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Abstract. In this paper we prove that trace rings of generic ma-
trices are Cohen-Macaulay (7.3.6). This is done by relating this
problem to a conjecture of Stanley about modules of invariants
under a reductive group.

We prove a slightly weakened version (3.4’) of this conjecture in
special cases (6.1.9). In particular we obtain that (3.4’) is true for
SL2 (6.1.11).

1. Introduction.

Let G be a reductive algebraic group over an algebraically closed field
of characteristic zero and let W be a finite dimensional representation
of G. Then G acts on the polynomial ring k[W ] and the Hochster
Roberts theorem [8] tells us that k[W ]G is Cohen-Macaulay.

A first objective in this paper will be to study a situation that looks
very similar. Let U be another finite dimensional G-representation.
Then U ⊗k k[W ] is a free k[W ]-module and a natural generalization of
the Hochster Roberts theorem would be that (U ⊗k k[W ])G is a Cohen
Macaulay k[W ]G-module.

Unfortunately, it is easy to see that this cannot be true in general
(see Ex. 3.1). There is however a conjecture, due to Stanley [20], that
gives at least some cases under which the above statement is true.

We will not say anything about Stanley’s original conjecture. Instead
we will replace it with a slightly weaker version (Conj. 3.4’).

The first main result in this paper is that we prove Conj. 3.4’ for
certain pairs (G,W ). Namely if X = Speck[W ] and Xu is the locus
of the G-unstable points in X then we require that Xu should be con-
structible, i.e. that it can be build up from smaller managable parts in
a sense explained in section 6. As a corollary we immediately obtain
that Conj. 3.4’ holds if G = SL2 (6.1.11).
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Another situation that can be handled by the methods developed in
this paper is

(1) G = SL(V ) and W = End(V )m∗

In the last section of this paper we will show that in this case Xu is
constructible and hence Conj. 3.4’ holds.

Our main motivation for studying the situation (1) lies in our interest
in the trace rings of generic matrices. Let Mn be the variety of n× n-
matrices. (Mn)m will be the m-fold product (over Speck) Mn ×Mn ×
· · · ×Mn. Let G = SLn. Then one defines

(2) Tm,n = {f : (Mn)m →Mn | f polynomial and G-equivariant}

Tm,n is a non-commutative ring (using the multiplication in Mn) and
its center is given by

Zm,n = {f : (Mn)m → Speck | f polynomial and G-equivariant}

Zm,n is the commutative and Tm,n is the non-commutative trace ring
of m generic n × n-matrices. They were first extensively studied by
M. Artin and C. Procesi. M. Artin proved that the maximal ideals
of Zm,n parametrize semisimple representations of dimension n of the
free algebra k〈X1, . . . , Xm〉 and the two-sided maximal ideals of Tm,n

correspond to the simple components of such representations [1][2].
Let Xi be the projection of (Mn)m onto the i’th factor, and let

Tr(Xi1 · · ·Xiu) : (Mn)m → Speck be the corresponding trace maps.
C. Procesi proved Artin’s conjecture that Zm,n is generated over k by
the trace monomials Tr(Xi1 · · ·Xiu) and Tm,n is generated as a module
over Zm,n by the monomials in the Xi’s [16]. Furthermore he proved
that all the relations between those generators can be obtained from
the Cayley Hamilton polynomial (explaining the terminology of trace
rings).

From this one easily deduces that Tm,n is a generic object in the
category of k-algebras with a trace map. To be more precise, let Λ
be a k-algebra, equipped with a further unary operation T : Λ → Λ,
called trace, satisfying the list of conditions in [17, p. 194]. Assume
furthermore that T satisfies the Cayley Hamilton identities of n × n-
matrices. Let a1, . . ., am ∈ Λ. Then there exists a unique map Tm,n →
Λ commuting with trace and sending Xi to ai.

If n = 1 then Tm,n is a polynomial ring and hence it has finite global
dimension. A first natural question would be whether Tm,n always has
finite global dimension (being a generic object). However the complete,
somewhat disappointing result is given below.
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Theorem 1.1. [5][11][12][18] Tm,n has finite global dimension if and
only if n = 1, m = 1, (m,n) = (2, 2), (m,n) = (3, 2) or (m,n) = (2, 3).

After computations in low dimensions, L. le Bruyn conjectured that
Tm,n is always a Cohen-Macaulay Zm,n-module. This was proved by
him in the case of 2× 2-matrices. Later he and C. Procesi proved that
(Tm,n)p is Cohen-Macaulay if p ∈ MaxZm,n corresponds to a semisimple
representation of k〈X1, . . . , Xm〉 having distinct irreducible components
[11].

As the title of this paper indicates, we will prove that Tm,n is Cohen-
Macaulay in general (7.3.6). This is done as follows. From (2) it is
clear that
(3)
Tm,n = (U ⊗ k[W ])G where G = SL(V ),W = End(V )m∗, U = End(V )

Hence we are in the situation of (1) and Conj. 3.4’ applies. Since it is
easy to see that hypothesis of Conj. 3.4’ are satisfied in this case, we
are done.

This paper is organized as follows :

In section 2 we introduce some often used notations.
In section 3 we review Stanley’s conjecture and we introduce the

weaker version Conj. 3.4’.
In section 4 we outline our method for verifying the Cohen-Macaulayness

of (U ⊗k[W ])G. I.e. we relate this problem to the cohomology modules
H .
Xu(X,OX).
In section 5 we introduce a spectral sequence (5.1) that may be

interesting in its own right. It allows us, in some cases, to estimate the
cohomology modules, introduced above.

In section 6 we try to break up Xu into managable pieces that can
be handled by the main result of section 5. This leads us to the notion
of constructibility. We prove Conj. 3.4’ for G = SL2 (6.1.11). In
the last subsection we introduce a combinatorial method for verifying
constructibility.

Finally in section 7 we use the combinatorial criterion, derived in
section 6, to show that Xu is constructible in the situation (1). We
obtain that Tm,n is Cohen-Macaulay in general (7.3.6).

2. Notations and conventions.

In the sequel k will always be an algebraically closed field of charac-
teristic zero.

If G is a linear algebraic group over k thenWG will be the Weylgroup
of G. Y (G) will be the pointed set of one-parameter subgroups of G.



4 MICHEL VAN DEN BERGH UNIVERSITY OF ANTWERP (UIA)

An irreducible representation of G defines a character G→ Gm. This is
a polynomial map, invariant under conjugation (we will always assume
that characters are characters of irreducible representations). If T is
a torus then the character of T are homomophisms and they form an
abelian group in the usual way. This group will be denoted by X(T ).
and the group law will be written additively. We define X(T )Q as
Q ⊗Z X(T ). Since T is a torus, Y (T ) also carries an abelian group
structure and there is a natural pairing Y (T ) ×X(T ) → X(Gm) ∼= Z
given by composition. This pairing will be denoted by 〈 , 〉.

Characters of T will be identified with one-dimensional representa-
tions of T . Hence the notation χ1 ⊕ χ2 for χ1,2 ∈ X(T ) stands for
the two-dimensional representation of T which is the direct sum of the
one-dimensional representations determined by χ1 and χ2. This is not
to be confused with χ1 +χ2 which is just the sum of χ1 and χ2 in X(T ).

If P ⊂ G is an algebraic subgroup of G and X is a scheme with
a P -action then G ×P X = G × X/P . There is a natural projection

map G ×P X → G/P given by (g, x) 7→ g, with fibers isomorphic to
X. Taking the fiber over [P ] in G/P induces an equivalence between
the category of quasicoherent OG×PX-modules with a G-action and the
category of quasicoherent OX-modules with a P -action. The inverse of
this equivalence will be denoted by .̃

Let R be a Z-graded Noetherian commutative ring of the form k ⊕
R1⊕R2⊕· · · and let M be a finitely generated graded R-module. The
Poincare series of M will be defined as

P (M, t) =
+∞∑

n=−∞

dim(Mn)tn

When we say that M is Cohen-Macaulay, we always mean that M
is maximal Cohen-Macaulay. This is equivalent with the fact that
R contains a graded polynomial ring R′ over k such M is a finitely
generated free R′-module.

3. A conjecture of Stanley.

In this section we will discuss a natural generalisation for the Hochster
Roberts theorem on Cohen-Macaulayness of invariant rings. Unfortu-
nately this generalisation is not true in general. There exists however
a conjecture, due to Stanley [20], which gives at least some cases under
which the generalisation is true.

Let G be a reductive group over k and let U , W be two finite di-
mensional representations of G. Define R = k[W ], d = dimW and
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h = dimRG. Then G acts in a natural way on the free R-module
U ⊗k R.

By the Hochster Roberts theorem [8], RG is Cohen-Macaulay. It
is therefore natural to ask whether (U ⊗k R)G is a Cohen-Macaulay
RG-module. This is not always true however. Here is a simple counter
example :

Example 3.1. Let G = T = Gm and let χ be a generator for X(T ).
Define U = χ−1 and W = χ ⊕ χ ⊕ χ−1. Then R = k[x, y, z], M =
k[x, y, z] and Gm acts on R and M as follows : let α ∈ Gm, f ∈ R and
g ∈ M . Then α.f = f(αx, αy, α−1z) and α.g = α−1g(αx, αy, α−1z).
Hence RG = k[xz, yz] and MG = (xz, yz)z−1. Clearly MG is not a
Cohen-Macaulay RG-module.

It is no restriction to assume that U is irreducible because if U =
U1 ⊕ · · · ⊕ Uu then clearly (U ⊗ R)G = (U1 ⊗ R) ⊕ · · · ⊕ (Uu ⊗ R)G.
Hence from now on we will make this assumption. In that case U∗ is
determined by its character χ : G→ Gm.

For an arbitrary character of G, Stanley defines RG
χ as the sum of

all irreducible subrepresentations of G with character χ [20]. Clearly
R = ⊕χRG

χ where χ runs through all characters of G. The proof that

RG is finitely generated also works for RG
χ and since RG

χ is obviously

torsion free, one deduces that dimRG
χ = dimRG if RG

χ 6= ∅.

Lemma 3.2. If χ is the character of U∗, then RG
χ
∼= U∗ ⊗ (U ⊗R)G.

Hence the question whether (U ⊗R)G is Cohen-Macaulay is equiva-
lent with the question whether RG

χ is Cohen-Macaulay.
Assume now that G = T is a torus, χ ∈ X(T ) and let the weights of

W be given by α1,. . .,αd ∈ X(T ). Then we say that χ is critical [20]
for (T,W ) if the system z1α1 + · · ·+ zdαd = χ in X(T )Q has a rational
solution (a1, . . . , ad) with the following properties :

• ai ≤ 0
• If (b1, . . . , bd) is an integer solution of z1α1 + · · ·+zdαd = χ such

that bi ≥ ai then bi ≥ 0 for all i.

Theorem 3.3. [20] Assume that χ is critical for (T,W ). Then RT
χ is

Cohen-Macaulay. Furthermore there is a functional equation

(4) P (RT
χ , 1/t) = (−1)htdP (RT

ψ , t)

where ψ = (χ detχ)∗. Here ∗ denotes the dual character and detχ is
the character of the highest exterior power of the representation corre-
sponding to χ.
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A character is clearly critical if it is of the form
∑d

i=1 aiαi where −1 <
ai ≤ 0. We will call such a character strongly critical. This notion
is useful because it is somewhat easier to check that a character is
strongly critical than that it is critical.

Assume now that G is arbitrary again and let T ⊂ G be a maximal
torus. Assume that χ : G → Gm is a character. Then χ|T = χ1 ⊕
· · · ⊕ χu where χi ∈ X(T ). Let (ρ1 . . . , ρr) be the set of roots of G.
Then Stanley [20] calls χ critical for (G,W ) if χi −

∑
j∈S ρj is critical

for (T,W ) for all 1 ≤ i ≤ u and for all S ⊂ {1, . . . , r}. He proves that
if χ is critical then RG

χ satisfies the functional equation (4). This leads
to a natural conjecture :

Conjecture 3.4. If χ is critical for (G,W ) thenRG
χ is Cohen-Macaulay.

Of course a weaker version of this conjecture can be obtained if we
require that all the χi−

∑
j∈S ρj are strongly critical. A character with

this property will be called strongly critical for (G,W). In the sequel
we will refer to the weaker version of Conj. 3.4 as Conj. 3.4’.

4. The method.

As in the previous section, G will be a reductive algebraic group over
k. R = k[W ] and d = dimR, h = dimRG. χ will be some character of
G. We define I = R(RG)+.

The following lemma will be basic in this paper.

Lemma 4.1. H .
(RG)+(RG

χ ) = H .
I(R)Gχ . (Here H .

I(R)Gχ has the obvious

meaning.)

Proof. Let f1, . . . , fu be a set of generators for (RG)+. Then the (fi)i
are obviously also R generators for I. Let K .(R, f1, . . . , fu) be the
complex

0→ ⊕iRfi → ⊕ i,j
i<j
Rfifj → · · · → Rf1···fu → 0

with the standard boundary maps. ThenH .
I(R)Gχ = H .(K .(R, f1, . . . , fu))

G
χ .

But using the fact that G is reductive, we easily deduce

H .(K .(R, f1, . . . , fu))
G
χ = H .(K .(R, f1, . . . , fu)

G
χ )

= H .(K .(RG
χ , f1, . . . , fu))

= H .
(RG)+(RG

χ )

�

Corollary 4.2. RG
χ is Cohen-Macaulay if and only if H i

I(R)Gχ = 0 for
i = 0,. . .,h− 1.
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Proof. This statement is vacuous and hence true if RG
χ = 0. So assume

that RG
χ 6= 0. It is well known that RG

χ is Cohen-Macaulay if and only

if H i
(RG)+(RG

χ ) = 0 for i = 0, . . ., h − 1. Then the result follows from

lemma 4.1. �

Let X = Speck[W ] and let T be a maximal torus in G. The radical
of the ideal I is the defining ideal of the G-unstable locus in X which
will be denoted by Xu. I.e.

Xu = {x ∈ X|0 ∈ Gx}
Xu maybe described more conveniently using the Hilbert Mumford
criterion [14] which says that every point in Xu is unstable for some
one parameter subgroup of G. I.e. if λ ∈ Y (G) then one defines

Xλ = {x ∈ X| lim
t→0

λ(t)x = 0}

and
G(λ) = {g ∈ G| lim

t→0
λ(t)gλ(t)−1 exists}

Then G(λ) acts on Xλ and G(λ) is a parabolic subgroup of G [14,
Prop. 2.6]. Then it follows from the Hilbert Mumford criterion that

(5) Xu =
⋃

λ∈Y (T )

GXλ

GXλ is the image of G ×G(λ) Xλ in X under the canonical map. This
map factors through the projection map G/G(λ)×X → X and hence
it is projective. Therefore its image is closed (this is a well known
argument, see for example [13]).

Clearly GXλ = GXw(λ) if w ∈ WG. Therefore one can restrict the
union in (5) to a Weyl chamber in Y (T ). Let B be a Borel subgroup
of G containing T . Then we have proved the following (well known)
fact :

Lemma 4.3. With notations and assumptions as above :

(6) Xu =
⋃

λ∈Y (T )
G(λ)⊃B

GXλ

5. A result on cohomology with support.

In lemma 3.2, we have seen that, to check Cohen-Macaulayness of
modules of invariants, it is important to be able to compute cohomology
with support in the unstable locus.

Our two main tools to handle this problem will be the standard long
exact sequence for cohomology with support and Theorem 5.1 below.
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Theorem 5.1. Assume that we are in the following situation :

S ′
j //

φ

��

X ′

π

��
S

i
// X

where

• X, X ′ are smooth over k and π is a smooth projective map.
• i and j are closed immersions.
• φ is the restriction of π to S ′ and it is settheoretically a bijection.

Let M be a quasicoherent sheaf on X. Then there is a spectral se-
quence :

(7) Epq
1 : Hq

S′(X
′, π∗M⊗∧pΩX′/X)⇒ H

p+q−2 dim(X′/X)
S (X,M)

The rest of this section will be devoted to the proof of this Theorem.

Lemma 5.2. Let I, I ′ be the defining ideals of S, S ′ in X, X ′. Define
K .
t,S,X as the complex of OX-modules

π∗
(
OX′/I ′t

) d0−→ π∗
(
OX′/I ′t−1 ⊗OX′ ΩX′/X

) d1−→ · · ·

· · · dq−1−−→ π∗
(
OX′/I ′t−q ⊗OX′ ∧

qΩX′/X

) dq−→ · · ·
where dq is obtained from the exterior differentiation d : ∧qΩX′/X →
∧q+1ΩX′/X .

The canonical map OX/I t
u−→ π∗ (OX′/I ′t) defines a complex

(8) 0→ OX/I t
u−→ K .

t,S,X

Let J be a quasicoherent injective OX-module. Then the complex ob-
tained by applying inj lim tHom(−,J ) to (8) is exact.

We will not prove this lemma directly. Instead we will treat a special
case first.

Lemma 5.3. If φ is an isomorphism and S is smooth then (8) is exact.

Proof. π∗ is exact on coherent modules with support in S. Hence (8)
may be filtered in such a way that the associated graded complexes are
of the form

(9) 0→ Is−1/Is
u−→ π∗

(
I ′s−1/I ′s

) d0−→ π∗
(
I ′s−2/I ′s−1 ⊗ ΩX′/X

) d1−→ · · ·
Then for (8) to be exact, it is sufficient that (9) is exact for all s.
Furthermore the hypothesis imply that the sequences (9) are sequences
of vector bundles on OS.



TRACE RINGS OF GENERIC MATRICES ARE COHEN-MACAULAY. 9

Since S and S ′ are smooth, we know that Is−1/Is = Ss−1(I/I2) and
I ′s−1/I ′s = Ss−1(I ′/I ′2). With these identifications, the differentiation
dq is given by (on an affine open set)
(10)

dq(a1Sa2 · · ·Sas−q⊗db1∧· · ·∧dbq) =

s−q∑
i=1

a1S · · ·SâiS · · ·Sas−q⊗dai∧db1∧· · ·∧dbq

For s = 1 the sequence (9) reads as

0→ OS → π∗OS′ → 0

which is obviously exact.
For s = 2 we obtain

(11) 0→ I/I2 → π∗(I
′/I ′2)→ π∗(ΩX′/X ⊗OS′)→ 0

Exactness of this sequence is obtained from the following diagram :

0x
π∗(ΩX′/X ⊗OS′)x

0 −→ π∗(I
′/I ′2) −→ π∗(ΩX′/k ⊗OS′) −→ π∗(ΩS′/k) −→ 0x x

0 −→ I/I2 −→ ΩX/k ⊗OS −→ ΩS/k −→ 0x
0

Here the vertical exact sequence is obtained by applying π∗(− ⊗ OS′)
to the standard exact sequence :

0→ π∗(ΩX/k)→ ΩX′/k → ΩX′/X → 0

for smooth maps.
Finally for s ≥ 2 one deduces from (10) that (9) is obtained from

(11) by taking exterior powers. Hence (9) is exact for s ≥ 2. �

Proof. of Lemma 5.2 Our proof will be by induction on the dimension
of S. We may clearly reduce to the case where S and S ′ are reduced. In
that case there will be an open subvariety S ′1 of S ′ such that φ|S ′1 is an
isomorphism. By making S ′1 smaller if necessary we can also assume
that S ′1 is smooth. Define S ′2 = S ′ \ S ′1, S1 = φ(S ′1), S2 = φ(S ′2),
X1 = X \ S2 and X ′1 = X \ S ′2.
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By our induction hypothesis and by lemma 5.3 we may assume that
5.2 has been proved in the situations :

S ′1 −→ X ′1yφ yπ
S1 −→ X1

S ′2 −→ X ′yφ yπ
S2 −→ X

To complete our induction step, we need another lemma :

Lemma 5.4. Let X be a Noetherian scheme and let U ⊂ X be an open
subset. Let I be the defining ideal of X \ U . Then for a quasicoherent
injective OX-module J and a coherent OX-module M the following
sequence is exact

0→ inj lim sHomOX (M/IsM,J )→ HomOX (M,J )→ HomOU (M|U,J |U)→ 0

where the maps are the obvious ones.

Proof. Well known and easy. �

Now let I2, I
′
2 be the defining ideals of S2,S

′
2 in X, X ′. From the

lemma we obtain exact sequences

0→ inj lim t inj lim sHomOX (π∗(OX′/I ′t ⊗ ∧qΩX′/X)⊗OX/Is2 ,J )→

inj lim tHomOX (π∗(OX′/I ′t ⊗ ∧qΩX′/X),J )→
inj lim tHomOX1

(π∗(OX′/I ′t ⊗ ∧qΩX′/X)|X1,J |X1)→ 0

But by a standard argument :

inj lim t inj lim sHomOX (π∗(OX′/I ′t ⊗ ∧qΩX′/X)⊗OX/Is2 ,J )

= inj lim tHomOX (π∗(OX′/I ′t ⊗ ∧qΩX′/X)⊗OX/I t2,J )

= inj lim tHomOX (π∗(OX′/(I ′t + π∗I t2)⊗ ∧qΩX′/X),J )

But the chains of ideals (I ′t+π∗I t2)t and (I ′t2 )t are cofinal in each other.
We obtain exact sequences :

0→ inj lim tHomOX (π∗(OX′/I ′t2 ⊗ ∧qΩX′/X),J )→

inj lim tHomOX (π∗(OX′/I ′t ⊗ ∧qΩX′/X),J )

→ inj lim tHomOX1
(π∗(OX′/I ′t ⊗ ∧qΩX′/X)|X1,J |X1)→ 0

In a similar but easier way one obtains from 5.4 that

0→ inj lim tHomOX (OX/I t2,J )→

inj lim tHomOX (OX/I t,J )→
inj lim tHomOX1

(OX/I t|X1,J |X1)→ 0

is exact.



TRACE RINGS OF GENERIC MATRICES ARE COHEN-MACAULAY. 11

We can combine these sequences into a diagram :

0 0y y
0 −→ inj lim tHomOX (OX/I t2,J ) −→ inj lim tHomOX (K .

t,S2,X
,J )y y

0 −→ inj lim tHomOX (OX/I t,J ) −→ inj lim tHomOX (K .
t,S,X ,J )y y

0 −→ inj lim tHomOX1
(OX/I t|X1,J |X1) −→ inj lim tHomOX1

(K .
t,S1,X1

,J |X1)y y
0 0

It follows now from our induction hypothesis that the middle complex
is exact. �

Proof. of Theorem 5.1
We start with an injective resolution 0→M→ J .. We then obtain

a double complex

(12) inj lim tHom(K .
t,S,X ,J .)

which we think of as lying in the first quadrant such that the maps
obtained from K .

t,S,X are horizontal, and such that the lower lefthand

corner is inj lim tHom(K
dim(X′/X)
t,S,X ,J 0).

To compute the homology of (12) we use the first filtration. By
lemma 5.2 we obtain the complex

(13) ΓS(X,J .)

at horizontal position dim(X ′/X) and zero’s everywhere else. The ho-
mology of (13) is clearly Hq

S(X,M) at position (dim(X ′/X), q). Hence
(12) has homology Hq

S(X,M) at position q + dim(X ′/X).
To use the second filtration we have to compute the homology of the

complexes

HomOX (π∗(OX′/I ′t−p
′ ⊗OX′ ∧

p′ΩX′/X),J .)

where p′ = dim(X ′/X)− p.
We obtain

ExtqOX (π∗(OX′/I ′t−p
′ ⊗OX′ ∧

p′ΩX′/X),M)

which is by duality [6, Thm. III.11.1]:

(14) Ext
q+dim(X′/X)
OX′

(OX′/I ′t−p
′ ⊗OX′ ∧

p′ΩX′/X , π
∗M⊗ ωX′/X)



12 MICHEL VAN DEN BERGH UNIVERSITY OF ANTWERP (UIA)

where we have used the fact that Rπ∗ = 0 on modules with support in
S ′.

Simplifying (14) further we obtain

Ext
q+dim(X′/X)
OX′

(OX′/I ′t−p
′ ⊗OX′ ∧

p′ΩX′/X , π
∗M⊗ ωX′/X)

= Ext
q+dim(X′/X)
OX′

(OX′/I ′t−p
′
, π∗M⊗ ωX′/X ⊗ (∧p′ΩX′/X)∗)

= Ext
q+dim(X′/X)
OX′

(OX′/I ′t−p
′
, π∗M⊗∧dim(X′/X)−p′ΩX′/X)

Hence after taking homology for the second filtration in (12) we obtain
a diagram with

H
q+dim(X′/X)
S′ (X ′, π∗M⊗OX′ ∧

pΩX′/X)

at position (p, q). After reindexing we obtain (7). �

6. Constructibility.

In this section we will use Theorem 5.1 to get some results on co-
homology with support in the unstable locus. Roughly speaking, we
will decompose the unstable locus as a union of a closed and a locally
closed subvariety, which can be handled by 5.1. Then we use induc-
tion. It would be natural to try to use the well known stratification
into smooth subvarieties, due to Hesselink [7], Kirwan [9] and others.
Unfortunately this stratification turns out to be too fine for our pur-
poses. The decomposition we must use is much coarser and the parts
are not necessarily smooth. What is worse however is that it does not
always work ! This leads us to a concept we call constructibility and
which is introduced below.

As usual G will be a reductive algebraic group with a Borel sub-
group B ⊂ G containing a maximal torus T ⊂ G. W will be a G-
representation and R = k[W ]. We define furthermore X = SpecR,
X/G = SpecRG, d = dimW , h = dimRG. The roots of B will be the
negative roots and Φ+ will denote the set of positive roots.

6.1. Reduction pairs and constructibility. In the sequel, a pair
(P, Y ) will consist of a parabolic subgroup P ⊂ G containing B, and a
linear subspace Y of X which is preserved by B.

Definition 6.1.1. A reduction pair for (P, Y ) is a pair (P1, Y1) such
that

(1) P1 ⊂ P , Y1 ⊂ Y and the inclusions are strict.
(2) (P \ P1)Y ∩ Y ⊂ P1Y1
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We first have to introduce some more notations : if P is a parabolic
subgroup of G then f : G×P X → G/P will be the natural projection

map (g, x) 7→ g.
If P2 ⊃ P1 are parabolic subgroups of G then for l ≥ 0 we will denote

with Ωl
[P2/P1] the OG/P1-module ∧lΩ(G/P1)/(G/P2).

From the fact that there is a commutative diagram

G×P X −→ G/P ×Xy y
G/P = G/P

for any subgroup P ofG we deduce that ∧lΩ(G×P1X)/(G×P2X) = f ∗Ωl
[P2/P1].

The quotient map G/P1 → G/P2 will be denoted by πP1
P2

. The same

notation is used for the analogous map G×P1 X → G×P2 X.
l(P2/P1) will be the biggest u such that there is a chain P2 = P (u) ⊃

P (u−1) ⊃ · · · ⊃ P (0) = P1 of parabolics, such that all inclusions are
strict. Clearly l(G/B) is the rank of the semisimple part of G.

Finally if Pu ⊃ Pu−1 ⊃ · · · ⊃ P0 is a chain of parabolic subgroups of
G then we define Ωlu···l1

[Pu/Pu−1···/P0] for natural numbers (li)i as

Ωl1
[P1/P0] ⊗ π

P0∗
P1

Ωl2
[P2/P1] ⊗ · · · ⊗ π

P0∗
Pu−1

Ωlu
[Pu/Pu−1]

Lemma 6.1.2. Assume that (P, Y ) is a pair and that (P1, Y1) is a re-
duction pair. LetM be a G-equivariant, quasicoherent OG×PX-module.
Then every G-representation that occurs in H i

G×PPY (G×P X,M), oc-
curs in one of the following G-modules.

(1) H i
G×PPY1

(G×P X,M)

(2) H
i1+2dim(P/P1)

G×P1P1Y
(G×P1 X, πP1∗

P M⊗ f ∗Ω
i2
[P/P1]) where i1 + i2 = i

(3) H
i1+1+2dim(P/P1)

G×P1P1Y1
(G×P1 X, πP1∗

P M⊗ f ∗Ω
i2
[P/P1]) where i1 + i2 = i

Proof. By the standard long exact sequence for cohomology with sup-
port, any representation occurring in H i

G×PPY (G×P X,M) must also

occur in H i
G×PPY1

(G×P X,M) or in

(15) H i
G×P (PY \PY1)(G×

P (X \ PY1),M)

By 1. we only have to concern ourselves with the latter case. We first
prove a sublemma.

Lemma 6.1.3. The commutative diagram

G×P1 P1Y −→ G×P1 Xy y
G×P PY −→ G×P X
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restricts to a diagram

(16)

G×P1 (P1Y \ P1Y1)
α−→ G×P1 (X \ PY1)yβ y

G×P (PY \ PY1) −→ G×P (X \ PY1)

where α is a closed immersion and β is a bijection.

Proof. This can be deduced from 2. in definition 6.1.1. We first show
that Y \PY1 = Y \P1Y1 which is equivalent with Y ∩PY1 = Y ∩P1Y1.

Y ∩ PY1 = (Y ∩ P1Y1) ∪ (Y ∩ (P \ P1)Y )

= Y ∩ P1Y1

From this it follows that α and β are defined. For α we have to show
that P1Y \ P1Y1 is a closed subset of X \ PY1. But P1Y \ P1Y1 =
P1(Y \ P1Y1) = P1(Y \ PY1) = P1Y \ PY1 ⊂ X \ PY1 and the last
inclusion is closed.

Similarly for β we first have to show that P (P1Y \P1Y1) ⊂ PY \PY1.
Again P (P1Y \ P1Y1) = P (Y \ P1Y1) = P (Y \ PY1) = PY \ PY1. This
also shows that β is surjective.

To show that β is a bijection let y ∈ Y \ PY1. Any other element in
G×P (PY \ PY1) is in the G-orbit of such an element. A quick check
then shows (∼= means : “there is a bijection”)

β−1(y) ∼= {(p, y′) ∈ P × (P1Y \ P1Y1)|py′ = y}/P1

Hence

β−1(y) ∼= {p ∈ P | p−1y ∈ P1Y \ P1Y1}/P1

∼= {p ∈ P | p−1y ∈ P1Y \ PY1}/P1 (as above)
∼= {p ∈ P | y ∈ pP1Y \ PY1}/P1

∼= {p ∈ P | y ∈ pP1Y }/P1 (since y 6∈ PY1 by hyp.)
∼= singleton (using 2. in 6.1.1)

�

Remark 6.1.4. One can actually prove that the existence of diagram
(16), together with the fact that β is an isomorphism, is equivalent
with condition 2. in 6.1.1.

Now we continue with the proof of lemma 6.1.2.

By 5.1 and diagram (16) every representation that occurs in (15)
must occur in one of the representations :

(17) H
i1+2dim(P/P1)

G×P1 (P1Y \P1Y1)
(G×P1 (X \ PY1), π

P1∗
P M⊗ f

∗Ωi2
[P/P1])
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where i1 + i2 = i.
But G×P1 (X \P1Y1) is an open subset of G×P1 X containing G×P1

(X \PY1) and G×P1 (P1Y \P1Y1) is still a closed subset of G×P1 (X \
P1Y1). Therefore (17) is equal to (excision)

(18) H
i1+2dim(P/P1)

G×P1 (P1Y \P1Y1)
(G×P1 (X \ P1Y1), π

P1∗
P M⊗ f

∗Ωi2
[P/P1])

Invoking again the long exact cohomology sequence, yields that any
representation occurring in (18) must occur in

H
i1+2dim(P/P1)

G×P1P1Y
(G×P1 X, πP1∗

P M⊗ f
∗Ωi2

[P/P1])

or in
H
i1+1+2dim(P/P1)

G×P1P1Y1
(G×P1 X, πP1∗

P M⊗ f
∗Ωi2

[P/P1])

�

Definition 6.1.5. A pair (P, Y ) is constructible if and only if one of
the following holds

• PY = Y and Y = Xλ for some λ ∈ Y (T ) (including 0) belong-
ing to the Weyl chamber determined by B.
• There exists a reduction pair (P1, Y1) for (P, Y ) such that (P1, Y1),

(P1, Y ) and (P, Y1) are constructible.

Proposition 6.1.6. Assume that the pair (G, Y ) is constructible. Then
any G-representation occurring in

H i
GY (X,OX)

occurs in some

Hj
G×BY ′(G×

B X, f ∗πB∗P ′ Ω
iu···i1
[Pu/Pu−1/···/P0])

where

• (P ′, Y ′) is a pair such that P ′ ⊂ G, Y ′ ⊂ Y , PY ′ = Y ′, Y ′ = Xλ

and λ is in the Weyl chamber determined by B.
• Pu ⊃ Pu−1 ⊃ · · · ⊃ P0 is a chain (with strict inclusions) such

that G = Pu, P ′ = P0.
• i ≤ j + i1 + · · ·+ iu ≤ i+ u+ 2 dim(G/P ′)

Proof. This follows by induction from lemma 6.1.2 and the observation
thatH .

G×P ′Y ′(G×
P ′X, f ∗Ωiu···i1

[Pu/Pu−1/···/P0]) = H .
G×BY ′(G×

BX, f ∗πB∗P ′ Ω
iu···i1
[Pu/Pu−1/···/P0]).
�

Proposition 6.1.7. Let (G, Y ) be a constructible pair and let χ ∈
X(T ) be a dominant character (with respect to Φ+). Assume that
χ − w(

∑
ρ∈S ρ) is strongly critical for (T,W ), for all w ∈ WG, S ⊂

−Φ+. Then there will be no G-representation with highest weight χ in
H i
GY (X,OX) for 0 ≤ i ≤ d− l(G/B)− 2 dim(G/B)− 1.
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Proof. By Prop. 6.1.6 it is sufficient to prove the same statement for

(19) Hj
G×BY ′(G×

B X, f ∗πB∗P ′ Ω
iu···i1
[Pu/Pu−1/···/P0])

where 0 ≤ j + iu + · · · + i1 ≤ d − l(G/B) − 2 dim(G/B) − 1 + u +
2 dim(G/P ′) ≤ d − 1. This is obviously true if Y ′ = {0}. Hence we
assume that Y ′ 6= {0}.

(19) is equal to

Hj
G×BY ′(G×

B X,OG×BX ⊗OG/B π
B∗
P ′ Ω

iu...i1
[Pu/···/P0])

If we take the fiber of πB∗P ′ Ω
iu...i1
[Pu/···/P0] over [B] then we obtain

(20) ∧iu(pu/pu−1)
∗ ⊗ · · · ⊗ ∧i1(p1/p0)

∗

where pj is the Lie algebra of Pj.
(20) is a B-representation which has a filtration whose associated

quotient representations are T -characters of the form

χ
(S)
1 =

∑
ρ∈S

ρ where S ⊂ −Φ+

Using lemma 6.2.1 of the next section it is sufficient that χ− wχ(S)
1 is

strongly critical for (T,W ) for all w ∈ WG and for all S ⊂ −Φ+. But
this was exactly the hypothesis. �

It is well known that every fiber of X → X/G contains a unique
closed orbit. A point x ∈ X is called stable if for all λ ∈ Y (G) neither
limt→0 λ(t)x nor limt→∞ λ(t)x exists. Stable points have finite stabilizer
and closed G-orbit. They form an invariant open subset of X.

Hence one deduces that dimX = dim(X/G) + dimG if there is at
least one stable point in X.

Let us also recall the following theorem :

Theorem 6.1.8. [15] Assume that a semisimple group G acts on an
affine variety X with factorial coordinate ring such that the generic
stabiliser is finite. Then X has a stable point.

To simplify the notation a bit we will say that Xu is constructible if
it is of the form GXλ, where (G,Xλ) is a constructible pair.

Theorem 6.1.9. Let G be semisimple and assume that Xu is con-
structible. Assume furthermore that X has a G-stable point. Then
Conj. 3.4’ is true.

Proof. Let χ be a character of G and let χ1 ∈ X(T ) be the high-
est weight of its corresponding G-representation. The hypothesis for
Conj. 3.4’ imply that χ1 − w(

∑
ρ∈S ρ) will be strongly critical for
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(T,W ) for all w ∈ WG, S ⊂ −Φ+. Hence by Prop. 6.1.7 there will
be no representation with character χ in H i

Xu(X,OX) for 0 ≤ i ≤
d− l(G/B)− 2 dim(G/B)− 1.

However since G is assumed to be semisimple and X has a stable
point, l(G/B) + 2 dim(G/B) = dimG and d − dimG − 1 = h − 1.
Hence the conditions for Cor. 4.2 are satisfied, and therefore RG

χ is
Cohen Macaulay. �

Remark 6.1.10. Note that in Prop. 6.1.7 one actually proves more than
in Th. 6.1.9. However I have no example where this makes any differ-
ence.

Theorem 6.1.11. Conj. 3.4’ is true in the case G = SL(V ), dimV =
2.

Proof. We may assume that W does not contain trivial representations.
Assume first that W = V or W = S2V . Then k[W ]G is a PID. Hence

RG
χ is a torsion free module over a PID, and therefore Cohen-Macaulay.

This means that Conj. 3.4’ is vacuous and hence true.
Assume now that W 6= V and W 6= S2V . Then X has a stable point

by 6.1.8. From the fact that X(T ) = Z one deduces that Xu = GXλ

where λ(z) =

(
z 0
0 z−1

)
. From definition 6.1.1 or else from (26)

below one deduces that (B, {0}) is a reduction pair for (G,Xλ). Since
(B,Xλ), (G, {0}) and (B, {0}) are constructible by the first condition
of definition 6.1.5 we deduce that (G,Xλ) is constructible. �

6.2. Some computations. The following lemma was used in the proof
of Prop. 6.1.7. This subsection will be devoted to its proof.

Lemma 6.2.1. Assume that λ ∈ Y (T ) belongs to the Weyl chamber
determined by B. Let χ, χ1 ∈ X(T ) where χ is dominant and χ−wχ1 is
strongly critical for (T,W ), for all w ∈ WG. Assume furthermore that
X has a stable point. Then no G-representation with highest weight χ
occurs in

(21) H .
G×BXλ(G×B X,OG×BX ⊗OG/B χ̃1)

Proof. Let Y = Xλ. There is a spectral sequence :

Epq
2 : Hp(Hq

G×BY (G×B X,OG×BX ⊗OG/B χ̃1))

(22) ⇒ Hp+q
G×BY (G×B X,OG×BX ,OG×BX ⊗OG/B χ̃1)

Furthermore, it is easy to see that

Hq
G×BY (G×B X,OG×BX ⊗OG/B χ̃1) = Hq

G×BY (G×B X, (OX ⊗k χ1)̃)
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(23) = (Hq
Y (X,OX)⊗k χ1)̃

as OG/B-modules.
Let J be the defining ideal of Y . J is generated by a subspace W ′ of

W . Define W ′′ = W/W ′, d′ = dimW ′. We need the following result :

Lemma 6.2.2.

• H i
J(R) = 0 if i 6= d′.

• Hd′
J (R) is, as a T -representation, isomorphic to (∧d′W ′)∗ ⊗
⊕∞n=0S

n(W ′∗ ⊕W ′′)

Proof. The first statement is clear since J is generated by a system of
parameters.

For the second statement we use the fact thatHd′
J (R) = inj lim tExtR(R/J t, R).

We first compute ExtR(J t/J t+1, R) ∼= (StW ′)∗ ⊗ExtiR(R/J,R). Again
Exti(R/J,R) = 0 if i 6= d′. On the other hand, using the Koszul reso-

lution for R/J , one easily computes that Extd
′

R(R/J,R) ∼= (∧d′W ′)∗ ⊗
R/J . Hence as T -module : H i

J(R) = ⊕t ⊕t′ (∧d′W ′)∗ ⊗ (StW ′)∗ ⊗
St
′
W ′′ = (∧d′W ′)∗ ⊗⊕t≥0S

t(W ′∗ ⊕W ′′). �

Now assume that W = α1⊕α2⊕· · ·⊕αd as T -representation, where
αi ∈ X(T ). Define I = {i ∈ {1, . . . , d} | 〈λ, αi〉 ≥ 0}. Then by
construction, the weights of W ′ and W ′′ are resp. (αi)i∈I and (αi)i 6∈I .
Therefore

Hd′

Y (X,OX)⊗ χ1

has a filtration (as B-representation) whose associated graded quotients
χ′ are by lemma 6.2.2 of the form

(24) −
∑
i∈I

αi −
∑
i∈I

aiαi +
∑
i 6∈I

biαi + χ1

where ai, bi ∈ N.
Hence they have the property that

(25)

〈λ, χ′−χ1〉 = 〈λ,−
∑
i∈I

αi〉−
∑
i∈I

ai〈λ, αi〉+
∑
i 6∈I

bi〈λ, αi〉 ≤ −
∑
i∈I

〈λ, αi〉

Let ρ ∈ X(T )Q be half the sum of the positive roots.
Now assume that χ does occur in (21). Then it must also occur

somewhere in the E2-term of the spectral sequence (22). Hence, by
Bott’s theorem [3] and by (23) it must be of the form w(χ′ + ρ) − ρ
where w ∈ WG, and χ′ is of the form (24).
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From (25) we deduce

−
∑
i∈I

〈λ, αi〉 ≥ 〈λ,w−1(χ+ ρ)− ρ− χ1〉

= 〈λ,w−1(χ− wχ1) + w−1ρ− ρ〉
= 〈λ,w−1(χ− wχ1)〉+ 〈λ,w−1ρ− ρ〉

However by 6.2.3 below and by the hypothesis, w−1(χ−wχ1) is strongly
critical for (T,W ). Hence we will deduce that (6.2.4) 〈λ,w−1(χ −
wχ1)〉 > −

∑
i∈I〈λ, αi〉.

Since furthermore 〈λ,w−1ρ − ρ〉 ≥ 0 (6.2.5), we obtain a contradic-
tion. �

Now we will fill in the few missing steps in lemma 6.2.2.

Lemma 6.2.3. If χ is strongly critical for (T,W ) and w ∈ WG then
w(χ) is also strongly critical for (T,W ).

Proof. True, because WG permutes the weights of W . �

Lemma 6.2.4. Assume that χ is strongly critical for (T,W ) and λ ∈
Y (T ). Assume furthermore that X has a stable point. Define I = {i ∈
{1, . . . , d} | 〈λ, αi〉 ≥ 0}. Then 〈λ, χ〉 > −

∑
i∈I〈λ, αi〉.

Proof. The fact that X has a stable point implies that there exists an
i such that 〈λ, αi〉 > 0. By definition χ =

∑d
i=1 aiαi, −1 < ai ≤ 0.

Hence

〈λ, χ〉 =
∑
i∈I

ai〈λ, αi〉+
∑
i 6∈I

ai〈λ, αi〉

> −
∑
i∈I

〈λ, αi〉

�

Lemma 6.2.5. Let λ ∈ Y (T ) belong to the Weyl chamber determined
by B. Let ρ be as in the proof of lemma 6.2.1. Then 〈λ,wρ − ρ〉 ≥ 0
for all w ∈ WG.

Proof. Since λ belongs to the Weyl chamber determined by B, one
deduces easily that 〈λ, ρ〉 ≤ 0 for all ρ ∈ Φ+. On the other hand the
definition of ρ immediately implies that wρ − ρ is a sum of negative
roots. �

6.3. A combinatorial criterion for constructibility. To verify whether
a pair (P1, Y1) is a reduction pair for some other pair (P, Y ) we need
some way of checking condition 2. in 6.1.1. A simple criterion that can
be checked on the weights of W is given below.
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Proposition 6.3.1. Assume that (P1, Y1), (P, Y ) are pairs such that
P1 ⊂ P , Y1 ⊂ Y and the inclusions are strict. If

(26) ∀w ∈ WP \WP1 : wY ∩ Y ⊂
⋃

w′∈WP1

w′Y1

then (P1, Y1) is a reduction pair for (P, Y ).

Proof. Assume that (26) holds. By the Bruhat decomposition

P1 = BWP1B

and

P \ P1 = B(WP \WP1)B

Hence

(P \ P1)Y ∩ Y = B(WP \WP1)Y ∩ Y
= B((WP \WP1)Y ∩ Y )

⊂ BWP1Y1

= P1Y1

�

7. The case of matrix concomittants.

In this section we will verify the major hypothesis of Th. 6.1.9 for
Tm,n, namely thatXu is constructible. Using (26) this can be done com-
binatorially. As a consequence we obtain that Tm,n is Cohen-Macaulay
in general (Th. 7.3.6).

We define G = SL(V ) where dimV = n, W = End(V )m∗ and
X = Speck[W ]. T ⊂ G will be a maximal torus. We will choose a
basis in V such that the action of T on V is diagonal, i.e. of the form
diag(z1, . . . , zn) where zi ∈ k and z1 · · · zn = 1.

7.1. Ordered partitions. If n is an integer then an ordered partition
ν of n will be a tuple (ν1, ν2, . . . , νu) such that

∑u
i=1 νi = n, νi ∈ N0. If

ν is an ordered partition of some unspecified number then that number
will be denoted by

∑
νi. We will also use the empty tuple () as the

unique ordered partition of 0.

If (ν(i))i=1,...,v are ordered partitions where ν(i) = (ν
(i)
1 , . . . , ν

(i)
ui ) then

(ν(1), . . . , ν(v)) is the ordered partition (ν
(1)
1 , . . . , ν

(1)
u1 , ν

(2)
1 , . . . , ν

(v)
uv ).

If η, ν are two ordered partitions then we say that η is a refinement
of ν (notation : η C ν) if η = (η(1), . . . , η(v)) where the η(i) are ordered
partitions and ν = (

∑
η(1), . . . ,

∑
η(v)).
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The ordered partitions of n, ordered by C, form a partially ordered
set with minimal element ηmin = (1, . . . , 1) and maximal element ηmax =
(n).

Let B be the Borel subgroup of G consisting of the upper trian-
gular matrices. Then any λ ∈ Y (T ) belonging to the Weyl chamber
determined by B will be of the form

(27) z → diag(zi1 , . . . , zi1︸ ︷︷ ︸
η1 times

, zi2 , . . . , zi2︸ ︷︷ ︸
η2 times

, . . . , ziu , . . . , ziu︸ ︷︷ ︸
ηu times

)

where i1 > i2 > · · · > iu and η1i1 + η2i2 + · · · + ηuiu = 0. With a
slight abuse of notation we will denote this one-parameter subgroup by
λη, where η is the ordered partition of n given by (η1, . . . , ηu). This
notation is justified in this context by the fact that if λ1, λ2 ∈ Y (T ) are
of the form (27) with the same numbers η1, . . . , ηu then G(λ1) = G(λ2)
and Xλ1 = Xλ2 .

Clearly B = G(ληmin
) and G = G(ληmax).

Lemma 7.1.1. If η C ν then

• G(λη) ⊂ G(λν)
• Xλη ⊃ Xλν

• G(λη)Xλν = Xλν

Proof. This follows by inspection. �

Lemma 7.1.2. Xu = GXληmin

Proof. This follows by lemma 7.1.1 and by lemma 4.3. �

Now define Q = {1, . . . , n}. If ν is an ordered partition of n then
Qν will be the partition of Q given by {{1, . . . , ν1}, {ν1 + 1, . . . , ν1 +
ν2}, . . . , {ν1 + · · ·+ νu−1, . . . , n}}. The elements of Qν will be indexed
as Qν,i where Qν,i = {ν1 + · · ·+ νi−1, . . . , ν1 + · · ·+ νi}.

If T is an arbitrary set then ST will be the permutation group of
T . If Qν is a partition of Q then SQν =

∏
T∈Qν ST . Q◦ν will be the set⋃

j>iQν,i ×Qν,j ⊂ Q×Q.
It is easily verified that if ν is an ordered partition then

(28) WP (λν) = SQν

and the weights of Xλν (considered as a subspace of W ∗) are

(29) {(ziz−1
j )(i,j)∈Q◦ν}

Lemma 7.1.3. Let (η1, ν1), (η, ν) be pairs of ordered partitions. As-
sume that η1 C η, ν C ν1 and η1 6= η, ν1 6= ν. Suppose that

(30) ∀w ∈ SQη \ SQη1 : ∃w′ ∈ SQη1 : wQ◦ν ∩Q◦ν ⊂ w′Q◦ν1
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Then (G(λη1), Xλν1
) is a reduction pair for (G(λη), Xλν ).

Proof. This is just a translation of (26) to the present situation using
(28) and (29). �

7.2. Settheoretic computations. In this subsection we will verify
(30) for certain special pairs of partitions.

For the sequel let η = (η(1), η(2), x), ν = (ν(1), a, 1, ν(3)) be fixed
ordered partitions of n where

• η(1), η(2), ν(1), ν(3) are ordered partitions.
• x, a ∈ N0

• η(1) C ν(1).
• ν(3) consists entirely of ones.
• x+ a > n−

∑
ν(1).

Then we define η1 = (η(1), η(2), x − n +
∑
ν(1) + a, n −

∑
ν(1) − a),

ν1 = (ν(1), a + 1, ν(3)). To simplify the notations we write K = Qη,
K1 = Qη1 , L = Qν , L1 = Qν1 and W = SK , W1 = SK1

Lemma 7.2.1.

∀w ∈ W \W1 : ∃w′ ∈ W1 : wL◦ ∩ L◦ ⊂ w′L◦1

Proof. We will denote the position of a in ν by α. The beginning of
η(2) in η will be at position β′ and x will be at position β.

First we make a few remarks which follow either from the definitions
or else by counting.

(1)
⋃
i<α Li =

⋃
i<β′ Ki and the second decomposition is a refine-

ment of the first.
(2)

⋃
i≥α+1 Li = K1,β+1

(3) Lα =
⋃
β′≤i≤βK1,i

(4) W \W1 =
∏

i 6=β SKi × (SKβ \ (SK1,β
× SK1,β+1

))

(5) L◦1 = L◦ \ (Lα × Lα+1)

Now we will try to bound the sets wL◦ ∩ L◦ where w ∈ W \ W1. To
this end we compute

L◦ = (
⋃
i<j
i<α

Li × Lj) ∪ (
⋃
i<j
i≥α

Li × Lj)

⊂ (
⋃
i<j
i<α

Li × Lj) ∪

[
(
⋃
i≥α

Li)× (
⋃

j≥α+1

Lj)

]
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Using 1. we see that ⋃
j>i
i<α

Li × Lj

and
⋃
i≥α Li are W-invariant.

Furthermore by 2. and 4.
⋃
j≥α+1 Lj cannot be W-invariant if w ∈

W \W1. Hence there exists a p in
⋃
j≥α+1 Lj such that

(31) L◦ ∪ wL◦ ⊂ (
⋃
i<α
j>i

Li × Lj) ∪

(
⋃
i≥α
j>i

Li × Lj) \ (
⋃
i≥α

Li × {p})


We will now show that the right hand side of (31) is contained in
some w′L◦1 for w′ ∈ W1. Assume that Lα+1 = {q}. We define w′ =
(p, p − 1, . . . , q). By 2. we see that w′ ∈ W1. We will now decompose
L◦1 (using 5.).

L◦1 = (
⋃
i<α
j>i

Li × Lj) ∪

(
⋃
i=α
j>i

Li × Lj) \ (Lα × {q})

 ∪ (
⋃
i>α
j>i

Li × Lj)

Here ⋃
i>α
j>i

Li × Lj = {(p1, p2) | p1, p2 ∈ Q, p2 > p1 ≥ q}

Therefore

(32) w′(
⋃
i>α
j>i

Li × Lj) ⊃ (
⋃
i>α
j>i

Li × Lj) \ (
⋃
i>α

Li × {p})

(This is the key point.)
Using 2., 3. and (32) we deduce that

w′L′◦ ⊃ (
⋃
i<α
j>i

Li × Lj) ∪

(
⋃
i=α
j>i

Li × Lj) \ (Lα × {p})

 ∪
(
⋃
i>α
j>i

Li × Lj) \ (
⋃
i>α

Li × {p})


= (

⋃
i<α
j>i

Li × Lj) ∪

(
⋃
i≥α
j>i

Li × Lj) \ (
⋃
i≥α

Li × {p})


which is precisely the right hand side of (31). �

Corollary 7.2.2. (G(λη1), Xλν1
) is a reduction pair for (G(λη), Xλν )

Proof. Immediate from lemma 7.1.3 and lemma 7.2.1. �
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7.3. Good pairs of ordered partitions. In this subsection we will
prove that for certain pairs of partitions (η, ν), the pair (G(λη), Xλν )
is constructible. We will build upon the result obtained in Cor. 7.2.2.

Definition 7.3.1. Let (η, ν) be a pair of ordered partitions of n. Then
we say that (η, ν) is good if one of the following holds :

(1) η C ν
(2) η = (η(1), η(2), x), ν = (ν(1), a, ν(2)) where

(a) η(1), η(2), ν(1), ν(2) are ordered partitions.
(b) x, a ∈ N0

(c) η(1) C ν(1)

(d) ν(2) consists entirely of ones.
(e) a+ x > n−

∑
ν(1)

Lemma 7.3.2. Assume that η = (η(1), η(2), x) and ν = (ν(1), a) are
ordered partitions of n such that η(1) C ν(1). Then η C ν.

Proof. Clear. �

Lemma 7.3.3. Let η = (η(1), η(2), x) and ν = (ν(1), a, ν(2)) be ordered
partitions of n such that η(1) C ν(1) and ν(2) consists entirely of ones.
Assume that a+ x = n−

∑
ν(1). Then the pair (η, ν) is good.

Proof. By lemma 7.3.2 we may assume that ν(2) = (1, ν(3)). We deduce
a + x = n −

∑
ν(1) = n −

∑
η(1) =

∑
η(2) + x or

∑
η(2) = a. Hence

η(3) = (η(1), η(2)) C (ν(1), a) = ν(4). We then rewrite η = (η(3), x), ν =
(ν(4), 1, ν(3)). Now one sees that (η, ν) satisfies the first four conditions
of 7.3.1.2 (making the appropriate translations).

To check condition 2e. we observe that 1 + x > n −
∑
ν(4) since

n−
∑
ν(4) = n−

∑
ν(1) − a = x. �

Assume now that we have a good pair of partitions (η, ν), but not ηC
ν. Then η = (η(1), η(2), x), ν = (ν(1), a, ν(2)) as in definition 7.3.1. Fur-
thermore by lemma 7.3.2 ν(2) is non empty and hence ν(2) = (1, ν(3)).
We can then define (η1, ν1) as in 7.2, i.e. η1 = (η(1), η(2), x−n+

∑
ν(1) +

a, n−
∑
ν(1) − a) and ν1 = (ν(1), a+ 1, ν(2)).

Lemma 7.3.4. (η, ν1), (η1, ν) and (η1, ν1) are good.

Proof. • (η, ν1) is good because a + 1 + x > n −
∑
ν(1) (using

Def. 7.3.1).
• (η1, ν) is good because n−

∑
ν(1) − a+ a = n−

∑
ν(1). Hence

we can apply lemma 7.3.3.
• (η1, ν1) is good because n−

∑
ν(1) − a+ a+ 1 > n−

∑
ν(1).
�
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Corollary 7.3.5. If (η, ν) is a good pair of ordered partitions of n then
(G(λη), Xλν ) is constructible.

Proof. Clear from 7.2.2, 7.3.4 and the fact that eventually 1. of Def. 7.3.1
must become true. �

Theorem 7.3.6. Tm,n is Cohen Macaulay for all (m,n).

Proof. As we have seen before (3) Tm,n = (End(V )⊗k[W ])G. The case
n = 1 is trivial. Furthermore it is easily verified that T1,n is a free
module over its center which is a polynomial ring. Hence the result is
clear. T2,2 was treated in [5][18].

Hence it remains to consider the cases (m,n) ≥ (2, 3) and ≥ (3, 2).
It is well known that End(V ) = k ⊕ End(V )0 where the elements

of End(V )0 are those endomorphisms of V having trace 0. This is an
irreducible G-representation. Since k[W ]G is Cohen-Macaulay by the
Hochster Roberts theorem, it suffices to look at the case U = End(V )0.
It is easy to verify that the character of U∗ is strongly critical for (G,W )
if (m,n) ≥ (2, 3) or ≥ (3, 2). Furthermore, if m ≥ 2 then the action on
X is generically free and hence X has a stable point by 6.1.8. Hence
the only thing that has to be proved, to apply Th. 6.1.9, is that Xu

is constructible. However by 7.1.2 Xu = G(ληmax)Xληmin
and according

to Def. 7.3.1 (ηmax, ηmin) is a good pair of ordered partitions (η(1), η(2)

and ν(1) are empty in this case). Hence we may apply Cor. 7.3.5. �

Remark 7.3.7. It may be somewhat surprising that the cases m = 1
and (m,n) = (2, 2) play a special role in the above argument. However
it is easily verified that

P (T1,n, t) =
1

(1− t)2(1− t2) · · · (1− tn−1)

and

P (T2,2, t) =
1

(1− t)4(1− t2)
Hence they satisfy the functional equations

P (T1,n, 1/t) = (−1)nt
n2−n+2

2 P (T1,n, t)

and

P (T2,2, 1/t) = −t6P (T2,2, t)

which are different from the functional equation for (m,n) ≥ (2, 3) or
≥ (3, 2) (as predicted by (4))

P (Tm,n, 1/t) = (−1)(m−1)n2+1tmn
2

P (Tm,n, t)
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For other proofs of this functional equation we refer to [4][10][21]. How-
ever these authors seem to have been unaware of the general result in
[20].
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