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Abstract : Given a family of separable finite dimensional extensions {Li}
of a field k, we construct a division algebra of dimension n2 over its center
which is freely generated over k by the fields {Li}.

0. Introduction

We fix a ground field k. This paper arose from the wish to understand
what restrictions, if any, there are on the collections of algebraic el-
ements in a division algebra of index n over a field extension K of
k. The example of Cohn’s work on skew field products suggested the
approach of studying the ring coproduct of a family of field extensions
{Li : i ∈ I} of k modulo the identities of n by n matrices. This study
is carried out in Section 2 subject to the results that are proved in
Sections 3 and 4. We show that there is a division algebra that de-
serves the name of a division algebra coproduct of index n, and we
describe its algebraic elements.

In order to prove that a prime polynomial identity algebra is a domain,
it is usually necessary to find a large number of homomorphisms from
the given algebra to division algebras of the correct index. In our
case, the problem is to find a division algebra D of index n of center
K ⊃ k such that Li ⊗k K embeds in D as a K-algebra. We solve this
problem in Section 3. Let D be a central division algebra over k of
index and order n. Let L be a separable extension of k of dimension
dividing n. We construct a field K ⊃ k such that L ⊗k K embeds
in the division algebra D ⊗k K. The construction is geometric and
the algebraic varieties we need are closely related to Brauer-Severi
varieties.

One consequence of the above stated results is that there exist division
algebras D and E of index n over some field K such that subfields of D
and E are the same, but the subgroup of the Brauer group generated
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by the classes of D and E is isomorphic to (G/nG )2. The referee
pointed out to us that B. Fein has constructed such examples where
K is a number field [4].

The other problem left in Section 2 to be dealt with in Section 4 is
the question of the polynomial identity degree of the ring coproduct of
the fields Li amalgamating k modulo the identities of n by n matrices.
Is it really n? If there are only two fields L1 and L2 both of which
are quadratic, the answer is no, because the ring coproduct itself is
known to have polynomial identity degree 2 [2]. However, in all other
cases, we show that the answer is yes.
This is a consequence of the following result. We prove that if L1 and
L2 are simple separable subalgebras of the central simple k-algebra S
of dimension n2 over k, and, if either L1 or L2 has dimension larger
than 2 over k, then there exists a unit u ∈ S such that L1 and Lu2
generate S as an algebra.

1. Notation and terminology

We work over the ground field k. A field extension K ⊃ k is said

to be regular if K ⊗k k is a field where k is the algebraic closure of
k, alternatively, K is the function field of an absolutely irreducible
variety.

If V is a vector space, [V : k] is its dimension. If D is a central division
algebra over k, [D : k] = n2, we say that n is the index of D. The
order of D is the order of the class of D, [D], in the Brauer group of
k. We say that the index of a central simple algebra S is the index of
the division algebra similar to S; if [S : k] = n2, we say that S has P.I.
degree n. Here P.I. stands for polynomial identity. If R is a prime P.I.
algebra, its P.I. degree is equal to that of its simple ring of fractions.

If R is an algebra over k, specR is the collection of prime ideals of R
equipped with the Zariski topology. If R is prime and has P.I. degree
n, the set of prime ideals p such that R/p has P.I. degree n is open
in the Zariski topology; it is denoted by specnR. R is said to be a
Jacobson ring if any prime ideal is an intersection of maximal ideals.
Any finitely generated P.I. algebra is Jacobson [9].
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Given a collection of k-algebras {Li : i ∈ I}, ∗kLi is the ring co-
product of the algebras Li amalgamating k; it represents the functor∏
i∈I Hom(Li,−) in the category of k-algebras.

If R is an algebra, (R)n denotes R/Pn where Pn is the ideal generated
by the evaluations of all polynomial identities of n× n -matrices.

If S is a central simple algebra, and E ⊂ S is a subalgebra, CS(E) is
its centralizer. S∗ is the group of units of S.

2. The division algebra coproduct of index n

The problem we shall be considering in this section is the following,
given separable field extensions {Li : i = 1→n} of finite dimension
dividing n over the common subfield k, is there a ’generic’ division
algebra of index n over some field extension K ⊃ k such that D
contains Li for i = 1 to m.

A general discussion of this problem will clarify the notion of generic
required.

Our first step in the construction of the generic division algebra is
the ring C = (∗kLi)n; here ∗kLi is the ring coproduct of the fields Li,
amalgamating the subfield k, modulo the identities of n×n-matrices.
In the case where there are just two fields L1 and L2 ⊃ k both of
which are 2-dimensional, Bergman has the following result [2].

Theorem 2.1. L1 ∗k L2 is a principal ideal domain of dimension 4
over its center which is isomorphic to a polynomial ring in one variable
over k.

This has the consequence that two quadratic field extensions can only
generate a division algebra of index 2, and the division algebra of
fractions of L1 ∗k L2 is a suitable candidate for a division algebra
coproduct of index 2 of L1 and L2 over k. This is misleading in two
respects. We shall see that if there are more than two fields, or if
one of the dimensions of the extensions is larger than two, then they
may generate division algebras of arbitrarily large index, and also
we shall see that (∗kLi)n is usually not prime. However, the first
difference is useful for us, and the second arises because we have not
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been sufficiently specific.

Consider C = (∗kLi)n; we do not know whether the nil-radical of C
is 0. However, it is not a worrying problem since we are interested
in specC, and, in particular, specnC. One knows that specnC is an
open subset of specC, and the results of Section 4 show that it is
non-empty except in the case of two quadratic extensions. We shall
assume from now on that we have excluded this case, since it has been
completely dealt with by Theorem 2.1. Our first aim is to find the
minimal primes of C that lie in specn(C). It is helpful to examine the
prime ideals of C ⊗k k where k is the separable closure of k, so we
begin by describing the connection between specC and spec(C ⊗k k).

Lemma 2.2. Let {Ai : i ∈ I} be a family of k-algebras, and let L ⊃ k
be an extension of fields. Then (∗kAi)n ⊗k L ' (∗LAi ⊗k L)n.

Proof : They represent the same functor in the category of L-algebras
satisfying the identities of n by n matrices.

Let G be the Galois group of k over k. The relationship between
specC and specC is given by the following lemma.

Lemma 2.3. Let A be an arbitrary k-algebra. Then specA =
spec(A ⊗k k)/G, that is, the points of specA correspond to orbits
of G on spec(A⊗k k). Further, specnA = specn(A⊗k k)/G.

Proof : This is well-known for finite Galois extensions, and the gen-
eral case follows by a standard direct limit argument.

Now we face the problem of describing specn(C ⊗k k); we call C =
C ⊗k k, Li = Li ⊗k k. Since C is a finitely generated P.I. algebra,
it is a Jacobson ring [9], that is, all prime ideals are intersections of
maximal ideals, which all have finite codimension in C. So, we look
at Ωn(C), the collection of maximal ideals of P.I. degree n. These
are represented by surjective k-maps φ : C → Mn(k), and two maps
represent the same point if and only if they are conjugate in Mn(k).
A map φ : C →Mn(k) is uniquely represented by a collection of maps
φi : Li → Mn(k). Since k is separably closed and each Li ⊃ k is
separable, Li ' kei1 × · · · × keimi

where {eij : i = 1→m, j = 1→mi}
are idempotents. The maps φi : Li → Mn(k) make V = k

n
into an
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Li-module so we may associate to each φ : C →Mn(k), a collection of
numbers {hij} such that [V (φ(eij)) : k] = hij. These numbers satisfy
the conditions Σjhij = n.

We consider C as a sheaf of rings over spec(Z(C)) where Z(C) is the
center of C. The image of specnC is an open subset U of specZ(C)
and the restriction of C to U is a sheaf of Azumaya algebras of index
n. We restrict our attention to this sheaf of Azumaya algebras.

Theorem 2.4. Let H = {hij : i = 1→m, j = 1→mi} be a collection
of numbers such that

∑
j hij = n, ∀i. Define WH to be the subset of

U where the rank of eij in the Azumaya algebra is hij. Then WH is
an irreducible component of U and U =

∐
HWH

Proof : The rank of an idempotent, in a sheaf of Azumaya alge-
bras, is constant on connected components. Hence WH is a union of
connected components. We consider the variety Pi parametrising ho-
momorphisms

∏mi
j=1 k → Mn(k) where we fix rk(eij) = hij. Then this

is a homogeneous space for PGln(k), Pi = (
∏mi
j=1 Glhij

(k))\Gln(k),
since all such homomorphisms are conjugate. WH is the open sub-
set of

∏
i Pi where the corresponding subalgebras of Mn(k) generate

Mn(k). Hence WH is irreducible.
It is clear that U =

∐
HWH . Of course WH may well be empty for a

given H.

This describes the set of minimal prime ideals in specnC, which is
homeomorphic to U ; they are parametrized by the set H = {H}
where H runs through all sets of the type described in Theorem 2.4.
We need to describe the Galois action on these minimal primes. Fix
an i; then G acts on

∏mi
j=1 k with fixed ring li. This induces an action

of G on the set H. By 2.3. we deduce :

Theorem 2.5. The minimal primes of specnC are parametrized by
the orbits of G on H, such that WH is non-empty for H a representa-
tive of the orbit. We illustrate this for a small example :

Consider C = (k(
√
a) ∗k k(

√
b) ∗k k(

√
c))2. In this case, H consists of

tables
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H =

h11 h12

h21 h22

h31 h32

 hi1 + hi2 = 2

If two different hij’s are two, then it is clear that WH is empty. There
are seven remaining possibilities 2 0

1 1
1 1

 ,
 0 2

1 1
1 1

 ,
 1 1

2 0
1 1

 ,
 1 1

0 2
1 1


 1 1

1 1
2 0

 ,
 1 1

1 1
0 2

 ,
 1 1

1 1
1 1


It is clear that the first six give three G-orbits and the last is another
G-orbit, so there are four minimal primes.

Now that we have begun to describe the minimal prime ideals of
(∗kLi)n = C, it is clear how we should modify our original require-
ments. We wish to find a division algebra D of index n over a field
K ⊃ k such that K ⊗k Li embeds in D, that is, Li and K are linearly
disjoint in D. In this case, we write n = mihi where mi = [Li : k]
and hi is an integer. We find on passing to D ⊗K K for K a sep-
arable closure of K that such a point lies above the minimal prime
corresponding to H = {hij : hij = hi}, which is clearly G-invariant.

Theorem 2.6. Let C = (∗kLi)n where {Li : i = 1→ m},
1 < [Li : k] = mi | n and assume that either m > 2 or mi > 2 for
some i. Let p be the minimal prime corresponding to H = {hij : hij =
hi = n

mi
}. Then C/p is a domain, and its division algebra of fractions,

Q(C/p), is of index n.

Proof : Theorem 3.8 shows that for some field K there is a central
division K-algebra of index n, D ⊃ K ⊃ k such that Li⊗kK embeds
in D, and then Theorem 4.1 shows that there is a non-empty open
subset of spec(C/p⊗k K) of points which map surjectively onto D.

Let q be such a point and consider the localization (C/p⊗kK)q which
is a local Azumaya algebra. On an open subset of spec(C/p ⊗k K),
we may assume that the center of (C/p ⊗k K)q is regular, and so,
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of finite global dimension. The same holds for the Azumaya algebra
(C/p⊗k K)q, which must be a domain by Walker’s theorem [12].
Hence C/p ⊗k K and C/p must be domains. The remark about the
index of Q(C/p) also follows.

We call Q(C/p) the division algebra coproduct of index n of {Li}
amalgamating k. We end this section by describing the elements of
Q(C/p) algebraic over k. First we note :

Theorem 2.7. Define Q(C/p) as in the foregoing theorem. The
center of Q(C/p) is regular over k.

Proof : It is the function field of the variety WH (see Theorem 2.4)
which was shown to be absolutely irreducible.

Finally we have constructed a division algebra containing any given
family of separable field extensions. It is of some interest to describe
the complete set of algebraic field extensions of k, that lie in Q(C/p).
The next theorem does this, and the proof is a sketch which the in-
terested reader may fill in.
The answer we obtain is independent of the P.I. degree, and co-incides
with the answer for the skew field coproduct (Theorem 9.3 of [10]).
For consequences of this condition, one may look at Chapter 9 in loc.
cit.

Theorem 2.8. Define Q(C/p) as in Theorem 2.6. Then the algebraic
extension L ⊃ k embeds in Q(C/p) if and only if hcfij[Lij : Li] = 1
where Li ⊗k L '

∏
j Lij.

Proof : We consider C ⊗k L ' (∗L(Li ⊗k L))n ' (∗L
∏
Lij)n. We

have the prime factor ring C/p⊗k L; it is prime because the center of
Q(C/p) is regular and hence Q(C/p)⊗kL is a simple algebra. We wish
to find its index. We begin by describing the ranks of the idempotents
in Li ⊗k L under the embeddings into Q(C/p)⊗k L.

Write Li ⊗k L =
∏
j Lij with corresponding idempotents {eij}, then

the rank of eij in Q(C/p)⊗k L must be n([Lij : L]/[Li : k]).
If hcf[Lij : Li] = 1, hcf{n[Lij : L]/[Li : k]} = hcf{n[Lij : k]/[Li :
k][L : k]} = hcf{n[Lij : Li]/[L : k]} = n/[L : k] which implies that
Q(C/p) ⊗k L ' Ml(S) for some simple algebra S where l = [L : k]
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and so L embeds in Q(C/p). Conversely, if hcf{[Lij : Li]} = t > 1,
then [L : k] = l = st for some integer s and by Theorem 3.10 there is
a division algebra D′ of index n/s over a regular extension of L such
that Lij embeds in Mrij (D

′) where rij = [Lij : Li]/t. This implies that∏
j Lij embeds in Ms(D

′) so that the rank of eij is n([Lij : L]/[Li : k]),
and so the corresponding point of (∗kLi)n lies above the prime p. It
follows that we have a map from (C/p)⊗k L to Ms(D

′) inducing the
correct map on

∏
j Lij. Since a general point above p gives an algebra

of P.I. degree n, we may adjust this to a surjective map from C/p⊗L
to Ms(D

′). Another application of Walker’s theorem allows us to
conclude that Q(C/p) ⊗k L ' Ms(D) for some division algebra D,
hence L does not embed in Q(C/p).

3. Geometric Methods

Let S be a central simple algebra over a field k of dimension n2. Since
S is a twisted form of Mn(k), there is a corresponding cohomology
class σ ∈ H1(G,PGln(k)) where G is the Galois group of the separa-
ble closure k over k. We shall be constructing a number of varieties
associated to S whose function fields have certain generic properties
and we begin by recalling a number of facts about the Brauer-Severi
variety. Our point of view will be that these varieties represent certain
functors from field extensions of k to the category of sets.

Consider the variety Pn−1 defined over the field k, Pn−1(L) is the
collection of 1-dimensional linear subspaces of Ln ' L ⊗k kn. By
Morita equivalence, we may regard Pn−1(L) as the collection of left
ideals of rank n in Mn(L) ' L ⊗k Mn(k). The first description gives
the universal line sub-bundle O(−1) on Pn−1 and this generates the
Picard group over any field extension of k.

The algebraic group PGln has a natural action on Pn−1 via the action
of Gln on kn or equivalently on Pn−1 via its action by conjugation
on Mn(k). We may define a twisted form Pn−1

σ defined over the field
k corresponding to the cohomology class σ in H1(G,PGln(k)). This
is the Brauer-Severi variety of S. Galois descent gives that Pn−1

σ (L)
is the set of left ideals of rank n in L ⊗k S. Pn−1

σ (L) is non-empty,
therefore, if and only if L ⊗k S ' Mn(L), which means that L is a
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splitting field for S and hence σ. So, Pn−1
σ ×k L ' Pn−1 ×k L.

If X is an irreducible variety over k, we define k(X) to be its function
field. We wish to know the kernel of the composite map Br(k) →
Br(X) → Br(k(X)) for a number of varieties X. If X is a smooth
variety, which will be the case in all our examples, the second map
Br(X) → Br(k(X)) is injective, therefore, it is enough to determine
the kernel of Br(k) → Br(X). The following result [1] allows us to
determine this.

Theorem 3.1. There is an exact sequence :

Pic(X)→ H0(G,Pic(X ×k k))
φ(X)→ Br(k)→ Br(X)

which is functorial in the variety X.

The middle map φ(X) is well-known for the Brauer-Severi variety. In
this case, Pic(Pn−1

σ ×k k) ' Pic(Pn−1 ×k k) is isomorphic to G with
generator O(−1), and the following result holds.

Theorem 3.2. φ(Pn−1
σ )(O(−1)) = [S]. Therefore, the kernel of the

map Br(k) → Br(Pn−1
σ ) is the subgroup generated by [S]. The same

holds for Br(k)→ Br(k(Pn−1
σ )).

Next, we discuss a mild generalization of Pn−1
σ briefly mentioned in

Artin [1]. The algebraic group PGln acts on Gr
(
n
m

)
, the Grassman-

nian space of m-dimensional subspaces of a vector space of dimension
n. We consider the twisted form Gr

(
m
n

)
σ

corresponding to the im-

age of σ in H1(G,Aut(Gr
(
n
m

)
×k k)). Since one may also regard

Gr
(
n
m

)
(L) as the space of left ideals of rank mn in Mn(L), we see

by Galois descent, that Gr
(
n
m

)
σ

(L) is the space of left ideals of rank

mn in S⊗k L. If m is co-prime to n, then it follows that Gr
(
n
m

)
σ

(L)

is non-empty if and only if L is a splitting field for S. It is more
interesting when 1 6= t = hcf{n,m}, then Gr

(
n
m

)
σ

(L) is non-empty

if and only if S ⊗k L 'Ms(S
′) where s = n

t
and S ′ is a central simple

L-algebra.

We may regard the function field of Gr
(
n
m

)
σ

as a generic partial

splitting field of S. This construction has also been studied by A.
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Blanchet [3].

We consider the Picard group of Gr
(
n
m

)
σ
×k k ' Gr

(
n
m

)
×k k. This

is isomorphic to G and this arises in the following way. Let V ⊂ kn

be an m-dimensional subspace, then ΛmV ⊂ Λmkn is a 1-dimensional
subspace of the fixed vector space Λmkn ' kN where N =

(
n
m

)
, the

binomial coefficient. This defines a map µ : Gr
(
n
m

)
→ PN−1, the

Plucker embedding, and this morphism induces an isomorphism on
Picard groups. We wish to determine the kernel of the map from Br(k)

to Br(Gr
(
n
m

)
σ
), and so we wish to find a version of the map µ from

Gr
(
n
m

)
σ

to some suitable Brauer-Severi variety. We consider some

related algebra constructions. This following discussion is another
point of view for Section 4 of Artin, [1].

Given a partition α = (α1, α2, ...) of the integer s, where α1 ≥ α2 ≥
· · ·, there is a corresponding representation of Gln; it is trivial if the
partition has more than n terms. We denote this representation by
Σα(kn). There is a corresponding algebra construction, Σα(Mn(k)) =
(Σα(kn))∗ ⊗k Σα(kn). This is not usually discussed on the grounds
of its triviality since it is simply Endk(Σ

α(kn)). However, it gains a
little interest from the observation that the action of Gln is actually
an action of PGln and we may construct the associated twisted form,
which we shall denote by End(Σα(kn))σ. Artin’s discussion shows that
its class in Br(k) is s[S]. Our interest is in the case End(Λm(kn))σ.

We consider the Plucker embedding in terms related to the preceding
paragraph. A left ideal of rank mn in Mn(k) is an embedding (kn)∗⊗k
V → (kn)∗ ⊗k kn where V is km. Applying Λm gives an embedding
Λm((kn)∗)⊗ Λm(V ) = Λm(kn)∗ ⊗k k ↪→ Λm((kn)∗)⊗k Λm(kn).
Galois descent along the co-cycle σ gives a left ideal in End(Λm(kn))σ⊗k
L of rank

(
n
m

)
associated to a left ideal of rank mn in S ⊗k L. So,

the Plucker embedding gives by Galois descent, a map µ′ : Gr
(
n
m

)
σ
→

P(Λm(kn))σ where P(Λm(kn))σ is the Brauer-Severi variety of End(Λm(kn))σ.
The next theorem follows simply.

Theorem 3.3. The kernel of the map from Br(k) to Br(Gr
(
n
m

)
σ
) is

generated bym[S], which is the image of µ′∗(O(−1)) under φ(Gr
(
n
m

)
σ
).
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Proof : By Theorem 3.1, it is enough to compute
φ(Gr

(
n
m

)
σ
) : H0(G,Pic(Gr

(
n
m

)
σ
×k))→ Br(k). We have the follow-

ing commutative diagram :

H0(G,Pic(P(Λm(kn))σ × k)) −→ Br(k)y ‖
H0(G,Pic(Gr

(
n
m

)
σ
× k)) −→ Br(k)

Since P(Λm(kn))σ is the Brauer-Severi variety of an algebra of class

m[S] in the Brauer group and the map µ′ : Gr
(
n
m

)
σ
→ P(Λm(kn))σ

induces an isomorphism on Picard groups over k, the result follows.

Given a variety X defined over a finite separable field extension L ⊃ k,
Weil defines a variety, X↓L

k
, the restriction of X from L to k, defined

over k such that X↓L
k
(K) = X(L ⊗k K). In this statement and in

future similar statements we shall assume that L⊗kK is a field since
this simplifies our statements; it is not hard, but it is tedious, to keep
track of the rank of idempotents in future statements.

Our interest in this construction arises from the following result.

Theorem 3.4. Assume that L ⊃ k is a separable field extension
of dimension t, that S is a central simple k-algebra of dimension n2,
where n = mt for integral m and t. Assume that K ⊗k L is a field.
Then (Gr

(
n
m

)
σ
×kL)↓L

k
has a point in the field K if and only if L⊗kK

embeds in S ⊗k K.

Proof : (Gr
(
n
m

)
σ
×kL)↓L

k
has a point in K if and only if (Gr

(
n
m

)
σ
×k

L) has a point in L⊗kK. This holds if and only if S⊗kL⊗kK 'Mt(S
′)

for some central simple L⊗kK-algebra S ′. But this holds if and only
if L⊗k K embeds in S ⊗k K.

We may regard the function field of (Gr
(
n
m

)
σ
×k L)↓L

k
as a generic

field F such that F ⊗k S contains F ⊗k L. We wish to know that if
S is actually a division algebra then F ⊗k S is still a division algebra;
in a subsequent paper [11], we shall actually prove this. Here we shall
remain content with showing that the kernel of the map from Br(k)

to Br((Gr
(
n
m

)
σ
× L)↓L

k
) is trivial, and so, if S is a central division

algebra of order and index n, it remains a division algebra. This is
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good enough to give us a way to embed L into a division algebra over
some regular extension of k, as we wanted.

In order to compute the kernel of the map from Br(k) to Br(X↓L
k
) for

a variety X over L, we need to be able to calculate the G-invariant
invertible sheaves in Pic(X↓L

k
× k). For this we need an explicit de-

scription of X↓L
k
.

Let H be the Galois group of k over L, let σi : L → Li ⊂ k for
i = 1→ t be the embeddings of L in k where t is the dimension of L
over k. We form the variety X ′ =

∏t
i=1Xi×Li

k where Xi is the variety
over Li corresponding to X over L by the isomorphism σi. Then G
has an action on X ′, extending its action on k and X ′ ' (X↓L

k
)×k k

which defines X↓L
k

as the fixed points under G. We calculate the

Picard group of X↓L
k
× k from this at once. We say that a variety X

is geometrically rational if X ×k k is rational.

Theorem 3.5. Let X be a projective geometrically rational variety.
Then Pic(X↓L

k
× k) ' ⊕ti=1 Pic(X ×L k). Under this isomorphism,

H0(G,Pic(X↓L
k
× k)) is isomorphic to H0(H,Pic(X ×L k)).

Proof : X↓L
k
× k ' ∏t

i=1Xi ×Li
k, so the first result follows since

Pic(X×Y ) = Pic(X)⊕Pic(Y ) if X is rational. In fact, as G-module,
Pic(X↓L

k
× k) ' Pic(X ×L k) ⊗GH GG. The second result follows

from this latter description.

Theorem 3.6. Let S be a central simple algebra of dimension n2.
Let n = mt for integers m and t. Let L ⊃ k be a separable field
extension of dimension t over k. Let Y = (Gr

(
n
m

)
σ
×k L)↓L

k
. Y is

an absolutely irreducible variety, so its function field k(Y ) is regular
over k. Br(k) embeds in Br(k(Y )), furthermore L⊗k k(Y ) embeds in
S⊗k k(Y ). If S = D is a division algebra whose order equals its index
n, then D ⊗k k(Y ) remains a division algebra.

Proof : There is a natural map from Gr
(
n
m

)
σ

to (Gr
(
n
m

)
σ
×k L)↓L

k

given by (Gr
(
n
m

)
σ
×k L)i ' Gr

(
n
m

)
σ
× Li. Over k, this becomes

the diagonal map from Gr
(
n
m

)
to
∏t
i=1Gr

(
n
m

)
. The G-invariant line

bundles on
∏
i=1Gr

(
n
m

)
for the action giving descent to (Gr

(
n
m

)
σ
×

12



L)↓L
k

are generated by O(−1) × · · · × O(−1), and this pulls back to

O(−t) on Gr
(
n
m

)
which is Gr

(
n
m

)
σ
× k. By Theorem 3.3, the image

of this in Br(k) is mt[S], and the same holds for the generator of the

G-invariant invertible sheaves on (Gr
(
n
m

)
σ
× L)↓L

k
by functoriality.

But if n = mt, this class is trivial. It follows that in this case Br(k)

embeds in Br(Y ) and hence Br(k(Y )) where Y = (Gr
(
n
m

)
σ
× L)↓L

k
.

The last sentence follows since the index is always at least the order,
and can only drop under extension.

In a subsequent paper, [11] we will remove the flaw from this theo-
rem by showing that the index always remains constant under this
construction. One consequence of such a theorem is that for every di-
vision algebra D over k, there is an extension field F such that D⊗kF
is a cyclic division algebra.

We give some simple consequences of Theorem 3.6.

Theorem 3.7. Let D be a division algebra of index and order n. Let
{Li : i ∈ I} be a possibly infinite set of separable extensions of k such
that the dimension of Li over k divides n. Then there exists a regular
field extension F of k such that D ⊗k F is a division algebra and
Li ⊗k F embeds in D ⊗k F . Also, we may ensure that Br(k) embeds
in Br(F ).

Proof : Apply transfinite induction and Theorem 3.6.

Theorem 3.8. Let {Li : i ∈ I} be a family of separable field ex-
tensions of k dimension dividing n. Then there exists a regular field
extension F of k and a central division F -algebra D of index and order
n such that Li ⊗k F embeds in D for each i. Further, we may ensure
that Br(k) embeds in Br(F ).

Proof : First, set D0 to be the generic division algebra of index n. Its
center, C, is unirational and hence regular over k and Br(k) embeds
in Br(C), so each Li ⊗k C is a field. Now apply Theorem 3.7.

It has been a question for some time whether two central division
algebras over a field F having the same collection of subfields must
generate the same subgroup of the Brauer group. We can do worse
than that.

13



Theorem 3.9 : There exists a field F and two division algebras
of index n,D and E, such that the subgroup of the Brauer group
generated by D and E is isomorphic to Cn × Cn, and every field
extension of F of dimension dividing n embeds in both D and E.

Proof : We find some field k of characteristic 0 having two division
algebras D0, E0 of index n such that their classes generate a subgroup
isomorphic to Cn × Cn in Br(k). We apply Theorem 3.8 alternately
to D0 and E0 and take the union.

By being careful about our unions, it is possible to find a field F
containing a given field k such that Br(k) embeds in Br(F ) and every
central division algebra over F contains any field extension of F of
dimension dividing the index of the division algebra. We leave this as
an exercise for a logic-minded reader.

Finally, we prove the technical result we needed in Section 2 to de-
scribe the commutative algebraic subfields of the division algebra co-
product of index n.

Theorem 3.10. Consider {(Li, ni), i ∈ I, Li a finite separable exten-
sion of k of dimension dividing nni}. Then there exists a regular field
extension F of k, and a central division algebra D ⊃ F of index n
such that Li ⊗k F embeds in Mni

(D). Further, we may insure that
Br(k) embeds in Br(F ).

Proof : This is proved in the same way as Theorem 3.8 using a
generalized version of Theorem 3.7. We leave the details to the reader.

4. Generators for division algebras

Theorem 4.1. Let S be a central simple algebra over an infinite field
k, and let E and F be simple separable subalgebras. Let [S : k] =
n2, [E : k] = e, and [F : k] = f . Then there exist conjugates E ′ and
F ′ of E and F respectively that generate S over k if e, f ≥ 2 and one
of them is larger than 2. If e = f = 2, then conjugates of E and F
generate S if and only if n = 2.

Proof : We refer the reader to Kac [6] for undefined terms in the
following proof. We deal first with the case where E and F are sep-

14



arable field extensions in the division algebra D. Over the algebraic

closure k of k, we are considering copies of k
e

and k
f

embedded in

Mn(k) so that minimal idempotents in k
e

all have rank n
e

and minimal

idempotents in k
f

have rank n
f
. This determines a collection of e+ f

subspaces of kn by taking the images of the minimal idempotents.
The dimension vector of this collection is

(n,
n

e
, . . . ,

n

e︸ ︷︷ ︸
e copies

,
n

f
, . . . ,

n

f︸ ︷︷ ︸
f copies

).

Conversely, given a collection of subspaces in general position of this
dimension vector, the e subspaces of dimension n

e
will be linearly in-

dependent and determine an embedding of k
e

in Mn(k) via the pro-

jections on the subspaces. Similarly, we have an embedding of k
d

in

Mn(k). The endomorphism ring of this collection of subspaces will be

the centralizer of the algebra generated by k
e

and k
f
.

We may apply a theorem of Kac to determine this endomorphism ring.
If one of e and f is greater than 2, the corresponding dimension vector
is a root for the associated quadratic form and lies in the fundamental
region for the action of the Weyl group of the quadratic form on the
Tits cone. Moreover it is not isotropic so the endomorphism ring of a

generic collection of subspaces is k. This implies that the centralizer
of the subalgebra generated by E and F in general position in D is k

since the k-points of D∗ ×D∗ are dense in the k-points. Hence these
E and F generate D.

Note that if e = f = 2, then we have to consider representations of
the 4-subspace quiver of dimension vector

n
2

↓
n
2
→ n ← n

2

↑
n
2

15



This is a root in the fundamental chamber, which in this case is
isotropic. There is no representation of trivial endomorphism ring,
except when n = 2, which agrees with our previous discussion.
Next we deal with arbitrary simple separable algebras. All pairs of
central simple algebras contain a pair of commutative separable al-
gebras for which we already know the result, except in the case of
two quaternion algebras, or a quaternion algebra and a quadratic ex-
tension; so it is enough to deal with the case where E is a central
quaternion algebra and F a quadratic extension.

A k-point determines a embedding of M2(k) and k×k in Mn(k). Then

the idempotents e11, e22 in M2(k) and the idempotents in k×k deter-

mine 4 subspaces of dimension n
2

in k
n
. Further, e12 determines a map

from the first to the second subspace. Thus we have a representation
of the quiver :

•
↙ ↓

• → • ← •
↑
•

of dimension vector
n
2

↙ ↓
n
2
→ n ← n

2

↑
n
2

Conversely, given a general representation of this dimension vector,
the first two subspaces will be linearly independent and the arrow be-
tween them will be represented by a isomorphism so that the projec-
tions on the subspaces together with this isomorphism and its inverse

determine an embedding of M2(k) into Mn(k); further, the second
pair of subspaces will also be linearly independent which determine

an empbedding of k
2

into Mn(k).
The endomorphism ring of this representation will be the centraliser
of these subalgebras. However the dimension vector lies in the fun-
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damental chamber, and is not isotropic, so by Kac [6], a general rep-

resentation has endomorphism ring k. Again, we deduce that a good
pair of conjugates of E and F generate D.
Since every pair of simple separable algebras contains either a pair
of commutative separable algebras or else a quaterion algebra and
a quadratic extension we have dealt with the case where S = D, a
division algebra.

We pass to the opposite extreme. If we have embeddings ofMa(k
b
) and

Mc(k
d
) into Mn(k) such that the ranks of the central idempotents in

each separable algebra are constant, then this arises by field extension
from the previous case (possibly after a change of algebraically closed
field).
Since a general pair of conjugates of E and F generate D and the
dimension of the algebra generated is constant and maximal on an

open subset, we deduce that we may find conjugates of Ma(k
b
) and

Mc(k) which generate Mn(k).

Finally, in the general case, the k-points of S∗ × S∗ are dense in the

k-points. Hence, there is a k-point where the dimension of the algebra
generated is maximal and so there are conjugates of E and F which
generate S.

We will use this point of view to show that a similar result cannot
hold for semisimple subalgebras of a central simple algebra.

We consider k2 and k3 embedded in M4(k) so that the minimal idem-
potents have ranks (3,1) and (2,1,1) in the two cases. As in the pre-
ceding discussion, we are looking at a collection of five subspaces of
k4 with dimension vector (4,3,1,2,1,1). One may show that if the sub-
spaces are in general position this decomposes as a direct sum of a col-
lection of subspaces of dimension vector (1,1,0,1,0,0) and (3,2,1,1,1,1).
From this one may prove that the subring generated in general position
by a copy of k2 and a copy of k3 having these ranks on idempotents
is k ×M3(k).
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