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Abstract. We prove some results on G-equivariant OX - and DX -modules

on not necessarily affine spaces. For example we show that there are enough

injectives in the corresponding categories. We also prove the often used result
that for a (G,DX)-module to be G equivariant it is necessary sufficient that

the Lie algebra of G acts in the correct way.

1. G-equivariant quasi-coherent OX-modules

1.1. Notations. In this section we collect some facts concerning G-equivariant
quasi-coherent OX -modules. All of this is well-known, but is seems to be difficult
to find a systematic treatment in the literature.

Below k will be a base field. Unadorned tensor and fiber products will be over
k. X will be an arbitrary scheme over k and G will be a linear algebraic group
over k, acting on X. The category of quasi-coherent OX -modules will be denoted
by OX -qch.
O(G) is a Hopf algebra and its comultiplication, counit and antipode will re-

spectively be denoted by ∆, ε and S. e will be the unit element of G and the
corresponding maximal ideal of O(G) will be denoted by me. We will use the
Sweedler convention. I.e. if h ∈ O(G) then we write ∆h =

∑
h(1) ⊗ h(2).

1.2. Definitions and some functorial properties. We start with the following
diagram of objects and maps

(1) G×G×X

d0−→
d1−→
d2−→
G×X

d0−→
s0−→
d1−→
X

d0(g1, x) = g−11 x d0(g1, g2, x) = (g2, g
−1
1 x)

d1(g1, x) = x d1(g1, g2, x) = (g1g2, x)

s0(x) = (e, x) d2(g1, g2, x) = (g1, x)

Note that one has the following identities :

d20 = d0d1 d0s0 = id

d0d2 = d1d0 d1s0 = id

d21 = d1d2
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which express the fact the (1) is part of a simplicial scheme.
Below we will also need the following auxiliary maps

(2)

p : G×X → G×X : (g1, x) 7→ (g1, g1x)

p0 : G×G×X → G×G×X : (g1, g2, x) 7→ (g1, g2, g1g2x)

p1 : G×G×X → G×G×X : (g1, g2, x) 7→ (g1, g2, g1x)

which satisfy the following relations

d1p0 = pd1

d2p1 = pd2

Definition 1.2.1. A G-equivariant quasi-coherent OX -module is a pair (F , θ)
where F ∈ OX -qch and θ is an isomorphism d∗1F → d∗0F in OG×X -qch such that

d∗0θ ◦ d∗2θ = d∗1θ

s∗0θ = idF
(3)

The corresponding category is denoted by (G,OX)-qch.

If there is no possibility for confusion we will simply write F for (F , θ).

Example 1.2.2. If F = OX then we may take θ = id. Then (3) is obviously
satisfied.

If π : Y → X is aG-equivariant map then there exist functors Liπ
∗ : (G,OX)-qch→

(G,OY )-qch, Riπ∗ : (G,OY )-qch → (G,OX)-qch. The reason is that the corre-
sponding functors between OX -qch and OY -qch are compatible with (flat) base-
change.

For example π∗(F , θ) is given by (π∗F , θ′) where θ′ makes the following diagram
commutative

(id× π)∗d
∗
1F

(id×π)∗(θ)−−−−−−−→ (id× π)∗d
∗
0Fy y

d∗1π∗F
θ′−−−−→ d∗0π∗F

Here the vertical maps are the canonical identifications given by base-change.

1.3. Interpretation in terms of R-points. Let (F , θ) ∈ (G,OX)-qch and let
s : SpecR → Spec k be a k-algebra. Then any R/k-point ig : SpecR → G induces
an R-automorphism g : XR → XR.

Let us denote the map (ig, id) : XR = SpecR × X → G × X also by ig. Then
applying i∗g to θ : d∗1F → d∗0F yields a map i∗g(θ) : s∗F → (g−1)∗s∗F and the
second equation in (3) yields i∗e(θ) = ids∗F .

Let ih : SpecR → G be another R-point of G. Then applying i∗(g,h) to the first

equation of (3) yields

i∗gh(θ) = (g−1)∗(i∗h(θ))i∗g(θ)

This leads us to the following proposition

Proposition 1.3.1. The category (G,OX)-qch is equivalent to the category of
quasi-coherent sheaves F on X equipped with isomorphisms

qg : s∗F → (g−1)∗s∗F
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for each s : SpecR→ Spec k and for each R/k-point ig : SpecR→ G satisfying

qe = id

qgh = (g−1)∗(qh)qg
(4)

in such a way that the (qg)’s are compatible with base-change.

Proof. If (F , θ) is in (G,OX)-qch then we take qg = i∗g(θ).
Conversely, assume that we are given a set of (qg)’s. We take R = O(G). Then

if “id” denotes the “identity point” G = SpecR → G then iid is equal to the map
p : XR → XR (see (2)). We put θ = qid which goes from d∗1 to p∗−1d∗1F = d∗0F .

One easily verifies that this θ has the required properties. �

Remark 1.3.2. This proposition makes it easy to see that canonical objects in
OX -qch such as tangent bundles, sheaves of differential operators etc. . . are au-
tomatically in (G,OX)-qch.

1.4. Affine schemes. If X is affine then the elements of (G,OX)-qch have a simple
interpretation. Recall that rational (or “locally finite”) G-actions on a k-vector
space V are in one-one correspondence with coactions

l : V → O(G)⊗ V : v 7→
∑

v(1) ⊗ v(2)

via gv =
∑
v(1)(g

−1)v(2).
In particular the action of G on X corresponds to a coaction l : O(X)→ O(G)⊗

O(X) and therefore O(X) is a rational G-representation.
Let (F , θ) ∈ (G,OX)-qch. If f ∈ F(X) then we put l(f) = p∗θ(d∗1f) ∈

d∗1F(X) = O(G)⊗F(X).
By using the method employed in the proof of Theorem 1.5.4 below, or by direct

computation, one shows that

l : F(X)→ O(G)⊗F(X)

is a coaction of O(X) on F(X) and for a ∈ O(X), f ∈ F(X) one has l(af) =
l(a)l(f).

Furthermore, given l, one can reconstruct θ by θ(h⊗ f) = hp∗−1l(f).
Let (G,O(X))-mod be the category of O(X)-modules, equipped with a rational

G-action, compatible with the G-action on O(X). Then we have shown

Proposition 1.4.1. If X is affine then the categories (G,OX)-qch and (G,O(X))-mod
are equivalent. The equivalence is given by (F , θ) 7→ (F(X), l).

1.5. General schemes. The previous section gives a satisfying description of (G,OX)-qch
in the case that X is affine. Unfortunately, not every G-scheme may be covered
with affine G-schemes. In such a case one may find the objects in (G,OX)-qch
somewhat unpleasant to work with.

Furthermore, even if X is affine, the stalks of OX at fixed points of X are usually
not rational as G-representations. This shows that (G,OX)-qch is not closed under
some natural operations.

One possible solution is to embed (G,OX)-qch in the category of OX -modules
equipped with a G-action where G is considered as a discrete group [3]. However
this seems to be somewhat inelegant, and in any case it is only justified if G is
reduced and has a dense set of k-points.
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Below we sketch another approach that works well when G is connected. We
embed (G,OX)-qch in (Ĝ,OX)-qch where Ĝ is the formal group associated to G.

To be more precise let

O(Ĝ) = lim←−
n
O(G)/mn

e

which is a topological Hopf algebra.
A coaction of O(Ĝ) on F ∈ OX -qch is a k-linear sheaf map

l : F → O(Ĝ) ⊗̂ F = lim←−O(G)/mn
e ⊗F

satisfying the usual associativity conditions (here and below ⊗̂ denotes the com-
pleted tensor product).

Let (F , θ) be in (G,OX). We will show how one may use θ to construct a coaction

of O(Ĝ) on F . Let U ⊂ X be an affine open and let f ∈ F(U). Then l(f) =
p∗(θ(d∗1f)) is a section of (d∗1F)(p−1(G × U). Now p−1(G × U) is a neighborhood
of e× U and hence we may consider l(f) as a section of s−10 (d∗1F)(U).

Hence we have defined a map of sheaves on X :

l : F → s−10 (d∗1F)

s−10 (d∗1F) is embedded in O(Ĝ) ⊗̂ F and hence l also defines a map

l : F → O(Ĝ) ⊗̂ F

In the proof of Theorem 1.5.4 we will show that this indeed defines a coaction.
We may in particular apply this construction to (OX , id) to obtain a “canonical”

coaction

l : OX → O(Ĝ) ⊗̂ OX
and it is almost obvious that for a ∈ OX(U), f ∈ F(U) one has l(af) = l(a)l(f).
This motivates the following definition

Definition 1.5.1. A quasi-coherent (Ĝ,OX)-module is a pair (F , l) where F is in
OX -qch and

l : F → O(Ĝ) ⊗̂ F
is a coaction, compatible with the canonical coaction

l : OX → O(Ĝ) ⊗̂ OX
I.e. we require for U ⊂ X open, a ∈ OX(U), f ∈ F(U) : l(af) = l(a)l(f).

The category of quasi-coherent (Ĝ,OX)-modules is denoted by (Ĝ,OX)-qch.

Hence above we have constructed a functor

i : (G,OX)-qch→ (Ĝ,OX)-qch

which associates the pair (F , l) to the pair (F , θ). We will see in the proof of
Theorem 1.5.4 that if G is connected then i is fully faithful (and has other good
properties).

The advantage of working with (Ĝ,OX)-qch rather than with (G,OX)-qch is

that being in (Ĝ,OX)-qch is a local property. That is if (F , l) is in (Ĝ,OX)-qch

and U ⊂ X is open then (F |U, l |U) is in (Ĝ,OU )-qch (note that here we are in a

slight extension of the present context since O(Ĝ) coacts on OU , but this coaction
is no longer obtained from an action of G on U).
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Furthermore, to do calculations, one can use a variant of the Sweedler notation.
That is, for U ⊂ X affine open, f ∈ F(U) we write

(5) l(f) =
∑

f(1) ⊗̂ f(2)

where f(1) ∈ O(Ĝ), f(2) ∈ F(U). The only difference with the ordinary situation is
that (5) is now a, usually infinite, convergent sum.

For h ∈ O(Ĝ) we also put ∆(h) =
∑
h(1) ⊗̂ h(2).

Let us now denote by O(Ĝ)∗ the Hopf algebra

lim−→
n

(O(G)/mn
e )∗

Note that O(Ĝ)∗ is a real Hopf algebra, not just a topological one. We denote by

〈−,−〉 the natural pairing between O(Ĝ) and O(Ĝ)∗.

If (F , l) is in (Ĝ,OX) then we may construct a left action of O(Ĝ)∗ on F :

l : O(Ĝ)∗ ⊗F → F by

(6) l(φ⊗ f) =
∑
〈φ, Sf(1)〉f(2)

In particular we obtain a canonical left action of O(Ĝ)∗ on OX and the actions on

F and OX are compatible, in the sense that if a ∈ OX(U), f ∈ F(U), φ ∈ O(Ĝ)∗

then

l(φ⊗ af) =
∑

l(φ(1) ⊗ a)l(φ(2) ⊗ f)

Hence if we denote by (O(Ĝ)∗,OX)-qch the category of quasi-coherent OX -modules

equipped with a compatibleO(Ĝ)∗-action, then (6) defines a functor from (Ĝ,OX)-qch

to (O(Ĝ)∗,OX)-qch and it easy to see that this is an equivalence.

Let g = (me/m
2
e) ⊂ O(Ĝ)∗. g consists of primitive elements and hence it is

a Lie algebra. If we denote by (g,OX)-qch the category of quasi-coherent OX -
modules, equipped with a compatible g-action then restriction defines a functor
(O(Ĝ)∗,OX)-qch → (g,OX)-qch. If char k = 0 then O(Ĝ)∗ = U(g) [4] and hence
we obtain an equivalence.

Before we summarize our constructions in Theorem 1.5.4 below. We introduce
the following notion which will considerably shorten the statements of results fur-
ther on

Definition 1.5.2. A functor F : A → B between abelian categories is a right closed
embedding if F is exact and has a right adjoint G such that for the induced natural
transformations id → GF , FG → id one has that the first one is an isomorphism
and the second one is a monomorphism.

Lemma 1.5.3. Assume that F : A → B is a right closed embedding with right
adjoint G. Then

(1) F is fully faithful;
(2) The essential image of F is closed under subquotients and direct limits.
(3) If B has enough injectives then so does A.

If a right closed embedding F : A → B exists then informally we say that A is
a right closed subcategory of B. Note that in the terminology of [2] we would say
that A is a closed subcategory of B.
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Theorem 1.5.4. There are functors

(G,OX)-qch
i−→ (Ĝ,OX)-qch→ (O(Ĝ)∗,OX)-qch→ (g,OX)-qch

The first one is a right closed embedding if G is connected; the second one is an
equivalence and the third one is an equivalence if char k = 0.

Remark 1.5.5. One may introduce the sheaf of rings OX#O(Ĝ)∗. As a sheaf of

vectorspaces this is just OX ⊗O(Ĝ)∗ and the multiplication is given as follows : let

a, b ∈ OX(U), φ, ψ ∈ O(Ĝ)∗. Then

(a#φ)(b#ψ) =
∑

aφ(1)(b)#φ(2)(b)ψ

where we have written φ(1)(b) for l(φ(1) ⊗ b). It is easy to see that one has

(O(Ĝ)∗,OX)-qch ∼= OX#O(Ĝ)∗-qch

which realizes (G,OX)-qch as a right closed subcategory of the category of quasi-
coherent modules over a sheaf of rings (if G is connected).

Proof of Theorem 1.5.4. The only thing we still have to do is to prove that i has
the desired properties.

Let (F , θ) be in (G,OX)-qch and let l : F → O(Ĝ) ⊗̂ F be constructed as
above. We first have to show that l defines a coaction. Let f ∈ F(U). Applying
d∗0θ ◦ d∗2θ = d∗1θ to d∗21 f yields

(d∗0θ)(d
∗
2θ)(d

∗2
1 f) = (d∗1θ)(d

∗2
1 f)

Using the fact that d21 = d1d2, this yields

(d∗0θ)(d
∗
2(θ(d∗1f)) = d∗1(θ(d∗1f))

Applying p∗0 and using d1p0 = pd1 yields

(7) p∗0(d∗0θ)(d
∗
2(θ(d∗1f))) = d∗1(l(f))

We may rewrite the left hand side of (7) as follows :

LHS(7) = (p∗0 ◦ d∗0θ ◦ d∗2 ◦ p∗−1)(p∗(θ(d∗1f))

= (p∗0 ◦ d∗0θ ◦ p∗−11 ◦ d∗2)(l(f))

= (p∗0 ◦ p∗−11 ◦ p∗1 ◦ d∗0θ ◦ p∗−11 ◦ d∗2)(l(f))

= ((p−11 p0)∗ ◦ (d0p1)∗θ ◦ d∗2)(l(f))

= (pr∗23(p)∗ ◦ pr∗23(θ) ◦ pr∗13)(l(f))

= (1⊗ l)(l(f))

(8)

So finally we find

d∗1(l(f)) = (1⊗ l)(l(f))

Completing this relation in (e, e,X) yields that l is indeed coassociative. The other
relation we need is (ε ⊗̂ 1)l(f) = 1⊗ f , but this is easy.

Now we show that the coaction of O(Ĝ) on F is compatible with the coaction

of O(Ĝ) on OX obtained from (OX , id) ∈ (G,OX)-qch.
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Let a ∈ OX(U), f ∈ F(U). Then

l(af) = p∗(θ(d∗1(af))

= p∗(θ(d∗1a d
∗
1f))

= p∗(d∗1a θ(d
∗
1f))

= p∗(d∗1a)(p∗(θ(d∗1f))

= l(a)l(f)

Now we construct a right adjoint j : (Ĝ,OX)-qch → (G,OX)-qch to i. Let

(F , l) be in (Ĝ,OX)-qch. First we extend l to a O(Ĝ)-linear map θ̂ : O(Ĝ) ⊗̂ F →
O(Ĝ) ⊗̂ F .

Note that for U ⊂ X one has embeddings of d1(F)(d−11 (U)) and d0(F)(d−11 (U))

inside O(Ĝ) ⊗̂ F(U) (this uses the fact that G is connected). Let G ⊂ F be a
subsheaf in OX -qch. By running the computation (8) in reverse one sees that if for

all U ⊂ X affine one has θ̂(d∗1G(d−11 (U))) ⊂ d∗0G(d−11 (U)) then θ̂ restricts to a map
θ : d∗1G → d∗0G and the corresonding pair (G, θ) is an object of (G,OX)-qch. We
now let j(G, l) be the pair (G, θ), where G ⊂ F is maximal with the property that
θ exists. It is easy to show that j has the required properties. �

Corollary 1.5.6. Assume that X is quasi-compact and quasi-separated. Then
(G,OX)-qch has enough injectives.

Proof. The usual restriction-corestriction argument reduces us to the case that
G is connected. Then, by Theorem 1.5.4 and remark 1.5.5, (G,OX)-qch is a right

closed subcategory of OX#O(Ĝ)∗-qch and it is standard that the category of quasi-
coherent modules over a quasi-coherent sheaf of rings over a quasi-compact quasi-
separated scheme has enough injectives (see [1, Prop. VI.2.1] for the case of D-
modules). We then apply lemma 1.5.3. �

Remark 1.1. An interesting question is when (G,OX)-qch is closed under extensions

in (O(Ĝ)∗,OX)-qch. Comparison with the affine case suggest that this should be
true if char k = 0 and G is semisimple. However I have no proof of this.

2. G-equivariant DX-modules

In this section we treat G-equivariant quasi-coherent DX -modules. Our main
aim is to prove Proposition 2.6 below, which occurs frequently in the literature,
but as far as I know, each time without proof.

Below k will be an algebraically closed field of characterstic zero, X will be a
smooth k-scheme and G will be a linear algebraic group over k, which acts on X.
By DX we denote the sheaf of differential operators on X and by D(X) we denote
its global sections.

A G-equivariant quasi-coherent D-module is a pair (F , θ) where F is in DX -qch
and θ : d∗1F → d∗0F is in DG×X -qch satisfying d∗1θ = d∗0θ ◦ d∗2θ. Note that this
makes sense since both d∗1F and d∗0 lie in DG×X -qch [1, VI.§4].

The categoryG-equivariant quasi-coherentDX -modules is denoted by (G,DX)-qch.
If in the above pair (F , θ), θ only lies in OG�DX -qch then one says that (F , θ)

is a weakly G-equivariant quasi-coherent DX -module. The corresponding category
is denoted by (G,DX)-wqch.
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Proposition 2.1. The inclusion functor (G,DX)-qch → (G,DX)-wqch is right
closed.

Proof. Clear. �

We observe that if π : Y → X is a G-equivariant map of smooth k-schemes
and (M, θ) ∈ (G,DX)-(w)qch, (N , θ) ∈ (G,DY )-(w)qch then for all i, Hiπ!M,
Hiπ+M ∈ DX -qch, Hiπ!M, Hiπ+M ∈ DY -qch carry natural G-structures and
hence they define objects in (G,DX)-(w)qch and (G,DY )-(w)qch. This is because
these functors commute with (smooth) base change (see §1 for the corresponding
statement about (G,OX)-qch and (G,OY )-qch).

There is the following obvious analogue to Proposition 1.3.1

Proposition 2.2. The category (G,DX)-wqch is equivalent with the category of
quasi-coherent DX-modules F on X equipped with isomorphisms in DXR/R-qch

qg : s∗F → (g−1)∗s∗F
for each s : SpecR→ Spec k and for each R/k-point ig : SpecR→ G satisfying

qe = id

qgh = (g−1)∗(qh)qg
(9)

in such a way that the (qg)’s are compatible with base-change.

Our next aim is now to embed (G,DX)-wqch in a corresponding local category
(g,DX)-qch.

We start by observing thatDX itself lies (G,DX)-wqch (but not in (G,DX)-qch!).
To see this we have to define

qg : DXR/R → (g−1)∗DXR/R

satisfying (9). It will be more convenient however to define rg = g∗ ◦ qg. Note
that by definition, for every open U ⊂ XR, rg should be a map from DXR/R(U) to

DXR/R(g−1U). Condition (9) translates into rgh = rhrg and re = id.
For D ∈ DXR/R(U) we define rg(D) = g∗D, where by definition for every f ∈

OX(g−1U) one has (g∗D) ∗ f = D ∗ (f ◦ g−1) ◦ g (note the use of “∗” for the action
of a differential operator). It is clear that rg has the required properties.

Thus DX defines a corresponding object (DX , θ) in (G,DX)-wqch. As before let
id : G → G be the identity point. The automorphism of XO(G) corresponding to
id is p. According to the proof of Proposition 1.3.1, θ = qid. Hence by the above
definitions

(p∗ ◦ θ)(D) ∗ f = D ∗ (f ◦ p−1) ◦ p
for D ∈ DG×X/G(U), f ∈ OG×X(U) with U ⊂ G×X open. We conclude

l(D) ∗ f = (1⊗D) ∗ (f ◦ p−1) ◦ p
Now let f ∈ OX(U), D ∈ DX(U). One computes

l(D) ∗ (1 ⊗̂ f) = [(1⊗D) ∗ ((1 ⊗̂ f) ◦ p−1)] ◦ p

= (1⊗D) ∗ (
∑

Sf(1) ⊗̂ f(2)) ◦ p

= (
∑

Sf(1) ⊗̂D ∗ f(2)) ◦ p

=
∑

Sf(1)(D ∗ f(2))(1) ⊗̂ (D ∗ f(2))(2)
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Hence we obtain

(10)
∑

D(1) ⊗̂D(2) ∗ f =
∑

Sf(1)(D ∗ f(2))(1) ⊗̂ (D ∗ f(2))(2)
Recall that by Theorem 1.5.4 there is a natural action g on OX . This action is
by derivations and hence one obtains a natural map g → D(X). If v ∈ g then we
denote the corresponding differential operator by Dv. I.e. for f ∈ OX(U) one has
vf = Dv ∗ f .

To understand the coaction l better we look at the corresponding left action of
g on DX :

l : g⊗DX → DX : v ⊗D 7→
∑
〈v, SD(1)〉D(2) = −

∑
〈v,D(1)〉D(2)

Using (10) we find

l(v ⊗D) ∗ f = −
∑
〈v, Sf(1)(D ∗ f(2))(1)〉(D ∗ f(2))(2)

=
∑
−〈v, Sf(1)〉ε((D ∗ f(2))(1))(D ∗ f(2))(2) − ε(Sf(1))〈v, (D ∗ f(2))(1)〉(D ∗ f(2))(2)

=
∑
−〈v, Sf(1)〉(D ∗ f(2)) + ε(f(1))Dv ∗ (D ∗ f(2))

=
∑
−D ∗ (〈v, Sf(1)〉f(2)) +Dv ∗ (D ∗ ε(f(1))f(2))

= −D ∗ (Dv ∗ f) +Dv ∗ (D ∗ f)

= [Dv, D] ∗ f
So we find

l(v ⊗D) = [Dv, D]

Now we define some categories

Definition 2.3. (1) A quasi-coherent (Ĝ,DX)-module is a pair (F , l) where
F ∈ DX -qch and

l : F → O(Ĝ) ⊗̂ F
is a coaction compatible with the canonical coaction

l : DX → O(Ĝ) ⊗̂ DX
in the sense that if D ∈ DX(U), f ∈ F(U) then l(D ∗ f) = l(D) ∗ l(f).

The category of quasi-coherent (Ĝ,DX)-modules is denoted by (Ĝ,DX)-wqch.
(2) A quasi-coherent (g,DX)-module is a pair (F , l) where F ∈ DX -qch and

l : g⊗F → F : v ⊗ f 7→ vf

is a left action compatible with the canonical left action

l : g⊗DX → DX : v ⊗D 7→ [Dv, D]

in the sense that if v ∈ g, D ∈ DX(U), f ∈ F(U) then

v(D ∗ f)−D ∗ (vf)− [Dv, D] ∗ f = 0

The category of quasi-coherent (g,DX)-modules is denoted by (g,DX)-qch.

Then we have the following result

Theorem 2.4. There are functors

(G,DX)-wqch
i−→ (Ĝ,DX)-wqch→ (g,D)-qch

The first one is a right closed embedding if G is connected, and the second one is
an equivalence.
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Proof. As in Theorem 1.5.4 �

Remark 2.5. As before one has

(g,DX)-qch ∼= DX#U(g)-qch

This shows for example that (G,DX)-wqch has enough injectives (as in corollary
1.5.6).

Now we concentrate on (G,DX)-qch. We prove the following result.

Proposition 2.6. Assume that G is connected and (F , θ) ∈ (G,DX)-wqch. Then
(F , θ) ∈ (G,DX)-qch if and only if for all v ∈ g the action of v on F coincides with
the action of Dv on F . I.e for all open affine U ⊂ X and for all f ∈ F(U) one has
Dv ∗ f = vf .

Proof. We have to express the fact that θ : d∗1F → d∗0F is DG � DX -linear, given
that it is OG �DX -linear.

We recall that D(G) = O(G)[g] where we assume that g acts by left invariant
derivations on O(G). That is, if h ∈ O(G), v ∈ g then

v ∗ h =
∑

h(1)〈v, h(2)〉

Let v ∈ g. It is sufficient to express the condition that θ : d∗1F → d∗0F is compatible
with the action of all such v.

Let U ⊂ X be affine open, f ∈ F(U), h ∈ O(G). We have to study the condition

(11) p∗((v ⊗ 1) ∗ θ(h⊗ f)) = p∗(θ((v ⊗ 1) ∗ (h⊗ f)))

Obviously

RHS(11) =
∑

(v ∗ h)f(1) ⊗̂ f(2)

so we concentrate on the left hand side of (11).
We have

(12) p∗((v ⊗ 1) ∗ θ(h⊗ f)) = p∗(v ⊗ 1) ∗ p∗(θ(h⊗ f))

(see lemma 2.7 for a precise statement of the principle we use here).
Recall that p∗(v ⊗ 1) is an element of D(G) ⊗ D(X). To know precisely which

element we choose r ⊗ s ∈ O(G)⊗OX(U), and we compute p∗(v ⊗ 1) ∗ (r ⊗ s) on
the intersection d−11 U ∩ d−10 U .

p∗(v ⊗ 1) ∗ (r ⊗ s) = (v ⊗ 1) ∗ ((r ⊗ s) ◦ p−1) ◦ p (see (18))(13)

=
∑

(v ∗ (rSs(1)) ⊗̂ s(2)) ◦ p

=
∑

v ∗ (rSs(1))s(2) ⊗̂ s(3)

=
∑

(v ∗ r)Ss(1)s(2) ⊗̂ s(3) + r(v ∗ Ss(1))s(2) ⊗̂ s(3)(14)
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The first term of (14) is equal to (v ∗ r)⊗ s, so we concentrate on the second term,
and more in particular on the subexpression

∑
(v ∗ Ss(1))s(2). We find∑

(v ∗ Ss(1))s(2) =
∑

v ∗ ((Ss(1))s(2))−
∑

Ss(1)(v ∗ s(2))

= −
∑

Ss(1)s(2)〈v, s(3)〉

= −
∑

ε(s(1))〈v, s(2)〉

= −
∑
〈v, ε(s(1))s(2)〉

= −〈v, s(1)〉

Hence we find that

(14) = (v ∗ r)⊗ s−
∑

r〈v, s(1)〉 ⊗̂ s(2)

= (v ∗ r)⊗ s−
∑

r ⊗̂ 〈v, s(1)〉s(2)
= (v ∗ r)⊗ s+ r ⊗Dv ∗ s

Finally we find that

p∗(v ⊗ 1) = v ⊗ 1 + 1⊗Dv

(It is possible to give easier proofs of this by looking at tangent vectors.)
Now we use (12). Since p∗(θ(h⊗ f)) = hl(f) is a section of d∗1F = OG � F , we

can write down how p∗(v ⊗ 1) acts on p∗(θ(h⊗ f)). We find

LHS(11) = (v ⊗ 1 + 1⊗Dv) ∗ (
∑

hf(1) ⊗̂ f(2))

=
∑

v ∗ (hf(2)) ⊗̂ f(2) + hf(1) ⊗̂Dv ∗ f(2)

So we find finally that (11) is equivalent to∑
(v ∗ h)f(1) ⊗̂ f(2) =

∑
v ∗ (hf(1)) ⊗̂ f(2) + hf(1) ⊗̂Dv ∗ f(2)

which simplifies to

(15)
∑

h(v ∗ f(1)) ⊗̂ f(2) = −
∑

hf(1) ⊗̂Dv ∗ f(2)

Hence (11) is equivalent to having (15) for all h. However having (15) for all h
is clearly equivalent to having it for h = 1. Thus it is necessary and sufficient to
have :

(16)
∑

v ∗ f(1) ⊗̂ f(2) = −
∑

f(1) ⊗̂Dv ∗ f(2)

v act by left invariant derivations on O(G) and hence we have

LHS(16) =
∑

(v ∗ f(1)) ⊗̂ f(2)

=
∑

f(1)〈v, f(2)〉 ⊗̂ f(3)

=
∑

f(1) ⊗̂ 〈v, f(2)〉f(3)

= −
∑

f(1) ⊗̂ vf(2)

So finally we obtain that (11) is equivalent to having

(17)
∑

f(1) ⊗̂ vf(2) =
∑

f(1) ⊗̂Dv ∗ f(2)
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This is certainly true if v acts in the same way as Dv, and conversely by applying
ε⊗ 1 to (17) we find vf = Dv ∗ f . �

We have used the following lemma.

Lemma 2.7. Assume that we have a commutative diagram of smooth k-schemes.

Y
p−−−−→ Z

d

y e

y
X X

where p is an isomorphism. Let F be a quasi-coherent DX-module. Then according
to [1, VI.§4], DY acts on d∗F and DZ acts on e∗F . Let U ⊂ Z be open and let
D ∈ DZ(U). Define p∗D by (p∗D)(h) = D ∗ (h ◦ p) ◦ p−1. Then for f ∈ (e∗F)(U)
we have the following identity in (d∗F)(p−1U)

(18) p∗(D ∗ f) = p∗D ∗ p∗f

Proof. This is an exercise on the use of the chain rule which is left to the reader. �

Corollary 2.8. Assume G connected. Then the forgetful functor (G,DX)-qch →
DX -qch is a right closed embedding.

Proof. This is proved in a similar way as Theorem 1.5.4, using Proposition 2.6. �
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119–221.
[4] G. Hochschildt, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathe-

matics, vol. 75, Springer Verlag, Berlin, 1981.

Department of Mathematics, Limburgs Universitair Centrum, Universitaire Campus,
3590 Diepenbeek

E-mail address: vdbergh@luc.ac.be


