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Abstract. In this note we prove, in the case of Sl2, a converse to Stanley’s

conjecture about Cohen-Macaulayness of invariant modules for reductive al-
gebraic groups.

1. Introduction

Let G = Sl(V ) where V is a twodimensional vectorspace over an algebraically
closed field k of characteristic zero. Define W = ⊕mi=1S

diV , d = dimW =
∑

(di+1),
R = SW , where SW denotes the symmetric algebra of W .

Define for n ≥ 0

s(n) =

n+ (n− 2) + · · ·+ 1 =
(n+ 1)2

4
if n is odd

n+ (n− 2) + · · ·+ 2 =
n(n+ 2)

4
if n is even

and put s =
∑m
i=1 s

(di).
It follows from a conjecture of Stanley [2] that (R⊗ SµV )G is Cohen-Macaulay

if µ < s − 2. This conjecture was proved partially in [5], and in almost complete
generality in [4].

In [1] B. Broer proved a partial converse to Stanley’s conjecture for Sl2. In this
note we will prove a complete converse.

We may always drop all trivial irreducible components of W since the Cohen-
Macaulayness of (R⊗ SµV )G is not affected by them. Hence we assume from now
that all di > 0. We separate the following cases :

(A) W = V , S2V , V ⊕ V , V ⊕ S2V , S2V ⊕ S2V , S3V , S4V .
(B) All di are even and u is odd.
(C) All other cases.

In this note we will prove the following theorem :

Theorem 1.1. In case (A) (R ⊗ SµV )G is always Cohen-Macaulay. In case (B)
(R⊗ SµV )G = 0. In case (C) the converse to Stanley’s conjecture is true.

It should be noted that, in connection with a possible converse to Stanley’s con-
jecture, one cannot expect a nice, succinct statement. See e.g. [3], and in particular
Example 4.5, for the torus case.

Case (B) of Theorem 1.1 is easy to see by looking at the action of the center of
G on (R⊗ SµV )G.

The representations listed in case (A) are the so-called “equidimensional” rep-
resentations. I.e. those for which the quotient map R −→ RG is equidimensional.
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It is well-known that this implies that all (R ⊗ SµV )G are Cohen-Macaulay. One
possible argument is given in the beginning of the next section.

The reader should note however that more is true. Namely, in case (A), RG

turns out to be always a polynomial ring. This is a special case of the “Russian
conjecture” which remains open for general reductive groups. Hence in case (A) all
(R⊗ SµV )G are actually free.

2. The method

Keep the same notations as above. In the sequel R = SW will be equipped
with its natural Z-grading. Let I = R(RG)+, h = dimRG. Recall from [4] that
(R ⊗ SµV )G is Cohen-Macaulay if and only if SµV does not occur as a summand
whenHi

I(R) for i = 0, . . . , h−1 is decomposed as a sum of irreducible representation
of G.

Let X = SpecR. The radical of I is the defining ideal of the G-unstable locus
in X, which will be denoted by Xu. I.e.

Xu = {x ∈ X | 0 ∈ Gx}

In particular Hi
I(R) = Hi

Xu(X,OX) and

Hi
Xu(X,OX) = 0 for 0 < i < codim(Xu, X) (1)

Fix a basis for V and use this basis to identify Sl(V ) with Sl2(k). Let z 7→
diag(z, z−1) be a one parameter subgroup of G, and let

Xλ = {x ∈ X | lim
t→0

λ(t)x = 0}

Then it follows from the Hilbert Mumford criterion that Xu = GXλ. Hence we
have to compute Hi

GXλ
(X,OX) for 0 ≤ i < h.

Let B =
(
∗ ∗
0 ∗

)
, T =

(
∗ 0
0 ∗

)
be resp. a Borel subgroup and a maximal

torus in G. Then B acts on Xλ and it is easy to verify that the standard map
G×B (Xλ − {0})→ GXλ − {0} is settheoretically a bijection.

Hence dimXu = 1+dimXλ. Therefore using (1) we find that if 1+dimXλ+h ≤
d then all (R⊗SµV )G are Cohen-Macaulay. An easy verifcation shows that this is
precisely the case for the representations in (A).

Having settled cases (A) and (B) we now concentrate on the proof of (C).
Let [e] ∈ G/B be the class of the unit element. Taking the fiber over [e] defines

an equivalence between OG×BX -modules with a G-action and OX -modules with a
B-action. The inverse of this functor will be denoted by .̃

Assume that W is not V or S2V . (These cases are included in (A).) In that case
X has a G-stable point and hence h = d− 3. There is a long exact sequence

Hi
{0}(X,OX)→ Hi

GXλ
(X,OX)→ Hi

GXλ−{0}(X − {0},OX)→ Hi+1
{0} (X,OX)

But Hi(+1)
{0} (X,OX) = 0 if i(+1) 6= d. Hence it suffices to compute

Hi
GXλ−{0}(X − {0},OX) for 0 ≤ i < d− 3

Using [5, lem. 3.2], together with the definition of algebraic De Rham homology we
obtain that

Hi−2
GXλ−{0}(X − {0},OX) = Hi

G×(Xλ−{0})(G×
B X,Ω.)
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Here Ω. denotes the relative De Rham complex of G ×B X/X and H∗? denotes
hypercohomology with support. Hence we obtain a spectral sequence

Epq1 : Hq
G×B(Xλ−{0})(G×

B (X − {0}),∧pΩ)⇒ Hp+q−2
GXλ−{0}(X − {0},OX)

First note that Epq1 = 0 unless p = 0, 1. We will compute the terms in this spectral
sequence under the hypothesis

p+ q − 2 < d− 3 (2)

There is a long exact sequence

· · · → Hq
G×B{0}(G×

B X,∧pΩ)→ Hq
G×BXλ(G×B X,∧pΩ)

→ Hq
G×B(Xλ−{0})(G×

B (X − {0}),∧pΩ)→ Hq+1
G×B{0}(G×

B X,∧pΩ)→ · · ·

But Hq(+1)

G×B{0}(G×
B X,∧pΩ) = 0 unless q(+1) ≥ d.

Hence under hyp. (2)

Epq1 = Hq
G×BXλ(G×B X,∧pΩ)

We now employ the composite functor spectral sequence

Eq
′q′′

2 : Hq′(Hq
′′

G×BXλ(G×B X,∧pΩ))⇒ Hq′+q′′

G×BXλ(G×B X,∧pΩ)

G ×B Xλ is a local complete intersection in G ×B X and hence Hq
′′

G×BXλ(G ×B

X,∧pΩ) = 0 unless q′′ = dλ where dλ = codim(Xλ, X) =
∑
i=1,... ,m

⌈
di+1

2

⌉
.

Furthermore

Hdλ
G×BXλ(G×B X,∧pΩ) = Hdλ

Xλ
(X,OX )̃⊗OG/B ∧

pΩG/B

Put Z = Hdλ
Xλ

(X,OX). Then we obtain

Epq1 = Hq−dλ(G/B, Z̃ ⊗ ∧pΩG/B)

Hence (still under hyp. (2)) Epq1 = 0 unless q = dλ, dλ + 1 and p = 0, 1. For
simplicity we put

Ai,j = Hj(G/B, Z̃ ⊗ ∧iΩG/B)

To estimate Ai,j we define Z ′ to be the B-representation on which the unipotent
part of B acts trivially but which has the same T -weights as Z. A′i,j will be defined
as Ai,j but with Z replaced by Z ′.

Let χ : diag(z, z−1) 7→ z be the generator of X(T ) and let (χui)i=1,... ,d be the
T -weights of W . Then the T -weights of Z are [3]

χ
−
∑

ui≥0
(ai+1)ui+

∑
ui<0

biui (3)

where (ai)i, (bi)i ∈ N, and such a weight occurs in degree∑
bi −

∑
(ai + 1)

Now note that G/B ∼= P1. We claim that χ̃ = O(−1), or equivalently χ = O(−1)e
where e is the fixpoint for the B-action on P1. Then O(−1) = O(−e), and hence
O(−1)e ∼= me/m

2
e with me the maximal ideal of OP1,e. A local computation now

shows what we want.

Lemma 2.1. Ai,1 = 0
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Proof. Z is a rational representation of B and therefore we may construct a left
limited ascending filtration on Z such that grZ = Z ′. Hence it suffices to prove
the lemma for A′i,1. By the above we have to show that

H1(G/B,O(
∑
ui≥0

(a1 + 1)ui −
∑
ui<0

biui − 2))

= H0(G/B,O(−
∑
ui≥0

(ai + 1)u1 +
∑
ui<0

biui)) = 0

It is clear that this is always the case. �

Lemma 2.2.

(1) The arrow from position (0, dλ) to position (1, dλ) in E1 is injective.
(2) The position (1, dλ) lies strictly below the line p+ q− 2 = d− 3 if and only

if we are not in case (A).

Proof. (1) This follows from codim(Xu, X) = dλ−1 and hence Hi
Xu(X,OX) =

0 if i < dλ − 1. If the arrow were not injective then Hdλ−2
Xu (X,OX) 6= 0.

(2) This is a simple verification. �

Assume that U is a Z-graded G-representation. We define

P (U, x, t) =
∞∑

r=−∞

∞∑
s=−∞

MultSrV (Us)xrts

In the sequel such an expression is supposed to define an element of k((t−1))[[x]].
Let e be the number of even di’s.

Lemma 2.3.

P (A0,0, x, t) =
t−dλ

(1− t−1)e
xs

1∏
ui>0(1− xuit−1)

∏
ui<0(1− x−uit)

(4)

P (A1,0, x, t) =
t−dλ

(1− t−1)e
xs−2 1∏

ui>0(1− xuit−1)
∏
ui<0(1− x−uit)

(5)

Proof. Since A′0,1 = 0 it is easy to see that P (A0,0, x, t) = P (A′0,0, x, t). From (3)
it follows that

P (A′0,0, x, t) =
∑

(ai),(bi)

x

(∑
ui≥0

(ai+1)ui−
∑

ui<0
biui

)
t

(∑
ui<0

bi−
∑

ui≥0
(ai+1)

)

which evaluates to the righthand side of (4).
The proof for (5) is similar. �

We are now ready to prove the following theorem :

Theorem 2.4. Assume that we are not in case (A). Then Hi
I(R) = 0 unless

i = dλ − 1, d− 3.
Furthermore

P (Hdλ−1
I (R), x, t) =

t−dλ

(1− t−1)e
xs−2 1− x2∏

ui>0(1− xuit−1)
∏
ui<0(1− x−uit)
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Proof. That Hi
I(R) = 0 unless i = dλ − 1, d− 3 follows from lemmas 2.1, 2.2. The

statement about the Poincare series follows from the fact that there is an exact
sequence

0→ A0,0 → A1,0 → Hdλ−1
I (R)→ 0

and hence
P (Hdλ−1

I (R), x, t) = P (A1,0, x, t)− P (A0,0, x, t)
We then apply lemma 2.3. �

Proof of Theorem 1.1. It is easy to see that all powers of x appear in the expansion
of

1− x2∏
ui>0(1− xuit−1)

∏
ui<0(1− x−uit)

unless all di are even. In that case all even powers appear. �
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