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Abstract. Let U , W be finite dimensional representations of G =
SL2. We give conditions under which (U ⊗ k[W ])G is a Cohen-
Macaulay k[W ]G-module. In particular we obtain an invariant
theoretic proof of the fact that the trace ring of generic 2 × 2
matrices is Cohen-Macaulay. [11]

1. Introduction.

Let G be a reductive algebraic group over an algebraically closed field
of characteristic zero and let W be a finite dimensional representation
of G. Then G acts on the polynomial ring k[W ] and the Hochster-
Roberts theorem tells us that k[W ]G is Cohen-Macaulay [8].

In this paper we study a question that looks very similar. Let U
be another finite dimensional representation of G. Then G acts on
the free k[W ]-module U ⊗ k[W ] and we ask whether (U ⊗ k[W ])G is a
Cohen-Macaulay module over k[W ]G.

Unfortunately the answer to this question is no in general. Stanley
gave a complete answer in the case that G is a torus. In this case there
are interesting connections with linear diophantine equations [15].

We give a simple example where (U⊗k[W ])G is not Cohen-Macaulay.

Example 1.1. Let G = Gm, R = k[X, Y, Z], M = k[X, Y, Z] and
Gm acts on R and M as follows : Let α ∈ Gm, f ∈ R and g ∈ M .
Then α.f = f(αX,αY, α−1Z) and α.g = α−1g(αX,αY, α−1Z). Hence
RG = k[XZ, Y Z] and MG = (XZ, Y Z)Z−1. Clearly MG is not a
Cohen-Macaulay module.

If χ is a generator for χ(Gm) then this example corresponds to U =
χ−1 and W = χ⊕ χ⊕ χ−1.

Let us also mention that if (U⊗k[W ])G is Cohen-Macaulay then the
Poincaré series of (U ⊗ k[W ])G satisfies a sort of functional equation.
In [16, Th. 4.3] Stanley gives a sufficient condition for the existence of
such a functional equation.

This paper was written while the author was visiting the Massachusetts Institute
of Technology. He hereby wishes to thank MIT for its kind hospitality.
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Our main motivation for studying (U ⊗ k[W ])G lies in trace rings of
generic matrices n× n-matrices. (See e.g. [3][11][12][14].)

Fix integers m and n and let Xk = (x
(k)
ij )1≤i,j≤n, 1 ≤ k ≤ m be m

n× n-matrices in Mn(k[x
(k)
ij ]). Let Gm,n be the k-algebra generated by

X1, . . . , Xm. This is called the ring of m generic n× n-matrices.
Gm,n has many fine properties. Among other things, it is an affine

prime PI-algebra. It is not Noetherian however. Let T (Gm,n) denote

the set of all traces of elements in Gm,n (as a subring of Mn(k[x
(k)
ij ])).

Then Tm,n = Gm,nT (Gm,n) is called the trace ring of m generic n× n-
matrices. (The notations Tm,n, Gm,n are due to L. Lebruyn.)

Tm,n is a affine Noetherian prime PI-algebra, finitely generated over
its center. The geometric meaning of Tm,n is that is parametrizes (in
a non-commutative way) the irreducible components of the semisimple
representations of dimension n of the free algebra k〈X1, . . . , Xm〉 [1][14].

There is a different description of Tm,n that is more suitable for us.
Let V be an n-dimensional k-vectorspace and let W = (V ∗ ⊗ V )m,
U = V ∗ ⊗ V and G = SL(V ). Then Tm,n = (U ⊗ k[W ])G.

After computations in low dimensions, L. Lebruyn conjectured that
Tm,n is always a Cohen-Macaulay module over its center. This was
proved by him in the case of 2×2-matrices using the theory of Clifford
algebras.

The trace ring of 2 × 2-matrices is a module of invariants for SL2.
Now the representation theory of SL2 is almost as simple as the rep-
resentation theory of a torus, hence it is natural to study the Cohen-
Macaulayness of (U ⊗ k[W ])G in this case first.

This is precisely what we do in this paper. We provide some tools
(Th. 3.1, Cor. 5.4 and Lemma 5.6) that make it possible to give a
positive answer for certain pairs U , W . In particular we recover the
Cohen-Macaulayness of the trace ring of generic 2× 2 matrices.

On the other hand we make the assumption that the unstable locus
in proj k[W ] is smooth. This puts a severe restriction on the possible
W ’s.

In general however one can always apply Theorem 3.1 to an em-
bedded resolution of the unstable locus. This is the subject of some
ongoing research on which I will report in a forthcoming paper.

2. Some preliminaries.

2.1. Homogeneous bundles. In this section we describe some of the
properties of homogeneous bundles. All these properties are well known
and easily proved by faithfully flat descent. I have not been able to
locate a convenient reference however.
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Here and in the next sections k will be an algebraically closed field
of characteristic zero. All schemes will be k-schemes. Fiber products
are over Spec k unless otherwise specified.

If G is an algebraic group and P is an algebraic subgroup of G then
the quotient morphism is faithfully flat [5, Expo. VIA, Th. 3.2]. If Y is
a scheme with a P action then G×P Y is defined informally as G×Y/P
where P acts as p(g, y) = (gp−1, py). Formally G ×P Y is defined by
putting appropriate descent data on G× Y .

Projection on the first factor defines a morphism G ×P Y → G/P
whose fibers are all isomorphic to Y . By construction G ×G/P (G ×P
Y ) ∼= G× Y .

If S is a scheme and H is a group scheme acting on S then let us de-
note by SchH/S the category of S-schemes with a H-action compatible
with the H-action on S.

Then G×P ? defines a functor SchP/{P} → SchG/(G/P ). To sim-
plify the notation we will often denote this functor by .̃

Let φ : X ′ → G be a G-equivariant map. Then x→ (φ(x), φ(x)−1x)
and (g, x) → gx define explicit maps between X ′ and G × X ′e which
are each others inverse.

Similarly if φ′ : X ′ → G, φ′′ : X ′′ → G and f : X ′ → X ′′ are G-
equivariant such that φ′′f = φ′ then the isomorphisms defined above
give rise to a commutative diagram :

(1) X ′
∼= //

f

��

G×X ′e
1×fe

��

X ′′ ∼=
// G×X ′′e

Hence taking the fiber of e defines an equivalence of categories between
SchG/G and Sch/e.

Now suppose that we are given φ : X → G/P , also G-equivariant and
assume that the fiber of {P} is Y . Then there is a canonical morphism
π : G ×P Y → X : (g, y) → gy which is an isomorphism on the fibers
of {P}. G×G/P π is a map of G-schemes which is an isomorphism on
the fibers of e, so by (1) G×G/P π is an isomorphism, but this means,
by faithfully flat descent, that π is also an isomorphism.

Hence˜actually defines an equivalence of categories between SchP/{P}
and SchG/(G/P ).

Finally assume that we are given a P -equivariant vector bundle E →
Y . Then by applying G×G/P ? together with faithfully flat descent one

sees that Ẽ → Ỹ is also a vector bundle. Furthermore one verifies that
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˜ is compatible with all the usual vector bundle operations f ∗, ⊗, Sn,
Λn, exact sequences, etc. . .

If E is given by its sheaf of sections E then we will use the notation
Ẽ to denote the sheaf of sections of Ẽ.

What we have shown above implies that a vector bundle on Ỹ is
uniquely determined by its fiber over x = {P}. I.e if F is a G-

equivariant vector bundle on Ỹ then (̃Fx) ∼= F . This fact will be
used heavily in the sequel.

2.2. Collapsing of homogeneous bundles. In the sequel we will
encounter the following situation : Y is a closed subvariety of a variety
X on which an algebraic group G acts. In general the union of all
conjugates of Y is only a constructable set (denoted by GY ). We will
need a criterion under which GY is nice.

Such a criterion is provided by Kirwan.
If P ⊂ G are algebraic groups then we will denote by p ⊂ g their

respective Lie algebras.
If G-acts on a scheme X then there is an induced action ζ → ζx from

g to the tangent space TxX for each x ∈ X.

Proposition 2.1. Let Y be a closed subvariety of a variety X on which
an algebraic group G acts. Assume that there is a parabolic subgroup
of G with the property that for all y ∈ Y

P = {g ∈ G | gy ∈ Y }
p = {ζ ∈ g | ζy ∈ TyY }

Then the natural map G×P Y → X : (g, y)→ gy is a closed immersion.

Proof. This fact can be distilled from the proof of [10, Th 13.6] �

3. The method.

Let G be a reductive algebraic group over an algebraically closed field
k of characteristic zero and let U be an irreducible and W an arbitrary
finite dimensional representation of G. (Assuming U irreducible is no
restriction since we can always analyze the irreducible components of
U separately.)

Define R = k[W ], M = U ⊗ k[W ], h + 1 = dimRG and d + 1 =
dimR = dimkW . Let X = projR and let Xu the locus of G-unstable
points in X. The defining ideal for Xu is given by the graded ideal
I = rad((R+)GR) in R. Let I be the corresponding sheaf of ideals in
OX . Obviously I and I are G-invariant.

The following criterion forMG to be Cohen-Macaulay is easily proved
:
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Theorem 3.1. If U ⊗ (Λd+1W )∗ does not occur as a G-representation
in Hj(Xu, (It/It+1)(l)) for all t, l and j = d − h, . . ., d then MG is
Cohen-Macaulay.

Proof. If d−h = 0 the there is nothing to prove, so we assume d−h ≥ 1.
A well known criterion for MG to be a Cohen-Macaulay RG module
is that H i

(R+)G(MG) = 0 for i = 0, . . ., h [15]. Now by a simple

generalization of [9, Lemma 4.5] H i
(R+)G(MG) = (H i

I(M))G = H i
I(U ⊗

R)G = (U ⊗H i
I(R))G which is non-zero if and only if U ⊗H i

I(R) does
not contain a trivial representation, i.e. if and only if U∗ does not occur
in H i

I(R). Now by definition

H i
I(R) = lim

→
ExtiR(R/I t, R)

Hence any representation that occurs in H i
I(R) occurs in at least one

ExtiR(I t/I t+1, R).
But by local duality applied to the localization ofR atR+ : Hd+1−i

R+ (I t/I t+1) =

HomR(ExtiR(I t/I t+1, R), J) where J = Hd+1
R+ (R) [7, Thm 6.3].

Let J ′ be the graded R-module defined by

J ′ = lim
→

Homk(R/(R
+)n, k)

then one computes (somewhat laboriously) from the definition

J = lim
→

Extd+1
R (R/(R+)n, R)

that J = (Λd+1W )∗ ⊗k J ′ as G-module.
Hence

Hd+1−i
R+ (I t/I t+1) = HomR(ExtiR(I t/I t+1, R), lim

→
Homk(R/(R

+)n, k))⊗ (Λd+1W )∗

= lim
→

Homk(ExtiR(I t/I t+1, R)⊗R/(R+)n, k)⊗ (Λd+1W )∗

So U∗ will not occur in ExtiR(I t/I t+1, R) if and only if (Λd+1W )∗ ⊗ U
does not occur in Hd+1−i

R+ (I t/I t+1).

But by [4, Ch III] Hd+1−i
R+ (I t/I t+1) is a quotient of the graded R-

module ⊕l∈ZH
d−i(X, It/It+1(l)) (if d − i ≥ 1 this is even an isomor-

phism).
It suffices now to note thatHd−i(X, It/It+1(l)) = Hd−i(Xu, It/It+1(l))

to complete the proof of 3.1. �

4. The description of the unstable locus.

Our aim is now to apply Theorem 3.1. For this we have to understand
the unstable locus in X. This is accomplished by the Hilbert-Mumford
criterion which we will briefly recall in this section.
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We keep the notations of the previous sections. In addition we define
X∗ = Spec k[W ] and X∗u = Spec k[W ]/I. The k-points of X∗ are in
one-one correspondence with the elements of the vector space W ∗.

If λ : k∗ → G is a one-parameter subgroup then we can choose a
basis in W ∗ such that the action of λ is diagonal. Hence λ is given
by z → diag(zr1 , . . . , zrd+1). If x = (x1, . . . , xd+1) ∈ W ∗ then one
defines m(x;λ) = min{rj | xj 6= 0}. In [13, Th. 2.1] Mumford proves
x ∈ X∗u ⇐⇒ m(x;λ) > 0 for some λ. This is the so-called Hilbert-
Mumford criterion.

By elementary theory of algebraic groups it follows that any one-
parameter subgroup of G can be factored through a maximal torus.
Since all maximal tori are conjugate we can write any one-paramater
subgroup of G as g−1λg where λ is a one-parameter subgroup of some
fixed maximal torus T .
X∗uλ = {x ∈ X∗ | m(x;λ) > 0} is clearly a linear subspace of X∗.

Since m(x; g−1λg) = m(gx;λ) we see that X∗ug−1λg = gX∗uλ . Hence

X∗u =
⋃
λGX

∗u
λ where λ runs over the one-parameter subgroups of T .

Projectivizing one obtains a similar statement Xu =
⋃
λGX

u
λ .

In the sequel we will restrict ourselves to G = SL(V ) where V is a
two dimensional k-vector space. The representation theory of SL(V )
is particulary simple. All irreducible representations of SL(V ) are of
the form SkV , k ≥ 0.

Lemma 4.1. Let G = SL(V ). Then X∗u = GX∗uλ and Xu = GXu
λ

where λ is given by z → diag(z, z−1).

Proof. A general λ is of the form z → diag(za, z−a) but it is immedi-
ately verified that there are only two different X∗uλ ’s, one corresponding
to a > 0 and one corresponding to a < 0. They are transformed into

each other by

(
0 1
1 0

)
�

Lemma 4.2. Let G = SL(V ) and assume that W contain only direct
summands (as G-representation) of the form V or S2V . Then there
is a Borel subgroup P of G acting on Xu

λ such that the natural map
G×P Xu

λ → GXu
λ = Xu is an isomorphism of varieties.

Proof. If G = SL(V ) one verifies immediately (using the Hilbert-
Mumford criterion) that the stabilizer of Xu

λ is a Borel subgroup con-

jugate to

(
∗ 0
∗ ∗

)
Furthermore the hypothesis for Proposition 2.1 are

easily checked in the case that W = V of W = S2V . But then they
are also true for direct sums of representations of this form. �
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5. The computation of It/It+1.

In this section we keep the notation of the previous sections. G
will now be SL(V ) where V is a two-dimensional vector space over
k. W is a finite dimensional G-representation containing only direct
summands of the form V or S2(V ). In section 4 we have seen that
Xu = GXu

λ
∼= G×P Xu

λ where Xu
λ is a linear subspace of X and P is a

Borel subgroup of G.
To soften the notation we will put Y = Xu

λ , S = G/P . There is a
natural map Xu ∼= G×P Xu

λ → G/P = S which will be denoted by φ.
Y will be identified with the fiber of some closed point x ∈ G/P . Xu

is a projective bundle on S and hence it will be of the form PS(E) for
some vector bundle E on S.

Let I ′ be the ideal sheaf of Y in X and let I ′ ⊂ R be the corre-
sponding graded ideal. Then I ′ is generated by some linear subspace
W ′ ⊂ W . Put W ′′ = W/W ′.

Finally let OX(1) be the line bundle associated to a hyperplane in
X. This bundle restricts to a line bundle on Xu which as usual is
denoted by OXu(1). In this case this leads to an annoying notation
conflict. Since Xu = PS(E) there is a twisting sheaf on Xu which is
classically denoted by OXu(1) too [6, pp 160]. To avoid confusion let
us momentarily denote this twisting sheaf by OXu(1)′. It is immedi-
ately verified that OXu(1) and OXu(1)′ agree on the fibers of φ. Hence
OXu(1)′ = OXu(1) ⊗ φ∗L [6, Ex II.5.9] for some line bundle L on S.
By changing E into E ⊗L we can then assume that OXu(1) = OXu(1)′.
This is the assumption that will be made in the sequel.

Lemma 5.1. With assumptions as above E = W̃ ′′

Proof. As usual E = φ∗OXu(1). In this case however we can take
the fiber for x ∈ S [4, par. 7]. Hence Ex = φ∗OY (1) and since Y =
proj k[W ′′] one sees that Ex = W ′′. Hence E = W̃ ′′ �

Before we continue we state a standard lemma.

Lemma 5.2. Let U ⊂ V ⊂ W be schemes such that U is a local
complete intersection in V and V is a local complete intersection in
W . Assume that the ideal sheaves defining U in V , V in W and U in
W are respectively I, J , K. Then there is an exact sequence of vector
bundles on U :

(2) 0→ J /J 2 ⊗OU → K/K2 → I/I2 → 0

where the maps are defined in the obvious way.
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Proof. It suffices to prove this in the case that U = SpecA, V = SpecB,
W = SpecC where C is local.

There are surjective maps C
π−→ B

π′−→ A associated to the inclusions
U ⊂ V ⊂ W . Let J = kerπ, I = kerπ′, K = ker(π′π). Clearly
K = π−1I.

Associated to (2) there is a complex of A modules

(3) 0→ J/J2 ⊗C A
i−→ K/K2 → I/I2 →→ 0

Now K/K2 ∼= K ⊗C C/K ∼= K ⊗C A, J/J2 ⊗C A ∼= J ⊗C B ⊗C A ∼=
J ⊗C A, I/I2 ∼= I ⊗C B/I ∼= I ⊗C A. Then one verifies that (3) is
obtained by tensoring the exact sequence

0→ J ↪→ K
π−→ I → 0

with A. Hence (3) will always be right exact. To show that i is injective
we compute J/J2⊗CA ∼= J/J2⊗C C/K = J/(JK+J2) = J/JK since
J ⊂ K.

Hence i will be injective iff J ∩ K2 = JK. It is easily verified
that is true using the fact that J and K are generated by regular
sequences. �

Proposition 5.3. With notations as above there is an exact sequence

(4) 0→ I/I2 → φ∗W̃ ′ ⊗OXu(−1)→ φ∗ΩS/k → 0

Proof. Since Y , Xu and X are smooth, Y and Xu are local complete
intersections. Hence we can use Lemma 5.2 to describe I/I2. Let mx

be the maximal ideal in OS defining x. Then Y in Xu is defined by the
ideal φ∗(mx). Hence (2) translated to the present situation reads as

(5) 0→ (I/I2)x → I ′/I ′2 → φ∗(mx)/φ
∗(m2

x)→ 0

Then one makes the following observations

• Since I ′ is generated by a linear subspace W ′ of W one computes
that I ′/I ′2 = φ∗(W ′)⊗OY (−1) = φ∗(W ′)⊗OXu(−1)x
• Since φ is flat φ∗(mx)/φ

∗(mx)
2 ∼= φ∗(mx/m

2
x) but mx/m

2
x
∼=

(ΩS/k)x [6, II.8.7]. Hence φ∗(mx)/φ
∗(m2

x)
∼= φ∗(ΩS/k)x.

Applying ˜ to (5) yields (4) �

Corollary 5.4. For t ≥ 0 and l arbitrary, there are exact sequences
(6)
0→ (It/It+1)(l)→ φ∗(StW̃ ′)(l−t)→ φ∗(St−1W̃ ′⊗ΩS/k)(l−t+1)→ 0

(In the case t=0 we follow the convention that S−1(?) = 0).
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Proof. Since Xu is smooth, Xu is a local complete intersection in X.
Hence It/It+1 ∼= St(I/I2).

The case t = 0 is a tautology. If t > 0 then (6) is obtained by taking
symmetric powers of (4) (using the fact that ΩS/k is a line bundle since
S ∼= P1). �

The sequences (6) will be used to compute the cohomology of It/It+1(l).
To do this we need another standard lemma.

Lemma 5.5. Let S be a scheme and let X = PS(E) where E is some
vector bundle of rank r on S. Let φ denote the structure map X → S
and let F be some other vector bundle on S. Then

H i(X, (φ∗F)(l)) =

H i(S,F ⊗OS
SlE) if l ≥ 0

0 if − r < l < 0
H i−r+1(S,F ⊗OS

(ΛrE)∗ ⊗OS
(S−l−rE)∗) if l ≤ −r

Proof. This follows from the Leray spectral sequence for φ and the fact
that

Rjφ∗(φ
∗F(l)) = F ⊗OS

SlE if j = 0
= 0 if j 6= 0, r − 1
= F ⊗OS

(ΛrE)∗ ⊗OS
(S−l−rE)∗ if j = r − 1

[6, Ex III.8.3,8.4]. Here as usual a negative symmetric power is to be
interpreted as 0. �

From this Lemma we deduce that the cohomology of the last two
terms in (6) only lives in degrees 0, 1, r − 1, r where r is the rank of
W ′′.

If we assume that G acts generically free on X then d − h = 3
and hence the cohomology in degrees 0, 1 has no influence on the
cohomology of It/It+1(l) in degrees d− h and higher.

So by Theorem 3.1 we only have to look in degrees r − 1, r.
To simplify the notation we define

Al,t = φ∗(StW̃ ′)(l − t)
Bl,t = φ∗(St−1W̃ ′ ⊗ ΩS/k)(l − t+ 1)

Lemma 5.6. Let i = 0, 1.
If t− l − r ≥ 0 then

Hr−1+i(Xu,Al,t) = H i(S, StW̃ ′ ⊗ (ΛrW̃ ′′)∗ ⊗ (St−l−rW̃ ′′)∗)

If t− l − r − 1 ≥ 0 then

Hr−1+i(Xu,Bl,t) = H i(S, St−1W̃ ′ ⊗ (ΛrW̃ ′′)∗ ⊗ (St−1−l−rW̃ ′′)∗ ⊗ ΩS/k)

Hr−1+i(Xu,Al,t) and Hr−1+i(Xu,Bl,t) are zero in the other cases.
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Proof. Apply Lemma 5.5 �

It remains to compute the cohomology of Ũ where U is some P
representation. In the case that U irreducible this is accomplished
by Bott’s theorems [2]. In the case that U is not irreducible we can
construct a filtration 0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U such that Ui+1/Ui
is one-dimensional.

Then there is a similar filtration 0 = Ũ0 ⊂ · · · ⊂ Ũn = Ũ such that

Ũi+1/Ũi = Ũi+1/Ui is a line bundle and hence the cohomology of Ũ

must be contained in the cohomology of ⊕Ũi+1/Ui.

Now let P =

(
∗ 0
∗ ∗

)
⊂ G and let T be the maximal torus(

z 0
0 z−1

)
in G. Then the character group of T is generated by

the character χ :

(
z 0
0 z−1

)
→ z.

We will identify χ with a one-dimensional representation of P . Then
one easily verifies that the one-dimensional subquotients of W ′′ are of
the form χ, χ2 and the one-dimensional subquotients of W ′ are of the
form χ−2, χ−1, 1.

Also using the fact that (ΩS/k) = mx/m
2
x [6, II.8.7] we verify that

(ΩS/k)x = χ̃−2. Hence the direct summands as G-module of the coho-
mology of Al,t and Bl,t are among the direct summands of the cohomol-
ogy of certain tensor powers of χ̃. Furthermore since χ is dominant and
a generator of χ(T ) we obtain as a trivial application of Bott’s theory
[2] that χ̃ = OS(1) with some suitable G-action and H0(S, χ̃n) = SnV .

We will now use this method in the case that W = (S2V )m. This
leads to the main application of this paper. It is clear however that
similar computations can be made in more general cases.

Theorem 5.7. Let W = (S2V )m where m ≥ 2. Then (SjV ⊗ k[W ])G

is a Cohen-Macaulay k[W ]G-module if 0 ≤ j ≤ 2 ∗m− 3 or if j is odd.

Proof. First note that r = m in this case.
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We list the one-dimensional subquotients of the vector bundles oc-
curring in Lemma 5.6

StW̃ ′ χ̃−2t, χ̃−2t+2, . . . , χ̃−2, 1

ΛrW̃ ′′ χ̃2r

St−l−rW̃ ′′ χ̃2(t−l−r)

St−1W̃ ′ χ̃−2t+2, χ̃−2t+4, . . . , χ̃−2, 1

St−l−r−1W̃ ′′ χ̃2(t−l−r−1)

StW̃ ′ ⊗ (ΛrW̃ ′′)∗ ⊗ (St−l−rW̃ ′′)∗ χ̃2l−4t, χ̃2l−4t+2, . . . , χ̃2l−2t

St−1W̃ ′ ⊗ (ΛrW̃ ′′)∗ ⊗ (St−l−r−1W̃ ′′)∗ ⊗ ΩS/k χ̃2l−4t+2, χ̃2l−4t+4, . . . , χ̃2l−2t

Hence if t−l−r ≥ 0, t ≥ 0, i = 0, 1 then the indecomposable summands
of Hr−1+i(Xu,Al,t) are among

(7) H i(S,OS(2l − 4t)), . . . , H i(S,OS(2l − 2t))

Similarly if t− 1− l − r ≥ 0, t ≥ 1, i = 0, 1 then the indecomposable
summands of Hr−1+i(Xu,Bl,t) are among

(8) H i(S,OS(2l − 4t+ 2)), . . . , H i(S,OS(2l − 2t))

In the other cases Hr−1+i(Xu,Al,t) = 0, Hr−1+i(Xu,Bl,t) = 0.
If t− l− r ≥ 0 then we can write l = t− r− h, h ≥ 0. Plugging this

in (7) we see that Hr−1(Xu,Al,t) = 0.
On the other hand, by Serre duality and (7), the indecomposable

direct summands of Hr(Xu,Al,t) are among

H0(S,OS(4t− 2l − 2)) = S4t−2l−2V = S2t+2r+2h−2V
...

...
...

H0(S,OS(2t− 2l − 2)) = S2t−2l−2V = S2r+2h−2V

If t − l − 1 − r ≥ 0 then again l = t − 1 − r − h where h ≥ 0. In the
same way as above we see that Hr−1(Xu,Bl,t) = 0.

The indecomposable direct summands of Hr(Xu,Bl,t) are among

H i(S,OS(4t− 2l − 4)) = S4t−2l−4V = S2t+2r+2h−2V
...

...
...

H i(S,OS(2t− 2l − 2)) = S2t−2l−2V = S2r+2hV

Hence it is clear that SjV , for j = 0, . . . , 2r − 3 or j odd, does not
occur among the direct summands ofHr−1+i(Xu,Al,t), Hr−1+i(Xu,Bl,t)
where i = 0, 1. Hence these representations will also not occur in the
cohomology of It/It+1(l) by (6). It then follows from Theorem 3.1 that
(SjV ⊗ k[W ])G is a Cohen-Macaulay k[W ]G-module. �

Corollary 5.8. Tm,2 is Cohen-Macaulay
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Proof. It is well known that T2,2 is Cohen-Macaulay [3][12]. (This
follows also from (6) if one notices that in this case only the cohomology
of Bl,t is important by Theorem 3.1.) Hence we may assume thatm ≥ 3.

We have already mentioned that Tm,2 = (U ⊗ k[W ])G where U =
V ∗⊗V , W = (V ∗⊗V )m. But V ∗⊗V = k⊕S2V where k is the trivial
G-module. Then it is easy to see that Tm,2 is a polynomial ring over
T0
m,2 = (U ⊗ k[(S2V )m])G = k[(S2V )m]G ⊕ (S2V ⊗ k[(S2V )m])G.

Hence it suffices to prove our claim for (U ⊗ k[W ])G where W =
(S2V )m and U = k, S2V . But in these cases Theorem 5.7 applies. �
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