)0(π − λ))G = D(S)G0 /D(S)G0 (π−λ)→ D(R)0/D(R)0(π−λ)

is an inclusion. Furthermore, both rings are domains, contained in the
same field of fractions. Hence if D(S)0/D(S)0(π − λ) is simple then
Dλ is also simple (using [10, prop. 7.8.12]).

Hence we may reduce to the case ai = −1, 0, 1. The ai’s that are zero
can be dispensed with easily, and hence we may assume that ai = ±1
and then using cor. 2.3 we arrive at the case where all ai = 1.

Then Dλ is a ring of twisted differential operators on projective n-
space (see Section 6). Here everything is well known, at least when
λ ∈ Z [3]. Presumably the case λ 6∈ Z is also well understood, but I
have been unable to locate a precise reference.

Now to prove a complete statement as Theorem 3.1, it turns out
that one also has to throw in the Morita equivalences among the Dλ’s
constructed in Section 4.

In this way the proof becomes rather involved, and unelegant. There-
fore, we decided to include a direct proof; a proof which has the ad-
vantage that it may be generalized to higher dimensional tori.

Remark 3.3. In Theorem 3.1 the non-simplicity of Dλ for λ ∈ A ∪ C
may also be proved directly by constructing explicit finite dimensional
representations. E.g. if all ai > 0 and if λ ∈ A then R/(π − λ)R = Rλ

is a finite dimensional Dλ-module.

The following elementary lemma has been used repeatedly

Lemma 3.4. Assume that E is a Q-vector space, and L is a lattice
spanning E. Let λ1, . . . , λt ∈ E∗, c1, . . . , cj, cj+1, · · · , ct ∈ Q and define

C = {x ∈ E |〈λi, x〉 ≤ ci for i ∈ {1, . . . j}
〈λi, x〉 < ci for i ∈ {j + 1, . . . t}}

Then C ∩ L will be Zarisky dense in E if and only if there exist y ∈ E
such that 〈λi, y〉 < 0 for all i.
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The proof will be based on two sublemmas.

Lemma 3.5. Let c ∈ Q, λ ∈ E∗. Then there exist c′ ∈ Q such that

{l ∈ L | 〈λ, l〉 < c} = {l ∈ L | 〈λ, l〉 ≤ c′}

Proof. We may assume that E = Q, L = Zn, λ(x) =
∑
vixi where

vi = pi/qi ∈ Q. Then λ(x) is always a multiple of 1
q1···qn . Hence

{〈λ, l〉 | l ∈ L, 〈λ, l〉 < c}
has a maximum which plays the role of c′. �

Lemma 3.6. Let c, c′ ∈ Q, λ ∈ E∗. Then the set

(14) {l ∈ L | c ≤ 〈λ, l〉 ≤ c′}
is not Zarisky dense in E.

Proof. As in the proof of the previous lemma 〈λ, l〉 must be a multiple
of some fixed element of Q. Hence (14) is contained in a finite union
of hyperplanes. �

Proof. of lemma 3.4 We may assume that E = Qn and L = Zn.
Additionally, using lemma 3.5 and 3.6 we may assume that C has the
form

C = {x ∈ E | ∀i 〈λi, x〉 < 0}
Then the ⇒-direction is trivial. Hence we concentrate on the ⇐-
direction. C contains a small ball around y and hence C is Zarisky
dense in E. It therefore suffices to show that C ∩L is Zarisky dense in
C. Let z ∈ C. Then there exist v ∈ N \ {0} such that vz ∈ L. Hence
all positive multiples of vz lie in C∩L. But then {tz | t ∈ Q+} is in the
Zarisky closure of C ∩ L in C and therefore z itself is in this Zarisky
closure. �
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4. Morita equivalence of the Dλ’s

In this section we will use the same notations as in the previous
sections.

Additionally if l ∈ Z and λ′ = λ + l then we will write λ → λ′ if in
the Morita context (3)

(15) (Dλ, Dλ′ , Dλ(−l), Dλ′(l), i, j)

j is surjective. I.e. if the following condition

(16) (π − λ′)D(R)0 +D(R)lD(R)−l = D(R)0

is satisfied.
It is clear that λ → λ′ is transitive. Furthermore if λ → λ′ and

λ′ → λ then the Morita context (15) is a Morita equivalence, and
hence Dλ and Dλ′ are Morita equivalent.

Finally, general yoga about Morita contexts yields the following re-
sult [10, Prop. 3.4.5].

Proposition 4.1. If λ → λ′ then Dλ′(l) is right Dλ-projective and
Dλ(−l) is left Dλ-projective.

Using the Zn-grading on D(R) and (10), (16) is equivalent with

(π − λ′)D +
∑

u1,...,un∈ZP
aiui=l

x
(u1)
1 · · ·x(un)

n Dx
(−u1)
1 · · ·x(−un)

n = D

which is equivalent with

(π − λ′)D +
∑

u1,...,un∈ZP
aiui=l

π
(u1)
1 · · · π(un)

n D = D

I.e. there will be an arrow λ→ λ′ if the polynomials in D∑
aiπi − λ′

π
(u1)
1 · · · π(un)

n ,
∑

aiui = l

have no common zeroes.
This may be rephrased as follows :
There is an arrow λ→ λ′ if for all (αi)i ∈ kn,

∑
aiαi = λ′ there exist

(ui)i ∈ Zn,
∑
aiui = l such that

(17) for all i
ui ≥ 0 ⇒ αi 6∈ [0, ui − 1] ∩ Z
ui < 0 ⇒ αi 6∈ [ui,−1] ∩ Z

(Note the similarity with (12).)
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(17) may be rewritten as

(18) for all i either αi 6∈ Z or
αi ≥ 0 ⇒ ui ≤ αi
αi < 0 ⇒ ui > αi

Assume first that some αj 6∈ Z. If aj = 0 then we may, without
changing λ, replace αj by 0 and then (18) becomes harder to satisfy.
Therefore we must only consider the case aj 6= 0 but then it is easy to
see that one can satisfy (18) if and only if gcd(ai)i | l.

Hence the relation λ→ λ′ induces an equivalence relation on E with
equivalence classes Eµ, µ ∈ k. Furthermore there are no arrows going
in and out of E .

Hence we may now restrict ourselves to λ, λ′ ∈ Zgcd(ai)i and (α1, . . . , αn) ∈
Zn. By defining βi = αi − ui, we obtain the following very symmetric
statement.

There is an arrow λ → λ′ if for all (αi)i ∈ Zn,
∑
aiαi = λ′ there

exist (βi)i ∈ Zn,
∑
aiβi = λ such that

(19) for all i
αi ≥ 0 ⇒ βi ≥ 0
αi < 0 ⇒ βi < 0

If λ′ ∈ B then one of the conditions 1.,2.,3. listed in the proof of The-
orem 3.1 must hold and then we can always find (βi)i ∈ Zn satisfying
(19).

If λ′ ∈ A then it follows from (19) and the definition of A that also
λ ∈ A.

Similarly λ′ ∈ C implies λ ∈ C. We have now proved

Proposition 4.2. All elements of A, B, C, Eµ, µ ∈ k are equivalent
under the relation λ→ λ′. The only additional arrows are those going
from A to B and from C to B.

Corollary 4.3. For all λ ∈ A ∪ C, the rings Dλ are mutually Morita
equivalent. The same is true for all λ ∈ B and for all λ ∈ Eµ ∪ E−µ,
µ ∈ k.

Furthermore, if λ ∈ B and λ′ 6∈ B then Dλ and Dλ′ are not Morita
equivalent.

Proof. The first part follows from 4.2 and 2.3. For the last part we
would like to invoke 5.5. However, we can’t do this directly since 5.5
depends on 4.5, which in turn depends on this corollary. However it is
easily seen that 4.5 depends only on the case λ ∈ B and λ′ ∈ A ∪ C
which follows from 3.1. This breaks the circle. �

Remark 4.4. If λ, λ′ ∈ E and Dλ is Morita equivalent with Dλ′ then
we don’t know whether necessarily λ, λ′ ∈ Eµ ∪ E−µ for some µ ∈ k
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The following partial converse to prop. 4.1 will be needed in the next
section.

Lemma 4.5. If λ ∈ B and λ′ ∈ A∪ C then Dλ(−l) is not a projective
left Dλ-module.

Proof. Using prop. 4.1 and prop. 4.2 it follows that Dλ(−l) is right
Dλ′-projective. Then the lemma below together with 2.3 implies the
result. �

Lemma 4.6. Suppose that A and B are maximal orders in the same
field of fractions. Suppose furthermore that P is an A-B fractional
ideal, projective on either side. Then A and B are Morita equivalent.

Proof. It is sufficient to show that the canonical maps

A→ EndB(P )

B◦ → EndA(P )

are isomorphisms.
Now EndB(P ) is an order in the fraction field of A, which contains

A and which is equivalent to A. Hence A = EndB(P ). The proof that
B◦ = EndA(P ) is similar. �
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5. The global dimension of Dλ

In this section, the notations and conventions of the previous sections
will remain in force.

We start with the case were all ai ≥ 0, and in particular : a1, . . . , al >
0, al+1, . . . , an = 0. Note that condition 2.1 implies that l > 0.

First let λ ∈ A ∪ E , and f a homogeneous element in R.

Lemma 5.1. Under the current assumptions, Dλ
f is a right flat Dλ-

module.

Proof. We may assume that f has strictly positive degree, otherwise
Dλ
f is an Öre localization of Dλ and then the result is clear.
Let deg f = u > 0. Then

(20) Dλ
f = inj lim

t
Dλ+tu(tu)

as right Dλ-modules. Now u | gcd(ai)i, and then from the definitions
of A and E it is clear that for any t0 there is a t ≥ t0 such that
λ+ tu ∈ A ∪ E . Hence by prop. 4.2 and 4.1, Dλ

f is right flat. �

Now let K be the complex of D(R)-bimodules

0→ D(R)→
⊕

i∈{1,...,l}

D(R)xi →
⊕

i,j∈{1,...,l}
i 6=j

D(R)xixj → · · ·
d−→ D(R)x1···xl → 0

with the standard alternating boundary maps.
By going to the associated graded modules, we see that K is every-

where exact, except in D(R)x1···xl and

gr (coker d) = x−1
1 · · ·x−1

l k[x−1
1 , . . . , x−1

l , xl+1, · · · , xn, ∂1, . . . , ∂n]

Hence K becomes exact everywhere when restricted to degree zero.
(Here we use the fact that l > 0).

In the resulting complex the modules have no π−λ torsion, and hence
after tensoring with Dλ, we obtain an exact sequence Kλ of right flat
Dλ bimodules.

0→ Dλ →
⊕

i∈{1,...,l}

Dλ
xi
→

⊕
i,j∈{1,...,l}

i 6=j

Dλ
xixj
→ · · · → Dλ

x1···xl → 0

Lemma 5.2. Let {i1, . . . , ip} ⊂ {1, . . . , l}. Then Dλ
xi1 ···xip

has finite

global dimension.

Proof. It is easy to see that Dλ
xi1 ···xip

is an Öre localization of Dλ
xi1

.

Hence it is sufficient to show that Dλ
xi

has finite global dimension for
i ∈ {1, . . . , l}.
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Let R′ = k[x1, . . . , x̂i, . . . , xn]. Then it is easy to see that the map⊕
t

D(R′)tai → Dλ
xi

: r 7→ x−ti r

is an isomorphism. Hence

Dλ
xi
∼= D(R′)Z/aiZ

which implies thatDλ
xi

has finite global dimension [10, prop. 7.8.11]. �

Now we need the following elementary lemma.

Lemma 5.3. Let B/A be a right flat ring extension and assume that
I is a left injective B-module. Then the restriction of I to A is left
injective.

Proof. For every left ideal J in A, and every A-linear map φ : J → I,
we have to find a factorization through A. Now φ extends to a map
φ′ : B ⊗A J → I, and from the flatness of B it follows that B ⊗A J
is a left ideal in B. Hence φ′ factors through B, but this immediately
provides us with a factorization of φ through A. �

Now assume that M is a left Dλ-module. Tensoring with Dλ gives
an exact sequence

Kλ ⊗Dλ M
Now in this sequence, each of the modules Dλ

xi1 ···xip
⊗ M has a fi-

nite injective resolution as Dλ
xi1 ···xip

-module (lemma 5.2). However,

by lemma 5.3, these resolutions are also injective resolutions as Dλ-
modules. Hence M has finite injective dimension.

We conclude that if λ ∈ A ∪ E then Dλ has finite global dimension.
This is the most suitable place to insert a lemma that will be used

in the next section.

Lemma 5.4. If λ ∈ A ∪ E then U = ⊕Dλ
xi

is a right faithfully flat

Dλ-module.

Proof. Let M be a left Dλ-module. Then the complex

Kλ ⊗Dλ M
is exact. In particular U ⊗Dλ M = 0 implies M = 0. �

Assume now that λ ∈ C. Then we may use cor. 2.3, and the fact
that −λ−

∑
ai ∈ A to show that in this case Dλ also has finite global

dimension.
Finally, suppose that λ ∈ B. We will show that now Dλ has infinite

global dimension.
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First look at the Koszul complex (of left modules) associated to the
regular sequence x1, . . . , xl.

0→ D(R)(−a1−· · ·−al)→ · · · →
⊕

i,j∈{1,...,l}
i 6=j

D(R)(−ai−aj)→
⊕

i∈{1,...,l}

D(R)(−ai)
d−→ D(R)

This complex is exact, and

gr (coker d) = k[xl+1, . . . , xn, ∂1, . . . , ∂n]

Hence if

(21) u 6∈ −Na1 − · · · − Nan
there is an exact sequence

0→ D(R)u−a1−···−al → · · · →
⊕
i

D(R)u−ai → D(R)u → 0

and since there is no π − λ torsion, tensoring with Dλ yields an exact
sequence

(22) 0→ Dλ(u−a1−· · ·−al)→ · · · →
⊕
i

Dλ(u−ai)→ Dλ(u)→ 0

Now look at the Koszul complex associated to the regular sequence
∂1, . . . , ∂l.

0→ D(R)(a1+· · ·+al)→ · · · →
⊕

i,j∈{1,...,l}
i 6=j

D(R)(ai+aj)→
⊕

i∈{1,...,l}

D(R)(ai)
d−→ D(R)

This time

gr (coker d) = k[x1, . . . , xn, ∂l+1, . . . , ∂n]

Assume now that

(23) u− a1 − · · · − al 6∈ Na1 + · · ·+ Nan
then restricting to degree u−a1−· · ·−an and tensoring with Dλ yields
an exact sequence
(24)

0→ Dλ(u)→ · · · →
⊕
i

Dλ(u−a1−· · ·−âi−· · ·−an)→ Dλ(u−a1−· · ·−an)→ 0

Our aim is now to select u in such a way that

λ− u 6∈ B λ− u+
∑

i∈{1,...,l}

ai 6∈ B

∀I({1, . . . , l}, I 6= ∅ : λ− u+
∑
i∈I

ai ∈ B
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Then according to lemma 4.5 Dλ(u) and Dλ(u−a1−· · ·−al) will not be
projective, whereas all the other modules, occurring in the complexes
(22) and (24) are projective. This clearly implies that Dλ has infinite
global dimension.

From lemma 2.5 it follows that the minimal element of A and the
maximal element of C are respectively 0 and −

∑
ai. Hence it suffices

to put

λ− u = −
∑

i∈{1,...,l}

ai

or
u = λ+

∑
i∈{1,...,l}

ai

We still have to verify that (21) and (23) hold. Now if (21) does not
hold then λ ∈ C. Similarly if (23) does not hold then λ ∈ A. This
yields a contradiction since λ ∈ B.

Now we let the ai’s be arbitrary. Put bi = |ai| and λ′ = λ−
∑

ai<0 |ai|.
Let A′, B′, C ′, E ′, D′λ′ , π′ be defined as in cor. 2.3 and lemma 2.6. Then
by what we have shown above Dλ will have finite global dimension if
and only if D′λ

′
has finite global dimension if and only if λ′ 6∈ B′ if and

only if λ 6∈ B.
Hence we have now proved :

Theorem 5.5. Dλ has finite global dimension if and only if λ 6∈ B.
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6. Applications

6.1. Weighted projective spaces. In this section we will assume
that all ai > 0.

Put Y = ProjR. In addition to condition 2.1 we will assume the
following condition

Condition 6.1.1.

∀j ∈ {1, . . . , n}, gcd(ai)i 6=j = 1

We may assume that this condition holds, without changing Y .
For a graded R-module, let M̃ be the corresponding quasi-coherent

sheaf on Y . For l ∈ Z let OY (l) = R̃(l).
For a quasi coherent OY -module, denote by DY (F) its sheaf of dif-

ferential operators and DY (F) = Γ(Y,D(F)) its ring of differential
operators.

We also define

Dλ = D̃(R)/D̃(R)(π − λ)

Then we may prove the following theorem.

Theorem 6.1.2. Dλ = Γ(Y,Dλ) and for l ∈ Z : Dl = DY (OY (l)).

Proof. To proveDλ = Γ(Y,Dλ) it is sufficient to prove thatH1(Y, D̃(R)) =
0.

If we filter D(R) by order of differential operators we obtain

grD(R) = R[∂1, . . . , ∂n] =
⊕

(ui)i∈Nn
R(u1a1 + · · ·+ unan)

Hence a filtration is induced on D̃(R) with associated graded quotients⊕
(ui)i∈Nn

OY (u1a1 + · · ·+ unan)

Therefore, by an obvious generalization of Serres computation of coho-

mology on projective spaces, H1(Y, D̃(R)) = 0.
To prove that the canonical map Dl → D(OY (l)) is an isomorphism,

we may restrict to the basic open sets Yi = {xi 6= 0}. By definition

Γ(Yi,Dl) = Dl
xi
, Γ(Yi,DY (OY (l))) = D(Rxi )0

((Rxi)l)

Now, by a straightforward generalization of [12, Th. 7.11] to covariants,
we find that the canonical map

Dl
xi
→ D((Rxi)l)

is an isomorphism (uses condition 6.1.1). �
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Hence Theorems 3.1, 5.5 and Corollary 4.3 may be applied to twisted
differential operators of weighted projective spaces.

We include one more result, which is a generalization of the famous
Bernstein-Beilinson theorem to weighted projective spaces.

Theorem 6.1.3. If λ ∈ A ∪ E then the functors Γ(Y,−), Dλ ⊗Dλ
− define mutually inverse equivalences between the category of quasi-
coherent sheaves of left Dλ-modules and the category of left Dλ-modules.

Proof. This follows from [6] and lemma 5.4. �

6.2. Covariants for a one-dimensional torus. In this section T
will be a one-dimensional torus. We will identify the character group
Hom(T,Gm) with Z where 1 corresponds to the identity.

If A is a k-algebra on which T acts rationally then we denote by Al
the part of degree A with weight l. I.e.

Ak = {a ∈ A | ∀z ∈ T : z.a = zla}
Clearly A0 = AT . Furthermore A = ⊕Al is a grading on A.

Conversely, if we are given a grading on A then it may be converted
into a T -action. Hence we will consider the T -action on R correspond-
ing to the grading on R.

Without changing RT , we may assume that the condition 6.1.1 holds,
which is what we will do.

Furthermore we will put on the slightly restrictive condition :

Condition 6.2.1. There are at least two strictly positive and at least
two strictly negative a’s

Then there is the following result.

Theorem 6.2.2. Assume that l ∈ Z. Then Dl = DRT (Rl).

Proof. This follows directly form a generalization of [12, Th. 7.11] to
covariants (uses condition 6.1.1 and 6.2.1). �

Hence we may apply Theorems 3.1, 5.5 and Corollary 4.3 to rings of
differential operators of modules of covariants.

Using [13, Th. 3.3 and cor. 3.4] or [15, 4.1] we can state the following
somewhat curious corollary.

Corollary 6.2.3. Let l ∈ Z. Then Rl is a Cohen-Macaulay RT -module
if and only if DRT (Rl) is simple, if and only if DRT (Rl) does not have
finite global dimension.

Or more specifically.

Corollary 6.2.4. D(RT ) is simple and has infinite global dimension.
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It was the following partial generalization of cor. 6.2.3 that has orig-
inally prompted me to look into these matters.

Theorem 6.2.5. Let A be a finitely generated commutative k-algebra,
and M a finitely generated A-module. Then if DA(M) is simple then
M is Cohen-Macaulay.

Proof. Assume that DA(M) is simple. Let X = SpecA and let M be
the quasi-coherent OX-module associated to M . Let Z be the support
of M and let Y be the non-Cohen-Macaulay locus of M . Put u =
codim(Y, Z). Then according to [4] Ui = H i

Y (M) is coherent for 0 ≤
i < u. But then AnnDA(M)Ui is non-zero, and hence equal to DA(M).

This implies that Ui = 0 for 0 ≤ i < u. Hence if η is a generic point of
Y of codimension u in Z, thenMη is Cohen-Macaulay. This contradicts
the fact that Y was the non-Cohen-Macaulay locus of M. �
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complexes, Bull. Soc. Math. France, Mémoire 53 (1977), 5-80.
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