SOME GENERALITIES ON G-EQUIVARIANT
QUASI-COHERENT Ox AND Dx-MODULES

MICHEL VAN DEN BERGH

ABSTRACT. We prove some results on G-equivariant Ox- and Dx-modules
on not necessarily affine spaces. For example we show that there are enough
injectives in the corresponding categories. We also prove the often used result
that for a (G, Dx)-module to be G equivariant it is necessary sufficient that
the Lie algebra of G acts in the correct way.

1. G-EQUIVARIANT QUASI-COHERENT () x-MODULES

1.1. Notations. In this section we collect some facts concerning G-equivariant
quasi-coherent O x-modules. All of this is well-known, but is seems to be difficult
to find a systematic treatment in the literature.

Below k will be a base field. Unadorned tensor and fiber products will be over
k. X will be an arbitrary scheme over k and G will be a linear algebraic group
over k, acting on X. The category of quasi-coherent Ox-modules will be denoted
by Ox-qch.

O(G) is a Hopf algebra and its comultiplication, counit and antipode will re-
spectively be denoted by A, € and S. e will be the unit element of G and the
corresponding maximal ideal of O(G) will be denoted by m.. We will use the
Sweedler convention. Le. if h € O(G) then we write Ah = h) ® h(g).

1.2. Definitions and some functorial properties. We start with the following
diagram of objects and maps

dO do
- =2
(1) GxGx XBGx X2%X
dg dl
22 —
do(g1, ) = g; '@ do(g1, 92, %) = (92, 91 ')
di(g1,7) == di(g1,92,7) = (9192, )
so(w) = (e, ) d2(91, g2, %) = (91, )
Note that one has the following identities :
d2 = dody doso = id
dodg = dldo d180 =id

d? = dyds
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which express the fact the (1) is part of a simplicial scheme.
Below we will also need the following auxiliary maps
p:GxX—=>GxX:(g1,2) = (91,91%)
(2) po:GXGEXxX —>GxGxX:(g91,92,%) — (91, g2, g1g2)
P1:GXGXxX—>GxGxX:(g1,92,2) — (91,92, 1)

which satisfy the following relations

di1po = pdy
dop1 = pdy

Definition 1.2.1. A G-equivariant quasi-coherent Ox-module is a pair (F,0)
where F € Ox-qch and 6 is an isomorphism dj F — d§F in Ogxx-qch such that

50 o i = dro
580 = id]:

(3)

The corresponding category is denoted by (G, Ox)-qch.
If there is no possibility for confusion we will simply write F for (F,6).

Example 1.2.2. If F = Ox then we may take § = id. Then (3) is obviously
satisfied.

Ifr: Y — X is a G-equivariant map then there exist functors L;7* : (G, Ox)-qch —
(G, Oy)-qch, Rit, : (G,0Oy)-qch — (G,0Ox)-qch. The reason is that the corre-
sponding functors between Ox-qch and Oy-qch are compatible with (flat) base-
change.

For example , (F, 6) is given by (m,.F,0") where 6§’ makes the following diagram

commutative
(id x m)di F SO 4 s 1), di F

! |

0/
T F e dym F

Here the vertical maps are the canonical identifications given by base-change.

1.3. Interpretation in terms of R-points. Let (F,0) € (G,Ox)-qch and let
s : Spec R — Speck be a k-algebra. Then any R/k-point 44 : Spec R — G induces
an R-automorphism g : Xp — Xpg.

Let us denote the map (iq4,id) : Xgp = Spec R x X — G x X also by i4. Then
applying 4; to 0 : diF — djF yields a map i;(0) : s*F — (g7')*s*F and the
second equation in (3) yields % (0) = idg r.

Let j : Spec R — G be another R-point of G. Then applying iZ‘g, ny to the first
equation of (3) yields

ign(0) = (971)" (i5,(0))iy ()
This leads us to the following proposition

Proposition 1.3.1. The category (G, Ox)-qch is equivalent to the category of
quasi-coherent sheaves F on X equipped with isomorphisms

gg: S*F — (gfl)*s*]:
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for each s : Spec R — Speck and for each R/k-point iy : Spec R — G satisfying
qe = id
dgn = (971)" (an)4y

(4)

in such @ way that the (q4)’s are compatible with base-change.

Proof. If (F,0) is in (G, Ox)-qch then we take g, = i} (0).

Conversely, assume that we are given a set of (g4)’s. We take R = O(G). Then
if “id” denotes the “identity point” G = Spec R — G then i;q is equal to the map
p: Xr — Xg (see (2)). We put @ = giq which goes from di to p*~1di F = d.F.

One easily verifies that this § has the required properties. (I

Remark 1.3.2. This proposition makes it easy to see that canonical objects in
Ox-qch such as tangent bundles, sheaves of differential operators etc...are au-
tomatically in (G, Ox)-qch.

1.4. Affine schemes. If X is affine then the elements of (G, Ox)-qch have a simple
interpretation. Recall that rational (or “locally finite”) G-actions on a k-vector
space V are in one-one correspondence with coactions

l:V—>(’)(G)®V:v»—>ZU(1)®U(2)

via gv = Y- vay (97 v

In particular the action of G on X corresponds to a coaction ! : O(X) — O(G)®
O(X) and therefore O(X) is a rational G-representation.

Let (F,0) € (G,0x)-qch. If f € F(X) then we put I(f) = p*0(dif) €
i F(X)=0(G) ® F(X).

By using the method employed in the proof of Theorem 1.5.4 below, or by direct
computation, one shows that

I: F(X) = O(G) ® F(X)

is a coaction of O(X) on F(X) and for a € O(X), f € F(X) one has I(af) =
L(@)l(f)-

Furthermore, given [, one can reconstruct 6 by 0(h ® f) = hp*~t(f).

Let (G, O(X))-mod be the category of O(X)-modules, equipped with a rational
G-action, compatible with the G-action on O(X). Then we have shown

Proposition 1.4.1. If X is affine then the categories (G, Ox)-qch and (G, O(X))-mod
are equivalent. The equivalence is given by (F,0) — (F(X),1).

1.5. General schemes. The previous section gives a satisfying description of (G, Ox )-qch
in the case that X is affine. Unfortunately, not every G-scheme may be covered
with affine G-schemes. In such a case one may find the objects in (G, Ox)-qch
somewhat unpleasant to work with.

Furthermore, even if X is affine, the stalks of Ox at fixed points of X are usually
not rational as G-representations. This shows that (G, Ox)-qch is not closed under
some natural operations.

One possible solution is to embed (G, Ox)-qch in the category of Ox-modules
equipped with a G-action where G is considered as a discrete group [3]. However
this seems to be somewhat inelegant, and in any case it is only justified if G is
reduced and has a dense set of k-points.
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Below we sketch another approach that works well when G is connected. We
embed (G, Ox)-qch in (G, Ox)-qch where G is the formal group associated to G.
To be more precise let

O(C) = km O(G) fm?

which is a topological Hopf algebra.

A coaction of O(G) on F € Ox-qch is a k-linear sheaf map
1:F = OG)&F =mO(G)/m"® F

satisfying the usual associativity conditions (here and below @ denotes the com-
pleted tensor product).

Let (F,0) be in (G, Ox ). We will show how one may use 6 to construct a coaction
of O(@) on F. Let U C X be an affine open and let f € F(U). Then I(f) =
p*(0(d; f)) is a section of (djF)(p~ (G x U). Now p~(G x U) is a neighborhood
of e x U and hence we may consider I(f) as a section of sy *(d}F)(U).

Hence we have defined a map of sheaves on X :

12 F — sy (diF)
so 1 (dfF) is embedded in O(G) & F and hence [ also defines a map
1:F—=0G)&F

In the proof of Theorem 1.5.4 we will show that this indeed defines a coaction.
We may in particular apply this construction to (Ox,id) to obtain a “canonical”
coaction
1:0x = O(G) & Ox
and it is almost obvious that for a € Ox(U), f € F(U) one has l(af) = l(a)l(f).
This motivates the following definition

Definition 1.5.1. A quasi-coherent (G, Ox)-module is a pair (F,[) where F is in
Ox-qch and
1:F—=0G)&F
is a coaction, compatible with the canonical coaction
1:0x = OG) & Ox

Le. we require for U C X open, a € Ox(U), f € FU) : l(af) = l(a)l(f).
The category of quasi-coherent (G, Ox)-modules is denoted by (G, Ox)-qch.
Hence above we have constructed a functor
i:(G,0x)-qch = (G, 0x)-qch
which associates the pair (F,l) to the pair (F,0). We will see in the proof of
Theorem 1.5.4 that if G is connected then ¢ is fully faithful (and has other good
properties).

The advantage of working with (G, Ox)-qch rather than with (G, Ox)-qch is
that being in (G, Ox)-qch is a local property. That is if (F,[) is in (G, Ox)-qch
and U C X is open then (F|U, I|U) is in (G, Op)-qch (note that here we are in a
slight extension of the present context since O(G) coacts on Oy, but this coaction
is no longer obtained from an action of G on U).
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Furthermore, to do calculations, one can use a variant of the Sweedler notation.
That is, for U C X affine open, f € F(U) we write

(5) 1) = fa)® fo

where f(1) € O(G), f2) € F(U). The only difference with the ordinary situation is
that (5) is now a, usually infinite, convergent sum.

For h € O(G) we also put A(h) = > h1) & hz).

Let us now denote by O(G)* the Hopf algebra
liy (O(G)/m¢)*

n

Note that (9(@)* is a real Hopf algebra, not just a topological one. We denote by
(—, —) the natural pairing between O(G) and O(G)*.
If (F,1) is in (G,Ox) then we may construct a left action of O(G)* on F :

1:0(G)"®F = F by
(6) Wo® f) = (6, Sf))fe)

In particular we obtain a canonical left action of O(G)* on Ox and the actions on

F and Ox are compatible, in the sense that if a € Ox(U), f € F(U), ¢ € O(G)*
then

Hop®af) = Upw ®a)l(bwe) @ f)

Hence if we denote by (O(G)*, Ox )-qch the category of quasi-coherent O x-modules
equipped with a compatible O(G)*-action, then (6) defines a functor from (G, Ox)-qch
to (O(G)*, Ox)-qch and it easy to see that this is an equivalence.

Let g = (me/m?) C O(G)*. g consists of primitive elements and hence it is
a Lie algebra. If we denote by (g, Ox)-qch the category of quasi-coherent Ox-
modules, equipped with a compatible g-action then restriction defines a functor
(O(G)*,0x)-qch = (g, Ox)-qch. If chark = 0 then O(G)* = U(g) [4] and hence
we obtain an equivalence.

Before we summarize our constructions in Theorem 1.5.4 below. We introduce
the following notion which will considerably shorten the statements of results fur-

ther on

Definition 1.5.2. A functor F' : A — B between abelian categories is a right closed
embedding if F' is exact and has a right adjoint G such that for the induced natural
transformations id — GF, FFG — id one has that the first one is an isomorphism
and the second one is a monomorphism.

Lemma 1.5.3. Assume that F' : A — B is a right closed embedding with right
adjoint G. Then
(1) F is fully faithful;
(2) The essential image of F' is closed under subquotients and direct limits.
(3) If B has enough injectives then so does A.

If a right closed embedding F : A — B exists then informally we say that A is
a right closed subcategory of B. Note that in the terminology of [2] we would say
that A is a closed subcategory of 5.
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Theorem 1.5.4. There are functors
(G, Ox)-qch 5 (G, Ox)-qch — (O(G)*, Ox)-qch — (g, Ox )-qch

The first one is a right closed embedding if G is connected; the second one is an
equivalence and the third one is an equivalence if chark = 0.

Remark 1.5.5. One may introduce the sheaf of rings Ox#O(G)*. As a sheaf of
vectorspaces this is just Ox @ O(G)* and the multiplication is given as follows : let
a,be Ox(U), ¢,¥ € O(G)*. Then

(a#0) (0#0) = ad) (D)#(2) (D)0
where we have written ¢(1)(b) for I(¢() ® b). It is easy to see that one has
(O(@)*, Ox)-qch = Ox #0O(G)*-qch

which realizes (G, Ox)-qch as a right closed subcategory of the category of quasi-
coherent modules over a sheaf of rings (if G is connected).

Proof of Theorem 1.5.4. The only thing we still have to do is to prove that ¢ has
the desired properties.

Let (F,0) be in (G,Ox)-qch and let I : F — O(G) & F be constructed as
above. We first have to show that [ defines a coaction. Let f € F(U). Applying
ds0 o dif = di0 to di2 f yields

(d30)(d30)(d7* f) = (d16)(di* f)

Using the fact that d? = dyda, this yields
(do0)(d5(0(d1 f)) = di(6(d1f))
Applying pj; and using dipo = pd; yields

(7) po(dof)(d3(0(d1 f))) = di(I(f))
We may rewrite the left hand side of (7) as follows :
LHS(7) = (pg o dgf o d3 Op* D (0dif))

= (pp o dpf OP o dz)(l(f))
= (P Op1 YopiodgfopiT ods)(I(f))
= ((p1 po)* o (dop1)*0 0 d3)(I(f))
= (pras(p)” o prz(6) o pris)(I(f))
=1 D(U)
So finally we find

di(I(f)) = A @ D))
Completing this relation in (e, e, X) yields that [ is indeed coassociative. The other
relation we need is (e ® 1)I(f) = 1 ® f, but this is easy.

Now we show that the coaction of O(G) on F is compatible with the coaction
of O(G’) on Ox obtained from (Ox,id) € (G, Ox)-qch.
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Let a € Ox(U), f € F(U). Then

l(af) = p*(0(di(af))
p*(0(diadif))
p*(diab(dif))
p*(dia)(p"(0(di f))
@uey

Now we construct a right adjoint j : (G, Ox)- qch — (G, OX) qch to i. Let
(F,1) be in (G, Ox)-qch. First we extend I to a O(G)-linear map 0 : O(G) & F —
oG & F.

Note that for U C X one has embeddings of d; (F)(d;*(U)) and do(F)(d;*(U))
inside O(G) & F(U) (this uses the fact that G is connected). Let G C F be a
subsheaf in Ox-qch. By running the computation (8) in reverse one sees that if for
all U C X affine one has 0(d;G(d7*(U))) C diG(dy (U)) then 6 restricts to a map
0 : diG — d§G and the corresonding pair (G, ) is an object of (G,Ox)-qch. We
now let j(G,1) be the pair (G,0), where G C F is maximal with the property that
0 exists. It is easy to show that j has the required properties. O

*

Corollary 1.5.6. Assume that X is quasi-compact and quasi-separated. Then
(G, Ox)-qch has enough injectives.

Proof. The usual restriction-corestriction argument reduces us to the case that
G is connected. Then, by Theorem 1.5.4 and remark 1.5.5, (G, Ox)-qch is a right
closed subcategory of Ox #O(é)*—qch and it is standard that the category of quasi-
coherent modules over a quasi-coherent sheaf of rings over a quasi-compact quasi-
separated scheme has enough injectives (see [1, Prop. VI.2.1] for the case of D-
modules). We then apply lemma 1.5.3. O

Remark 1.1. An interesting question is when (G, Ox)-qch is closed under extensions
in (O(G)*,Ox)-qch. Comparison with the affine case suggest that this should be
true if char k = 0 and G is semisimple. However I have no proof of this.

2. G-EQUIVARIANT Dx-MODULES

In this section we treat G-equivariant quasi-coherent Dyx-modules. Our main
aim is to prove Proposition 2.6 below, which occurs frequently in the literature,
but as far as I know, each time without proof.

Below k will be an algebraically closed field of characterstic zero, X will be a
smooth k-scheme and G will be a linear algebraic group over k, which acts on X.
By Dx we denote the sheaf of differential operators on X and by D(X) we denote
its global sections.

A G-equivariant quasi-coherent D-module is a pair (F, ) where F is in Dx-qch
and 6 : diF — diF is in Dgxx-qch satisfying djf = dj6 o d50. Note that this
makes sense since both dfF and d lie in Dgx x-qch [1, VI.§4].

The category G-equivariant quasi-coherent D x-modules is denoted by (G, Dx )-qch.

If in the above pair (F,0), 0 only lies in Og K Dx-qch then one says that (F,0)
is a weakly G-equivariant quasi-coherent Dx-module. The corresponding category
is denoted by (G, Dx)-wqch.
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Proposition 2.1. The inclusion functor (G,Dx)-qch — (G, Dx)-wqch is right
closed.

Proof. Clear. (]

We observe that if 7 : ¥ — X is a G-equivariant map of smooth k-schemes
and (M, 0) € (G,Dx)-(w)qch, (N,0) € (G,Dy)-(w)qch then for all i, Hir' M,
Hint M € Dx-qch, H'm M, Hit, M € Dy-qch carry natural G-structures and
hence they define objects in (G, Dx)-(w)qch and (G, Dy )-(w)qch. This is because
these functors commute with (smooth) base change (see §1 for the corresponding
statement about (G, Ox)-qch and (G, Oy )-qch).

There is the following obvious analogue to Proposition 1.3.1

Proposition 2.2. The category (G, Dx)-wqch is equivalent with the category of
quasi-coherent Dx -modules F on X equipped with isomorphisms in Dx/r-qch

qg: 8*F — (g71)*s*F
for each s : Spec R — Speck and for each R/k-point iy : Spec R — G satisfying
ge = id

(9)

agn = (97 ") (an)qq

in such o way that the (q4)’s are compatible with base-change.

Our next aim is now to embed (G, Dx )-wqch in a corresponding local category

(g, Dx)-qch.

We start by observing that Dx itself lies (G, Dx )-wqch (but not in (G, Dx )-qch!).

To see this we have to define

g : Dxp/r— (97 ) Dxp/r
satisfying (9). It will be more convenient however to define r, = g* o g;. Note
that by definition, for every open U C X, r, should be a map from Dy, /r(U) to
Dx,/r(g~*U). Condition (9) translates into rg, = r,ry and re = id.

For D € Dx,,/r(U) we define ry,(D) = g*D, where by definition for every f €
Ox(g~'U) one has (¢*D) * f = D (fog~')og (note the use of “x” for the action
of a differential operator). It is clear that r, has the required properties.

Thus Dx defines a corresponding object (Dx,6) in (G, Dx)-wqch. As before let
id : G — G be the identity point. The automorphism of X¢g) corresponding to
id is p. According to the proof of Proposition 1.3.1, § = ¢;q. Hence by the above
definitions

(P o) (D)x f=Dx(fop )op
for D € Dayx/a(U), f € Ogxx(U) with U € G x X open. We conclude

D)+ f=(1@D)x(for)op
Now let f € Ox(U), D € Dx(U). One computes
ID)+(1& f)=[1®D)*((1& f)op "op
= (1®D)*(Zsf(1) & f2))op
=()_Sfay® D fz)) op
=Y Sfn)(D* fz)) ) @ (D * fi2)2)
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Hence we obtain
(10) > Dy @Dy x f=> Sfa)(D* fz)1) ® (D * fiz)) 2

Recall that by Theorem 1.5.4 there is a natural action g on Ox. This action is
by derivations and hence one obtains a natural map g — D(X). If v € g then we
denote the corresponding differential operator by D,. Le. for f € Ox(U) one has
vf =D, f.

To understand the coaction [ better we look at the corresponding left action of
gon Dx :

1:g@Dx »Dx:v@D— Y (1,5D1))Dizy=—Y (v,D1))D)
Using (10) we find
(@ D)x f == (0,5 (D* ) 1)) (D * f2)) o)
D =0, Sfa)e((D * f2)) )(D * fi2))2) — €(Sf 1) (v, (D * f2)) ))(D = fi2))2)
> =0, Sfa) (D * f2)) + e(f1)) Do (D * f(2))

= Z —D x (<U,Sf(1)>f(2)) + D, * (D * E(f(l))f(?))
= —Dx(Dy* f)+ Dy (D f)
= [D,,D]x f

So we find
l(v® D) =[D,, D]
Now we define some categories

Definition 2.3. (1) A quasi-coherent (G, Dx)-module is a pair (F,1) where
F € Dx-qch and R
I:F—=0G)&F
is a coaction compatible with the canonical coaction
l:Dx — O(G) & Dx
in the sense that if D € Dx(U), f € F(U) then (D * f) = I(D) = I(f).

The category of quasi-coherent (G’ , Dx )-modules is denoted by (G’ , Dx)-wqch.
(2) A quasi-coherent (g, Dx)-module is a pair (F,[) where F € Dx-qch and

g F > F:v@f—uvf

is a left action compatible with the canonical left action

l:9®Dx - Dx :v®Dw— [D,, D]
in the sense that if v € g, D € Dx(U), f € F(U) then

v(Dx* f)—Dx (vf)—[Dy,D]xf=0
The category of quasi-coherent (g, Dx )-modules is denoted by (g, Dx )-qch.

Then we have the following result
Theorem 2.4. There are functors
(G, Dx)-wqch SN (é, Dx)-wqch — (g, D)-qch

The first one is a right closed embedding if G is connected, and the second one is
an equivalence.
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Proof. As in Theorem 1.5.4 a

Remark 2.5. As before one has
(9, Dx)-qch = Dx#U (g)-qch

This shows for example that (G,Dx)-wqch has enough injectives (as in corollary
1.5.6).

Now we concentrate on (G, Dx)-qch. We prove the following result.

Proposition 2.6. Assume that G is connected and (F,0) € (G, Dx)-wqch. Then
(F,0) € (G, Dx)-qch if and only if for all v € g the action of v on F coincides with
the action of D, on F. Le for all open affine U C X and for all f € F(U) one has

D, f=uvf.

Proof. We have to express the fact that 0 : diF — djF is Dg X Dx-linear, given
that it is Og X Dx-linear.

We recall that D(G) = O(G)[g] where we assume that g acts by left invariant
derivations on O(G). That is, if h € O(G), v € g then

v * h = Z h(l) <’U, h(2)>

Let v € g. It is sufficient to express the condition that 0 : diF — djF is compatible
with the action of all such v.
Let U C X be affine open, f € F(U), h € O(G). We have to study the condition

(11) P ((v@1)*0(h® f))=p"(0((v®1)* (h® [)))
Obviously
RHS(11) = ) (v h)fa) ® fia

so we concentrate on the left hand side of (11).
We have

(12) P ((v@1)x0(h® f)) =p"(v©1)xp*(0(h @ f))

(see lemma 2.7 for a precise statement of the principle we use here).

Recall that p*(v ® 1) is an element of D(G) ® D(X). To know precisely which
element we choose r ® s € O(G) ® Ox(U), and we compute p*(v ® 1) * (r ® s) on
the intersection dl_lU N dalU.

(13)  pel)x(res)=@el)*((res)jop)op  (see(18))
= Z v (rSs(1)) ® s(2)) ©

= Z vk (rSs(1))s ® 5(3)
(14) ,Z v*7)S5(1)8(2) @ 5(3) + (v * S5(1))5(2) @ 5(3)
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The first term of (14) is equal to (v*7) ® s, so we concentrate on the second term,

and more in particular on the subexpression ) (v * Ss(1))s(2). We find

Z(v * S5(1))8(2) = Zv * ((S5(1))8(2)) Z Ss(1)(v* 52))

= —Zss(l 5(2) (v, 5(3))

— _Z (v, 502))

= —Z v,e 8(1) 8(2)

—(v,51))
Hence we find that
(14) = (v*1r)® s — ZT@, S(1)) ® 5(2)

=Ww*r)Rs— ZT & (v, s(1))8(2)
=(W*r)@s+r®@D,*s

Finally we find that
pv®l)=v®1+1 D,

(It is possible to give easier proofs of this by looking at tangent vectors.)

Now we use (12). Since p*(8(h ® f)) = hi(f) is a section of diF = O K F, we

can write down how p*(v ® 1) acts on p*(6(h ® f)). We find

LHS(11) = (0@ 1+ 1@ Dy) * (> hf1) ® f12)
= v (hf2)) ® fi2) + hfr) @ Dy * f2)

So we find finally that (11) is equivalent to

Z(U *h)fy ® fo) = ZU * (hf1)) ® foy + hfay @ Dy fra)

which simplifies to

(15) Zh(v*fu))@f(z):*thu)@Dv*f(z)

Hence (11) is equivalent to having (15) for all h. However having (15) for all h
is clearly equivalent to having it for A~ = 1. Thus it is necessary and sufficient to

have :

(16) > vk f) @ foy=—>_ f1) ®Dyx fia

v act by left invariant derivations on O(G) and hence we have

LHS(16) = Y (v f)) @ fe2)
=Y fwlv. fo) & fis)
= fa) & (v, fo)) fis
=->_ fu@vfe
So finally we obtain that (11) is equivalent to having
(17) Zf(1)®vf(2) :Zf(l)®Dv*f(2)
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This is certainly true if v acts in the same way as D,,, and conversely by applying
e®1 to (17) we find vf = D, * f. O

We have used the following lemma.
Lemma 2.7. Assume that we have a commutative diagram of smooth k-schemes.

y -2, 27

I

X —X
where p is an isomorphism. Let F be a quasi-coherent Dx-module. Then according
to [1, VI.§4], Dy acts on d*F and Dz acts on e*F. Let U C Z be open and let
D € Dz(U). Define p*D by (p*D)(h) = D x (hop)op=t. Then for f € (e*F)(U)
we have the following identity in (d*F)(p~1U)

(18) p*(Dx* f)=p*Dxp*f
Proof. This is an exercise on the use of the chain rule which is left to the reader. [

Corollary 2.8. Assume G connected. Then the forgetful functor (G,Dx)-qch —
Dx-qch is a right closed embedding.

Proof. This is proved in a similar way as Theorem 1.5.4, using Proposition 2.6. [
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