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Abstract. We compute the Hochschild and cyclic homology of certain three

dimensional quantum spaces (type A algebras), introduced in [1]. We show
that the Hochschild homology is determined by the quasi-classical limit.

1. Introduction

In the sequel k will be a field of characteristic zero.
Recall that in Manin’s terminology a quantum (affine) space is a finitely gener-

ated quadratic algebra [11]. More traditionally, quantum n-space is usually taken
to be the algebra

k〈x1, . . . , xn〉/(xjxi − λxixj ; j > i) (1)

with λ ∈ k, or its multi-parameter version

k〈x1, . . . , xn〉/(xjxi − λijxixj ; j > i) (2)

again with (λij)i,j∈k.
The Hochschild homology of quantum n-space was computed in [15] and in [17]

for the multi-parameter version. It should be noted that the results depend in a
sensitive way upon the values of the parameters.

Whereas in dimension two practically all quantum spaces (with the correct
Hilbert series) have the form (2), this is far from the case in higher dimensions.

A classification of three dimensional quantum spaces was undertaken in [1]. One
obtains various families, of which the most non-classical one is given by the so-called
type A algebras. That is, algebras of the form

k〈x, y, z〉/(f1, f2, f3) (3)

where

f1 = ayz + bzy + cx2

f2 = azx+ bxz + cy2

f3 = axy + byx+ cz2

Such algebras were further studied in [2][3]. It was shown that they may be obtained
from couples (E, τ) where E is an elliptic curve and τ is a translation.

Independently, generalizations in higher dimensions of type A algebras were dis-
cussed in [13][14] (see also [16]).
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Calculation of the Hochschild homology of (1)(2) is somewhat simplified by
the fact that these algebras are “toric”. That is, they carry an action of an n-
dimensional torus, with one-dimensional weight spaces. In contrast, type A algebras
do not enjoy this property.

In this note we calculate the Hochschild and cyclic homology of (3) when a, b, c
are generic. Our treatment is in the spirit [7][9]. That is we write (3) as a defor-
mation of a polynomial algebra with a Poisson bracket. Then we show that the
associated Brylinski spectral sequence degenerates.

In somewhat more fancy laguage this means that the Hochschild homology of
the quantum space (3) is determined by the “quasi-classical limit”, i.e. the homol-
ogy of the associated Poisson variety. This a phenomenem generally observed for
“quantum type spaces” [7], but as yet unexplained.

The main result of these notes is Theorem 4.1 where we compute the Hochschild
homology of (3). From this one can then easily deduce the cyclic homology, the
De Rham cohomology and the periodic cyclic homology of type A algebras. It is
perhaps noteworthy that the latter two are the same as for affine three-space.

We now give an overview of the paper, section by section.
In §2 we discuss some basic notions which are taken from [9]. Any one who is at

least vaguely familiar with Hochschild and cyclic homology should skip this section.
In §3 we construct a “small” complex that computes the Hochschild homology of

a Koszul algebra. Its use could have been avoided, but it does perhaps have some
independent interest. Note that the material in this section complements nicely
[17], where the case of a symmetric algebra, associated to a solution of the Yang
Baxter equation, is treated.

In §4 we introduce type A algebras and we state the main result (Theorem 4.1
and its corollary).

In §5 we give a proof of Theorem 4.1. As was noted above the essential point is
to show that the Brylinski spectral sequence degenerates. The most natural way
to do this, which works for enveloping algebras [9], is to show that its E1-term is
quasi-isomorphic with the small complex introduced in §3. Unfortunately I don’t
see how to do this.

On the other hand it is possible to lift homology classes in E2. This is done by lift-
ing two special elements explicitly, and then to use the compatibility of Hochschild
homology with the Connes differential and with the action of a certain central el-
ement of degree 3 in (3). It is clear that this implies that the Brylinski spectral
sequence degenerates.

One other point should be mentioned. The Poisson bracket we obtain from (3)
has the form {y, z} = g1, {z, x} = g2, {x, y} = g3 with

∇× (g1, g2, g3) = 0 (4)

The intrinsic meaning of this last property is a mystery to me, but it is what make
possible the computation of the homology of the corresponding Poisson variety. I.e.
it seems to me that without (4) the computations would be much harder.

2. Mixed complexes

In this section we follow Kassel [9] for some basic definitions.
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A mixed complex is a triple (M, b,B) where M is a N-graded k-vectorspace and
b, B are differentials of degrees −1,+1 respectively, satisfying b2 = B2 = bB+Bb =
0.

Let H∗(M) = H∗(M, b) be the homology of the underlying chain complex (M, b).
B introduces a differential of degree 1 on H∗(M) and the homology of the complex

0 −→ H0(M) B−→ H1(M) B−→ H2(M) B−→ · · ·

is called the De Rham cohomology of (M, b,B) and is denoted by H∗DR(M).
The homology of the total complex, associated to the bicomplex,yb yb yb

M2
B←−−−− M1

B←−−−− M0 ←−−−− 0yb yb y
M1

B←−−−− M0 ←−−−− 0yb y
M0 ←−−−− 0y
0

(5)

is called the cyclic homology of (M, b,B) and is denoted by HC∗(M).
The periodic complex associated to (M, b,B) is defined as

−→
∏
i≥0

M2i
b+B−−−→

∏
i≥0

M2i+1
b+B−−−→

∏
i≥0

M2i
b+B−−−→ · · ·

Its homology is called the periodic cyclic homology of (M, b,B) and is denoted by
HCper
∗ (M) where ∗ = “even” or “odd”.
Quotienting out the first column in (5) yields the long exact sequence of Connes

· · · −→ Hn(M) I−→ HCn(M) S−→ HCn−2(M) B−→ Hn−1(M) −→ · · ·

If the inverse system

· · · S−→ HCn(M) S−→ HCn−2(M) S−→ · · ·

satisfies the Mitag-Leffler condition then its inverse limit is equal to HCper
∗ (M)

where ∗ is “even” or “odd”, depending on whether n is even or odd.
Filtering (5) by columns yields a spectral sequence

E1 : H∗(M)⇒ HC∗(M)

which is the spectral sequence of Connes.
If A is an associative k-algebra then there is a mixed complex (C(A), b, B) given

by C(A)n = A⊗(n+1),

b(r0 ⊗ · · · ⊗ rn) = (−1)nrnr0 ⊗ · · · ⊗ rn−1 +
n−1∑
i=0

(−)ir0 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rn
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and

B(r0 ⊗ · · · ⊗ rn) =
n∑
i=0

(−)ni1⊗ ri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1

+ (−)n
n∑
i=0

(−)niri ⊗ · · · ⊗ rn ⊗ r0 ⊗ · · · ⊗ ri−1 ⊗ 1

One defines HH∗(A) = H∗(C(A)), H∗DR(A) = H∗DR(C(A)), HC∗(A) = HC∗(C(A)),
HCper
∗ (A) = HCper

∗ (C(A)). These are respectively the Hochschild homology, the
De Rham cohomology, the cyclic homology and the periodic cyclic homology of A.

It is known that
HH∗(A) = TorA⊗A

◦
(A,A)

If A is commutative then the shuffle product (see e.g. [10]) makes HH∗(A) into a
graded commutative differentially graded algebra. More generally if R ⊂ A is a
central k-subalgebra then HH∗(A) is a differentially graded HH∗(R)-module.

In the sequel we will only use the R = HH0(R)-module structure of HH∗(A).
This is obtained from left multiplication on the complex C(A).

If A is commutative and smooth then

r0 ⊗ r1 ⊗ · · · ⊗ rn 7→
1
n!
r0dr1 · · · drn

defines a quasi-isomorphism between C(A) and Ω∗A where Ω∗A is the exterior algebra
of differential forms over A, with zero differential [8].

Hence HH∗(A) = Ω∗A. Under this quasi-isomorphism the map B on C(A) corre-
sponds to the natural differential d on differential forms.

3. Some generalities about Koszul algebras

Let V be a finite dimensional k-vector space and let TV be the tensor algebra
of V over k. Suppose that A = TV/(R) where R ⊂ V ⊗ V . I.e. A is a quadratic k-
algebra. The dual algebra of A, denoted by A!, is the quadratic algebra TV ∗/(R⊥).

Let (xi)i=1,... ,n be a basis of V and let (ζi)i=1,...n be the dual basis of V ∗. Then

e =
n∑
i=1

xi ⊗ ζi ∈ A⊗A!

has the property that e2 = 0.
Right multiplication by e defines a complex

A⊗ (A!
0)∗ ←− A⊗ (A!

1)∗ ←− · · · (6)

A is said to be Koszul if (6) is a resolution of Ak.
Now let K ′(A) = A ⊗ (A!)∗ ⊗ A be graded by K ′(A)m = A ⊗ (A!

m)∗ ⊗ A. On
K ′(A) we define two maps of degree −1 as follows. Let r⊗ f ⊗ s ∈ K ′(A)m. Then

b′L(r ⊗ f ⊗ s) =
∑
i

rxi ⊗ fζi ⊗ s

b′R(r ⊗ f ⊗ s) =
∑
i

r ⊗ xif ⊗ ζis

Clearly b′2L = 0, b′2R = 0 and b′Lb
′
R = b′Rb

′
L. Hence if we put b′ = b′L + (−)mb′R then

b′2 = 0.
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Note that this differential is a mild generalization of [17], where the case of
a symmetric algebra, associated to the solution of the Yang-Baxter equation, is
treated.

Since A!
0 = k, K ′(A)0 may be identified with A⊗A. Furthermore A!

1 = V ∗ and
hence K ′(A)1 = A⊗V ⊗A. If r⊗v⊗s ∈ K ′(A)1 then b′(r⊗v⊗s) = rv⊗s−r⊗vs.
If we define ε : K ′(A)0 −→ A : r ⊗ s 7→ rs then εb′ = 0.

Proposition 3.1. Suppose that A is Koszul. Then the complex

0←− A ε←− K ′(A)0
b′←− K ′(A)1

b′←− · · · (7)

is exact and hence (K ′(A), b′) defines a minimal free resolution of A as A-A-
bimodule.

Proof. (7) is a complex of free right A-modules. Tensoring with ⊗Ak yields (6)
(completed by k on the left). Since (6) is exact by hypothesis, the graded version
of Nakayama’s lemma [12] implies that (7) is also exact. �

Let K(A) be the graded k-vector space A⊗ (A!)∗, graded by K(A)m = A⊗ (A!
m)∗.

Define differentials as follows. If r ⊗ f ∈ K(A)m then bL(r ⊗ f) =
∑
i rxi ⊗ fζi =

(r ⊗ f)e and bR(r ⊗ f) =
∑
i xir ⊗ ζif = e(r ⊗ f). Again b2L = b2R = 0 and

bLbR = bRbL. Therefore, if b = bL + (−)mbR then b2 = 0. Note that if φ ∈ K(A)m
then

bφ =

{
eφ+ φe if m is odd
eφ− φe if m is even

Proposition 3.2. Suppose that A is Koszul. Then

HH∗(A) = H∗(K(A), b)

Proof. It is easily verified that

K(A) = A⊗A⊗A◦ K ′(A) �

We now have two complexes that compute the Hochschild homology of A. Namely
K(A) and C(A). It is possible to construct an explicit quasi-isomorphism between
them.

We have K(A)m = A⊗ (A!
m)∗ and C(A)m = A⊗A⊗m.

Now A!
m is a quotient of (V ∗)⊗m and hence (A!

m)∗ ⊂ (V ∗)⊗m. In fact [4, §2.4]

(A!
m)∗ =

⋂
i+j=m−2

V ⊗i ⊗R⊗ V ⊗j

We now define q : A ⊗ (A!
m)∗ −→ A ⊗ A⊗m as being the restriction of the natural

inclusion A⊗ V ⊗m ↪→ A⊗A⊗m.

Proposition 3.3. q : K(A) −→ C(A) is a quasi-isomorphism.

Proof. It is well-known that (C(A), b) = A ⊗A⊗A◦ (C ′(A), b′) where C ′(A) is the
following complex : C ′(A)m = A⊗(m+2) and

b′(r0 ⊗ · · · ⊗ rm+1) =
m∑
i=0

(−)ir0 ⊗ · · · ⊗ riri+1 ⊗ · · · ⊗ rm+1

(C ′(A), b′) is a free resolution of A as A-A-bimodule, where the augmentation map
ε : C ′(A)0 −→ A is given by a⊗ b 7→ ab.
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We define a graded map q′ : K ′(A) −→ C ′(A) which, in degree m, is the restriction
of the natural inclusion A⊗ V ⊗m ⊗A ↪→ A⊗A⊗m ⊗A. Clearly A⊗A⊗A◦ q′ = q.

It is now sufficient to show that q′ is compatible with b and ε. Elementary linear
algebra shows that

b′ : A⊗ (A!
m)∗ ⊗A −→ A⊗ (A!

m−1)∗ ⊗A

is the restriction of the map

b′ : A⊗ V ⊗m ⊗A −→ A⊗ V ⊗(m−1) ⊗A

given by

r ⊗ v1 ⊗ · · · ⊗ vm ⊗ s 7→ rv1 ⊗ v2 ⊗ · · · ⊗ vm ⊗ s+ (−)mr ⊗ v1 ⊗ · · · ⊗ vm−1 ⊗ vms

Let r, s ∈ (A!)∗, f ∈ (A!
m)∗. I.e. there is a decomposition

f =
∑
j

v
(j)
1 ⊗ · · · ⊗ v(j)

m

where (v(j)
i )i,j ∈ V .

Then

qb(r⊗f⊗s) =
∑
j

rv
(j)
1 ⊗v

(j)
2 ⊗· · ·⊗v(j)

m ⊗s+(−)m
∑
j

r⊗v(j)
1 ⊗· · ·⊗v(j−1)

m ⊗v(j)
m s

and

bq(r ⊗ f ⊗ s) =
∑
j

rv
(j)
1 ⊗ · · · ⊗ v(j)

m ⊗ s+ (−)m
∑
j

r ⊗ v(j)
1 ⊗ · · · ⊗ v(j)

m s

+
m−1∑
i=1

(−)i
∑
j

r ⊗ v(j)
1 ⊗ · · · ⊗ ⊗v

(j)
i v

(j)
i+1 ⊗ · · · ⊗ v

(j)
m ⊗ s

Now we have to remember that

f ∈ V ⊗(i−1) ⊗R⊗ V ⊗(m−i+1)

and hence all sums of the form∑
j

v
(j)
1 ⊗ · · · ⊗ ⊗v

(j)
i v

(j)
i+1 ⊗ · · · ⊗ v

(j)
m

are zero in A⊗(m−1). This shows that qb = bq.
The verification that qε = q is trivial and is left to the reader. �

Remark 3.4. It would be interesting if we could make K(A) into a mixed complex,
that computes the cyclic homology of A. Unfortunately this does not seem to be
possible in general, at least not in a canonical way.

4. Type A-algebras

Recall than in [1] and subsequently in [2][3] certain Koszul algebras of dimen-
sion 3 were studied. I.e. those graded algebras A = k⊕A1⊕A2⊕· · · of global dimen-
sion 3 having Hilbert function dimAl =

(
l+2
l

)
and the property that ExtiA(k,A) =

δi,3k where δi,j is the Kronecker delta.
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Such algebras come in various families of which the most beautiful one, to some
tastes, is given by the so-called type A algebras. A type A algebra is of the form
A = k〈x1, x2, x3〉/(f1, f2, f3) where

f1 = ax2x3 + bx3x2 + cx2
1

f2 = ax3x1 + bx1x3 + cx2
2

f3 = ax1x2 + bx2x1 + cx2
3

(8)

with (a, b, c) ∈ k3 (it is necessary to exclude a finite subset of k3).
Type A algebras may also be obtained from pairs (E, τ) consisting of a smooth

elliptic curve and a translation [2][14].
In the rest of this section A will be a type A algebra. Then A has a central

element in degree 3 of the form [1, eq. (10.17)]

C3 = c(c3 − b3)x3
2 + b(c3 − a3)x2x1x3 + a(b3 − c3)x1x2x3 + c(a3 − c3)x3

1

The complex K(A) may, in this special case, be explicitily described. Let x =
(x1, x2, x3), f

t
= (f1, f2, f3). Then f̄ = Mx̄t where

M =

cx1 bx3 ax2

ax3 cx2 bx1

bx2 ax1 cx3


Note that also f̄ = x̄M .
K(A) is now given by

0 −→ A(−3) x̄−x̄◦−−−→ A(−2)3 M+M◦t−−−−−→ A(−1)3 x̄t−x̄◦t−−−−→ A

Here ( )◦ means using left multiplication on A. I.e. xy◦ = yx.
Now we describe some objects inK(A) that are needed to describe the Hochschild

homology of A. We denote by ∆ the element 1 ∈ K(A)3 and by Π the element
(x1, x2, x3) ∈ K(A)2. Clearly b∆ = bΠ = 0. Consider f1, f2, f3 as elements of
V ⊗ V ⊂ A⊗2. Then

q(Π) = x1 ⊗ f1 + x2 ⊗ f2 + x3 ⊗ f3

q(∆) = 1⊗ q(Π)

Note that q(Π) ∈ V ⊗3 is nothing but the element w, as defined in [1, eq. (2.3)].
Π, ∆ define elements of HH2,3(A) that will be denoted by the same letters.

Theorem 4.1. Let A be a generic type A algebra. I.e. A = k〈x1, x2, x3〉/(f1, f2, f3)
where (fi)i are given by (8) and a, b, c are algebraically independent over Q ⊂
k. Then (HHi(A))i=0,... ,3 are free k[C3]-modules of ranks 8, 8, 1, 1. HH2(A) is
generated by Π and HH3(A) is generated by ∆.
HH0,1(A) have Hilbert series as follows :

H(HH0(A), t) =
(1 + t)3

1− t3

H(HH1(A), t) =
(1 + t)3

1− t3
− 1

B defines a surjection HH0(A) −→ HH1(A) and an isomorphism between HH2(A)
and HH3(A).

A proof of this theorem will be given at the end of §5.
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Corollary 4.2. (1)

Hi
DR(A) =

{
k if i = 0
0 otherwise

(2)

HCi(A) =


0 if i is odd
HH0(A) if i = 0
k ⊕HH2(A) if i = 2
k if i is even and ≥ 4

(3) S : HCi(A) −→ HCi−2(A) is given by the identity on k if i ≥ 6 and by
the inclusion of k as the first factor of k ⊕HH2(A) if i = 4. If i = 2 then
S : k⊕HH2(A) −→ HH0(A) is zero on HH2(A), and the canonical inclusion
k ↪→ HH0(A) on k.

(4)

HCper
∗ (A) =

{
k if ∗ is even
0 if ∗ if odd

Proof. (1) This is clear.
(2) The E2-term of the Connes spectral sequence has the form

0 0 0 0 k
0 0 0 k

HH2(A) 0 k
0 k

HH0(A)

Since the higher differentials will have degrees (−t, t − 1), this spectral
sequence degenerates. This yields (2) except that a priori, we only have
grHC2(A) = k ⊕HH2(A).

However, here k lives in degree 0 and HH2(A) in degrees ≥ 3 (for the
grading on A). Therefore we may legitimately write HC2(A) = k⊕HH2(A).

(3) To compute S one uses the fact that S is obtained from the quotient map of
(5) to (5) minus the first column. This gives a map between the E2-terms
of the corresponding Connes spectral sequences.

Making this explicit shows that grS is the map we have defined. However
since the filtration on HC∗(A) in each degree (for the grading on A) is
concentrated in one place, one has S = grS.

(4) The inverse systems (HC2i(A), S) and (HC2i+1(A), S) satisfy the Mittag-
Leffler conditions and hence HCper

∗ (A) is obtained as an inverse limit. This
yields the desired result. �

Remark 4.3. (1) A has the same De Rham cohomology and periodic cyclic
homology as affine three-space.

(2) We have refrained from giving explicit generators for HH0(A) and HH1(A)
since there seems to be no canonical choice.

(3) It would be interesting to make explicit the structure of HH∗(A) as a dif-
ferentially graded HH∗(k[C3])-module.
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5. Proof of Theorem 4.1

We keep the same notations as in the previous sections. We recall that A =
k〈x1, x2, x3〉/(f1, f2, f3) where (fi)i are given by (8), with a, b, c generic.

By multiplying the relations with a scalar factor we may normalize in such way
that a− b = 2. Then (fi)i may be written as

f1 = [x2, x3]− p(x2x3 + x3x1)− qx2
1

f2 = [x3, x1]− p(x3x1 + x1x3)− qx2
2

f3 = [x1, x2]− p(x1x2 + x2x1)− qx2
3

where a = 1−p, b = −1−p, c = −q. Clearly p, q are still algebraically independent
over Q.

To prove Theorem 4.1 we may enlarge the base field, and we may therefore
assume that there is a field k0 such that k = k0((h)) and

p = p1h+ p2h
2 + · · ·

q = q1h+ q2h
2 + · · ·

Let A = k0[[h]]〈x1, x2, x3〉/(f1, f2, f3). Then A0 = A⊗k0[[h]] k0 = k0[x1, x2, x3] has
the same Hilbert series as A = A⊗k0[[h]]k0((h)) and hence A is a flat k0[[h]]-module.
In particular h is a non-zero divisor in A.

The (h)-adic filtration on A may be extended to a filtration F on A such that
grF A = A0[h, h−1]. Note that A is not complete for F . However each homogeous
component of A is complete. I.e. A is complete in the category of graded A-modules.
F may be further extended to a filtration on C(A) such that

grC(A) = C(A0)[h, h−1]

The commutator operator on A defines a Poisson bracket on A0 given by

{x2, x3} = 2p1x2x3 − q1x
2
1 = g1

{x3, x1} = 2p1x1x3 − q1x
2
2 = g2

{x1, x2} = 2p1x1x2 − q1x
2
3 = g3

The filtration F on C(A) gives rise to a spectral sequence

E1 : Ω∗A0
⊗ k0[h, h−1] −→ HH∗(A) (9)

This spectral sequence is convergent since in each degree (for the natural grading
on A) C(A) is a complex of finite-dimensional k-vector spaces, complete for the
h-adic filtration.

The differential in (9) has been computed by Brylinski [5]. It is obtained from a
differential ∂ on Ω∗A0

of degree −1, given by

∂(r0dr1 · · · drm) =
m∑
i=1

(−)i+1{r0, ri}dr1 · · · d̂ri · · · drm

+
∑

1≤i<j≤m

(−)i+jr0d{ri, rj}dr1 · · · d̂ri · · · d̂rj · · · drm (10)

The differential in (9) is then h∂.
Multiplication with C3 defines a filtered homomorphism C(A) −→ C(A) and

hence a map on (9). It will be more convenient for us to work with Φ = − 1
3hC3.
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Then multiplication with Φ corresponds on E1 to multiplication with the dominant
term φ of Φ. One computes

φ =
q1

3
(x3

1 + x3
2 + x3

3) + 2p1x1x2x3

The fact that Φ is central corresponds to {xi, φ} = 0 for i = 1, 2, 3. From this we
immediately deduce that ∂ is φ-linear (as it should).

From the discussion in §2 it follows that the map B : C(A) −→ C(A) corresponds
in (9) to the differential d on Ω∗A0

.
q(Π) and q(∆) give rise to elements of E1 in (9) which we denote by π and δ

respectively. An easy computation shows that

π = x1dx2dx3 + x2dx3dx1 + x3dx1dx2

δ = dx1dx2dx3

Theorem 4.1 will now follow from the fact that (9) degenerates (yet to be shown)
and the following result.

Theorem 5.1. (Hi(Ω∗A0
, ∂))i are free k0[φ]-modules of ranks 8, 8, 1, 1. H2(Ω∗A0

, ∂)
is generated by π and H3(Ω∗A0

, ∂) is generated by δ. H0,1(Ω∗A0
, ∂) have Hilbert series

as follows :

H(H0(Ω∗A0
, ∂), t) =

(1 + t)3

1− t3

H(H1(Ω∗A0
, ∂), t) =

(1 + t)3

1− t3
− 1

d defines surjections H0(Ω∗A0
, ∂)→ H1(Ω∗A0

, ∂) and H2(Ω∗A0
, ∂)→ H3(Ω∗A0

, ∂)

Proof. We will use notations from vector calculus. If u is a symbol then u stands
for the vector (u1, u2, u3). × is the exterior product and · is the inner product. ∇
stands for the operator ( ∂

∂x1
, ∂∂x2

, ∂∂x3
).

We have the very important property ∇φ = g and hence ∇× ḡ = 0.
Denote by ∂i the map ∂ : ΩiA0

−→ Ωi+1
A0

.

Step 1. First we compute explicitely ∂1, ∂2, ∂3. The results are as follows :

∂1(X1dx1 +X2dx2 +X3dx3) = (∇× X̄) · ∇φ
∂2(X1dx2dx3 +X2dx3dx1 +X3dx1dx2) = (∇ · X̄)dφ− d(X̄ · ∇φ)

∂3(Udx1dx2dx3) = −dU ∧ dφ

Step 2. Now we compute the kernels (ker ∂i)i=1,2,3. We first list the results.

ker ∂1 = {dψ + θdφ | ψ, θ ∈ A0}
ker ∂2 = {f(φ)π + dθ ∧ dφ | f ∈ k0[φ], θ ∈ A0}
ker ∂3 = {f(θ)δ | f ∈ k0[θ]}

ker ∂1 Suppose that (∇× X̄) · ∇φ = 0. We put X̄(0) = X̄.
Since (g1, g2, g3) is a regular sequence there must exist X̄(1) ∈ A3

0 such that
∇ × X̄(0) = X̄(1) × ḡ. Hence ∇ · (X̄(1) × ḡ) = 0. Since ∇ × ḡ = 0 we obtain
(∇× X̄(1)) · ḡ = 0.

We can continue this procedure by defining X̄(i+1) ∈ A3
0 in such a way that

∇× X̄(i) = X̄(i+1)× ḡ Eventually ∇× X̄(m) = 0 and hence by the Poincaré lemma
there exist ψm ∈ A0 such that X̄(m) = ∇ψm.
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Since (∇ψm)× ḡ = ∇× (ψmḡ) we obtain that ∇× (X̄(m−1) − ψmḡ) = 0. Again
by the Poincaré lemma there is a ψm−1 ∈ A0 such that X̄(m−1) = ∇ψm−1 + ψmḡ.

Continuing in this way yields the existence of elements (ψi)i in A0 such that
X̄(i) = ∇ψi + ψi+1ḡ. Put ψ = ψ0, θ = ψ1. Then

X̄ = ∇ψ + θḡ

and hence
X1dx1 +X2dx2 +Xdx3 = dψ + θdφ

ker ∂2 Here and below we need the following fact. If U ∈ A0 such that dU ∧dφ = 0
then U = f(φ), f ∈ k0[φ].

For completeness we give a proof. Let U (0) = U , dU0 ∧ dφ = 0 yields that ∇U (0)

and ḡ are colinear. Since g1, g2, g3 have no factors in common, this is only possible
it there exists U (1) ∈ A0 such that ∇U (0) = U (1)(g1, g2, g3) or equivalently dU (0) =
U (1)dφ. Hence dU (1) ∧ dφ = 0. Eventually dU (m) = 0 and therefore U (m) = λm,
λm ∈ k0. Then U (m−1) = λmφ+ λm−1, U (m−2) = 1

2λmφ
2 + λm−1φ+ λm−2 etc. . . ,

for (λi)i ∈ k0. Finally U = U (0) = f(φ) with f ∈ k0[φ].
Suppose now that (∇· X̄)dφ− d(X̄ ·∇φ) = 0. Then d(∇· X̄)∧ dφ = 0 and hence

∇ · X̄ = u′(φ)

X̄ · ∇φ = u(φ)
(11)

with u(φ) ∈ φk0[φ].
A particular solution to (11) is given by

X̄p =
u(φ)
3φ

x̄

If we put X̄h = X̄ − X̄p then X̄h satisfies the homogeneous system

∇ · X̄ = 0

X̄ · ∇φ = 0

Hence there exist Ȳ ∈ A3
0 with X̄h = ∇× Ȳ and

(∇× Ȳ ) · ∇φ = 0

Such an equation was solved during the computation of ker ∂1. We obtain Ȳ =
θ∇φ+∇ψ, for θ, ψ ∈ A0. Hence

X̄h = ∇θ ×∇φ

Put f(θ) = u(θ)
3θ . Since X̄ = X̄h + X̄p we obtain

X̄ = ∇θ ×∇φ+ f(φ)x̄

from which we deduce

X1dx2dx3 +X2dx3dx1 +X3dx1dx2 = dθ ∧ dφ+ f(φ)π

ker ∂3 If dU ∧ dφ = 0 then we have shown in the beginning of the computation of
ker ∂2 that U = f(φ), f ∈ k0[φ].

Step 3. To be able to compute the Hilbert series of ker ∂1, ker ∂2, we now construct
some exact sequences.
ker ∂1 It is a simple verification that there is an exact sequence

0 −→ k0[φ] α−→ A0 ⊕A0(−3)
β−→ ker ∂1 −→ 0
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where

β(ψ, θ) = dψ + θdφ

α(u(φ)) = (u(φ),−u′(φ))

ker ∂2 There is an exact sequence

0 −→ k0[φ](−3)
γ−→ k0[φ](−3)⊕A0(−3) ε−→ ker ∂2 −→ 0

where

ε(f(φ), θ) = f(φ)π + dθ ∧ dφ
γ(g(φ)) = (0, g(φ))

Suppose that ε(f(φ), θ) = 0. Then d(f(φ)π) = 0. But a computation shows that
d(f(φ)π) = 3(f(φ)+f ′(φ)φ)δ which is different from zero if f 6= 0. Hence f = 0 and
dθ ∧ dφ = 0 which implies, as before, θ = g(φ), g ∈ k0[φ]. As a result (f, φ) ∈ im ε.

Step 4. From the long exact sequences

0 −→ ker ∂i+1 −→ Ωi+1
A0
−→ ker ∂i −→ Hi(Ω∗A0

, ∂) −→ 0

together with the exact sequences we have constructed in step 3, we can now compute
the Hilbert series of Hi(Ω∗A0

, ∂). The results are as they should. In particular the
Hilbert series for H2,3(Ω∗A0

, ∂) are t3/(1− t3).

Step 5. Using the description of (ker ∂i)i given in step 2 and the explicit form of
(∂i)i given in step 1, we find that

(1) H1(Ω∗A0
, ∂) is represented by elements of the form dψ, ψ ∈ A0.

(2) H2(Ω∗A0
, ∂) is generated by π as k0[φ]-module.

(3) H3(Ω∗A0
, ∂) is generated by δ as k0[φ]-module.

From the values of the Hilbert series of H2,3(Ω∗A0
, ∂) we deduce that these are free

k0[φ]-modules of rank 1.
Furthermore d : H0(Ω∗A0

, ∂) −→ H1(Ω∗A0
, ∂) is clearly surjective.

Since d(f(φ)π) = 3(f(φ) + f ′(φ)φ)δ and f 7→ f + φf ′ is a surjective map from
k0[φ] to itself, we see that d defines a surjection between H2(Ω∗A0

, ∂) and H3(Ω∗A0
, ∂).

Step 6. The only thing left is to show that H0,1(Ω∗A0
, ∂) are free k0[φ]-modules. To

this end it is sufficient to show that multiplication with φ is injective. We do this
now.
H0(Ω∗

A0
, ∂) From the description of ∂ it is clear that

im ∂1 = {ū · ḡ | ū ∈ A3
0 and ∇ · ū = 0}

Let p be in the ideal (g1, g2, g3). I.e. p = v̄ · ḡ, v̄ ∈ A3
0. p will be in im ∂1 iff there

exist r̄ ∈ A3
0 such that ∇· (v̄− r̄× ḡ) = 0 which is equivalent with ∇· v̄ = (∇× r̄) · ḡ.

I.e. p is in im ∂1 iff ∇ · v̄ is in im ∂1.
Let ψ now be a homogeneous element of A0, and suppose that φψ ∈ im ∂1. By

Euler’s identity φ = 1
3 x̄ · ḡ and hence φψ = 1

3 (ψx̄) · ḡ. By the previous paragraph
∇ · (ψx̄) ∈ im ∂1. But ∇ · (ψx̄) = (3 + degψ)ψ and hence ψ ∈ im ∂1.
H1(Ω∗

A0
, ∂) Suppose that there is a homogeneous dθ ∈ Ω1

A0
such that φdθ ∈ im ∂2.

Then there must exist a homogeneous X̄ ∈ A3
0 such that

−d(θφ) + θdφ = (∇ · X̄)dφ− d(X̄ · ∇φ)
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and hence
d(∇ · X̄ − θ) ∧ dφ = 0

from which we deduce the existence of u(φ) ∈ φk0[φ] such that

∇ · X̄ = θ + u′(θ) (12)

X̄ · ∇φ = φθ + u(φ) (13)

By changing X̄, as we did in the computation of ker ∂2 (see eq. (11)), we may
suppose u = 0.

From (13) we obtain

∇φ · (X̄ − 1
3
θx̄) = 0

Hence there exist homogeneous r̄ ∈ A3
0 such that

X̄ =
1
3
θx̄+ r̄ ×∇φ

Plugging this in (12) yields
1
3

(3 + deg θ)θ + (∇× r̄) · ∇φ = θ

Or
θ = − 3

deg θ
(∇× r̄) · ∇φ

If we put

Ȳ =
3

deg θ
∇× r̄

then
dθ = (∇ · Ȳ )dφ− d(Ȳ · ∇φ)

and hence dθ ∈ im ∂2.

This finishes the proof of Theorem 5.1. �

Suppose now that (G·, d) is a cochain complex with an ascending filtration

· · · ⊂ FpG· ⊂ Fp+1G
· ⊂ · · ·

then there is a spectral sequence [6, Chapt. XV]

E1 : H∗(grG·)⇒ H∗(G·) (14)

Let Erp be the p’th row of the r’th term of this spectral sequence. Then Erp = Zrp/B
p
r

where

Zrp = im(H∗(FpG·/Fp−rG·) −→ H∗(grG·)p)

Brp = im(H∗(Fp+r−1G
·/FpG

·) −→ H∗(grG·)p)

In addition one defines

Z∞p = im(H∗(FpG·) −→ H∗(grG·)p)

B∞p = im(H∗(G·/FpG·) −→ H∗(grG·)p)

wich yields inclusions

· · · ⊂ Brp ⊂ Br+1
p ⊂ · · · ⊂ B∞p ⊂ Z∞p ⊂ · · · ⊂ Zr+1

p ⊂ Zrp ⊂ · · ·
and isomorphisms

Zrp/Z
r+1
p
∼= Br+1

p−r/B
r
p−r (15)
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One has B∞p =
⋃
r B

r
p, but not in general Z∞p =

⋂
r Z

r
p .

Composition with H∗(FpG·) −→ H∗(FpG·/Fp−rG·) gives a map

φrp : H∗(FpG·) −→ Erp

The following is a standard criterion for degeneration of spectral sequence.

Lemma 5.2. If, for a given r, ⊕pφrp is surjective then (14) degenerates at Er.

Proof. ⊕pφrp being surjective means exactly that for all p

Zrp = Zr+1
p = · · · = Z∞p

and hence by (15)
Brp = Br+1

p = · · · = B∞p

Therefore Er = Er+1 = · · · = E∞. �

Proof of Theorem 4.1. By Theorem 5.1 it is sufficient to show that the spectral
sequence (9) degenerates. To this end we apply lemma 5.2.

It is clearly sufficient to show that any element of H∗(Ω∗A0
, ∂) may be lifted to

an element of H∗(F0(C(A))).
H0(Ω∗A0

, ∂) is a quotient of A0, so this case is trivial.
If u ∈ H1(Ω∗A0

, ∂) then u = dψ, ψ ∈ A0. We lift ψ to an element Ψ of F0A and
U = BΨ ∈ H1(F0(C(A))). Then U ∈ ker b and U defines a lifting of u.

If u ∈ H2(Ω∗A0
, ∂) then u = f(ψ)π with f ∈ k0[φ]. Hence U = f(Φ)Π is a lifting

of u.
Similarly if u ∈ H3(Ω∗A0

, ∂) then u = f(φ)δ and we take U = f(Φ)∆. �
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[3] , Modules over regular algebras of dimension 3, Invent. Math. 106 (1991), 335–388.

[4] Alexander Beilingson, Viktor Ginsburg, and Wolfgang Soergel, Koszul duality patterns in
representation theory, preprint, 1992.

[5] J.L. Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988),
93–114.

[6] H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, Princeton, NJ,

1956.

[7] Ping Feng and Boris Tsygan, Hochschild and cyclic homology of quantum groups, Comm.
Math. Phys. 140 (1991), 481–521.

[8] G. Hochschild, B. Kostant, and A. Rosenberg, Differential forms on regular affine algebras,

Trans. Amer. Math. Soc. 102 (1962), 383–408.
[9] Christian Kassel, L’homologie cyclique des algèbres enveloppantes, Invent. Math. 91 (1988),
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[12] Constantin Nastacescu and Freddy Van Oystaeyen, Graded ring theory, North-Holland, 1982.

[13] A.V. Odeskii and B.L. Feigin, Elliptic Sklyanin algebras, Funktsional. Anal. i Prilozhen. 23
(1989), no. 3, 45–54 (russian).

[14] , Sklyanin algebras associated with an elliptic curve, preprint, 1989.

[15] L.A. Takhtadjian, Noncommutive homology of quantum tori, Functional Anal. Appl. 23
(1989), 147–149.



NON-COMMUTATIVE HOMOLOGY 15

[16] John Tate and Michel Van den Bergh, Homological properties of Sklyanin algebras, in prepar-
tion.

[17] Marc Wambst, Complexes de Koszul quantiques, preprint Université Louis Pasteur, Stras-
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