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Abstract : Let D and E be central division algebras over k; let K be the
generic splitting field of E; we show that the index of D ⊗k K is the minimum
of the indices of D ⊗ E⊗i as i varies. We use this to calculate the index of D
under related central extensions and to construct division algebras with special
properties.

0. Introduction

A question that seems not to have been discussed is the following. Let D and
E be central division algebras over a field k; let K be the function field of the
Brauer-Severi variety, Br-S(E), what is the index of D⊗kK? It is this question
that we shall answer. We show that it is the minimum of the indices of D⊗E⊗i
as i varies.
Section 1 contains two proofs of this result. The first proof gives a lower bound
for the index of D ⊗k K where K is the function field of any variety over k,
and this bound yields the result we want. The second proof uses the K-theory
of the Brauer-Severi variety, Br-S(E). Quillen [6] shows that K∗(Br-S(E)) '
⊗n−1
i=0 K∗(E

⊗i) where n is the index of the division algebra E. We make sense of
K∗(D ⊗k Br−S(E)) which we show is isomorphic to ⊕n−1

i=0 K∗(D ⊗k E⊗i), and
this result yields the main theorem very quickly.
Section 2 is devoted to consequences of this result. Thus, if D is a division
algebra of index pt for some prime p, and K is the function field of the Brauer-
Severi variety of Dps

, s > 0, then D ⊗k K is still a division algebra.
Here, we should note that D⊗m denotes the central simple algebra

D ⊗D ⊗ · · · ⊗D
m times

and Dm denotes the division algebra Morita equivalent to D⊗m. We will never
use the notation Dm in this sense when m = 0, so that no confusion with the
opposite algebra can arise.
Refinements of the result above show simply that the generic division algebras
of index pt and exponent ps for s > 1 are indecomposable for all primes p. This
application was pointed out by David Saltman.
We discuss the behavior of the index of D under other generic central extensions;
thus if the index of D is n, it is possible to find a field K(m) ⊃ k such that
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D ⊗k K(m) has index m for any given divisor m of n.
Again there is a field K ⊃ k such that D ⊗k K is a cyclic division algebra (see
the discussion after 2.6).
Our last example is a pair of division algebras D and E of index p for any odd
prime such that D ⊗ E0 has index p2 but D ⊗ Ei has index p for all i 6≡ −1, 0
mod p. Thus D and E have no subfield in common. This complements a result
of Tignol and Wadsworth [8].

1. The main result

We begin by recalling some relevant geometric facts and defining the numerical
invariant we require.
Let k be the separable closure of k. If X is a scheme defined over k then we
will denote X ×k k by X. If µ : X → Y is a map between k-schemes and F is
a quasicoherent sheaf on X then µ and F are defined similarly.
Let Y be an algebraic variety over k, not necessarily projective and let G be the
Galois group of k/k. The Hochschild-Serre spectral sequence for etale cohomol-
ogy [5, theorem III 2.20, remark 2.21] gives an exact sequence :

0→ Pic(Y )→ PicG(Y )
φ(Y )→ Br(k)→ Br(Y /Y )→ H1(G,Pic(Y ))

which is functorial in Y . PicG(Y ) is the group of G-invariant line bundles on
Y , and Br(Y /Y ) is that subgroup of Br(Y ) split by Y .
Here, and in the sequel, a G-invariant line- or vector bundle will be one that is
invariant up to isomorphism.
If L is a representative of a G-invariant class in Pic(Y ), and Γ(L) is of dimension
n, then as in the proof of [4, Thm 3], φ(Y )(L) = −[S] where S is a central simple
k-algebra of dimension n2 over k. (Note that in loc. cit. it is assumed that Y is
smooth projective, but this is not used.)
We restrict our considerations to X, a smooth projective variety of dimension
d over k. Let L be a very ample G-invariant line bundle on X, and let µ : X →
Pn−1(k) be the corresponding embedding. We define e(L) to be the degree of
the image of µ(X) as a subvariety of Pn−1(k). Following [3, section 1.7], we
define the degree as follows. The function f(n) = dimk(Γ(Ln)) is a polynomial
function of degree d for sufficiently large n : so we define e(L), the degree of L,
by saying that

f(n) =
e(L)
d!

nd+ lower terms

for sufficiently large n. Since f(n) takes integer values, e(L) is an integer.
We define the Pic-period of X, p(X), to be the highest common factor of the
degrees of all G-invariant very ample line bundles on X. For curves, this reduces
to the normal definition of the period.

Theorem 1.1. Let X be a normal projective variety over k of dimension d with
function field K. Let D be a central division algebra of index n over K whose
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class in the Brauer group lies in the image of Br(k). Let p(X) be the Pic-period
of X, and let q be the largest factor of p(X) whose prime factors all divide n.
Then there is a central division algebra E over k such that D is similar to E⊗kK
and the index of E divides nq. In particular, if (n, p(X)) = 1, D ' E ⊗k K for
suitable E.

Proof : It is enough to prove this when D has index a power of a prime p.
Consider a sheaf of maximal orders OA on X whose stalk at the generic point
of X is D. Since the Brauer class of D lies in the image of Br(k), and the stalk
at a point of codimension 1 is unique up to conjugacy in D, such a stalk must
be an Azumaya algebra; therefore, there is an open subset U of X, containing
all points of codimension 1 such that OA | U is a sheaf of Azumaya algebras.
By shrinking U if necessary, we may assume that U is smooth. Let j : Y → U
be the associated Brauer-Severi scheme over U . (OA | U) is a split Azumaya
algebra : so (OA | U) ' End(E) for some choice of vector bundle E over U ; we
may replace E by E ⊗ j∗L if we wish where L is any line bundle over U .
j : Y → U becomes the projective space bundle PU (E) → U . Associated
to this is the universal quotient bundle O(1) on PU (E). By [3, III ex. 12.5],
Pic(Y ) ' Z⊕Pic(U); every line bundle is of the form O(1)⊗n⊗j∗L for n ∈ Z,L
a line bundle on U . Moreover, Pic(U) ' Pic(X) since U contains all points of
codimension 1 in X.
Let i : specK → U be the generic point of U . We form the pullback :

Y ′
j′−→ spec Kyi′ yi

Y
j−→ U

Y ′ is the Brauer-Severi variety of D over K. We form the commutative diagram
with exact rows and columns :

0y
Pic(U)G 0y y

0 −→ Pic(Y ) −→ Pic(Y )G
φ(Y )−→ Br(k) −→ Br(Y )yi′∗ yj′∗ y y

0 −→ Pic(Y ′) −→ Pic(Y
′
)G

φ(Y ′)−→ Br(K) −→ Br(L)y ‖
0 Z

Here L is the function field of Y (and hence of Y ′).
The rows are exact since they arise from the Hochschild-Serre spectral sequence.
The first column is exact, because Y is smooth and Y ′ is a localization of it.
The second column is exact because it arises from applying G-invariants to a
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short exact sequence. The rightmost vertical map is an injection because Y is
smooth.
Consider φ(Y ′)(j

′∗(O(1))) = −[D]. By assumption, there is a central division
algebra E over k such that [E ⊗k K] = [D]. Now a standard diagram chase
shows that there is some element of Pic(Y )G that maps onto j′∗(O(1)) under
j′∗. We deduce that it was possible to choose E to be G-invariant and so O(1)
is also.
We fix such a G-invariant E ; then φ(Y )(O(1)) = −[E]; where [E⊗kK] = [D]. If
L is a G-invariant line bundle on U , then φ(Y )(O(1)⊗ j∗L) = −[E] + φ(U)(L)
and since φ(U)(L) is split on U , and hence split by K, we may also look at these
line bundles to find division algebras D′ such that D′ ⊗k K is similar to D.
We wish to consider the global sections of such a line bundle on Y , but Γ(Y ,O(1)⊗
j∗L) ≡ Γ(U, j∗(O(1))⊗L) = Γ(U, E ⊗ L) = Γ(X,µ∗(E ⊗ L)) where µ : U → X
is the inclusion. This equals Γ(X,µ∗(E)⊗ L) where we abuse the isomorphism
of Pic(U) and Pic(X).
Lemma 1.2. (see after the end of this theorem) shows that µ∗(E) is a coherent
sheaf on X. It has rank r = pt, the index of D by construction. Let L be a
very ample G-invariant line bundle such that the maximal power of p, ps, that
divides the Pic-period of X is the maximal power of p dividing the degree of L.
Following [3, section I.7], we see that for sufficiently large m, f(m) = dim(Γ(X,
µ∗(E)⊗ Lm)) is a polynomial function of m of degree d; moreover,

f(m) =
pte(L)
d!

md+ lower terms

for sufficiently large m, where e(L) is the degree of L. Let us assume that we
have chosen m to be sufficiently large : then

pte(L) =
d∑
j=0

(−1)j
(
d

j

)
dim Γ(X,µ∗(E ⊗ Lm+d−j))

Hence there is an integer n such that the exponent of the highest power of p
dividing dim Γ(X,µ∗(E)⊗Ln) is at most s+ t. For this choice of n, the highest
power op p dividing the index of φ(Y )(O(1) ⊗ j∗Ln) is a factor of ps+t. The
p-primary part of the division algebra E′, such that E′◦ represents this Brauer
class, then fulfills the requirements.

In the course of the proof of theorem 1.1, we referred to a lemma 1.2 which
remains to be proved. We prove this next.

Lemma 1.2. Let X be a normal variety and let µ : U → X be an open
subvariety containing all points of codimension 1. Let E be a vector bundle on
U ; then µ∗(E) is a coherent sheaf of reflexive modules on X.

Proof : It is standard [3, II exercise 5.15] that there is a coherent sheaf S on
X such that S | U = E . We may ensure that S is reflexive by replacing it by
S∗∗ ' Hom(Hom(S,OX)); since S | U ' E , a vector bundle, S∗∗ | U ' E
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also. S∗∗ is reflexive. But, if V is an open affine, then Γ(V, S∗∗) =
⋂
p∈V (1) S∗∗p

where the intersection ranges over all points of codimension 1 in V ; but since
U contains all points of codimension 1, this is

⋂
p∈V (1)∩U Ep = Γ(V ∩ U, E).

Therefore, S∗∗ ' µ∗(E).

We deduce our main theorem from theorem 1.

Theorem 1.3. Let D,E be central division algebras over k of indices m and n
respectively. Let Br-S(E) be the Brauer Severi variety of E, and let K be its
function field. Then the index of D ⊗k K is the minimum of the indices of the
central simple algebras {D ⊗ Ei, i = 1 to n}.

Proof : Br-S(E) ×k k ' Pn−1(k). O(1) is a G-invariant line bundle of degree
1. Therefore, if D′ is the central division algebra in the Brauer class of D⊗kK,
there is a division algebra C over k such that D′ ' C⊗kK by theorem 1. Since
D0 ⊗k C is split by K, and the only part of the Brauer group split by K is the
subgroup generated by E,C is similar to D ⊗ Ei for some i.
This shows that the index of D⊗kK is the index of some D⊗Ei. On the other
hand, for arbitrary i, the index of D⊗kK is the same as the index (D⊗Ei)⊗kK,
which is not higher than the index of D ⊗ Ei.

There is another proof of theorem 1.3 from a different point of view. If S
is a central simple algebra, K0(S) ' Z; however, the free module of rank 1
defines a distinguished class, and it is more natural to write K0(S) ' 1

nZ where
S ' Mn(D) for some division algebra D. Thus, K0 allows us to determine the
index of a central simple algebra.
IfD and E are central division algebras over k, we wish to determineK0(D⊗kK)
where K is the function field of Br-S(E). Quillen has computed the K-theory
of Br-S(E), more accurately, the K-theory of coherent sheaves on Br-S(E),
which allows us to compute the K-theory of D⊗ Br-S(E), by which we mean
the category of coherent sheaves on Br-S(E) with a right D ⊗k O(Br-S(E))
structure. It is a simple matter to prove that the map from K0(D⊗Br-S(E))→
K0(D⊗K) is surjective, and this gives a simple calculation of K0(D⊗K). Below
we shall fill out this sketch.
Given an irreducible non-singular variety X, we define K∗(D ⊗ X) to be the
Quillen K-theory of the abelian category Coh(D⊗X) of sheaves of modules for
the sheaf of algebras D ⊗O(X), coherent as O(X) sheaves.

Lemma 1.4. The natural map from K0(D⊗X) to K0(D⊗K(X)) is surjective
where K(X) is the function field of X.

Proof : Let M be a module for D⊗K(X); it is standard that there is a coherent
O(X) sheaf P, a sub-sheaf of the sheaf which associates M to each open affine
subset of X, such that P⊗K(X) 'M . Since D is finite-dimensional over k the
sheaf PD inside M is still coherent and PD⊗D⊗O(X) K(X) 'M so the image
of [PD] in K0(D ⊗K(X)) is [M ], and the map is surjective.

It remains to calculate K∗(D ⊗ Br-S(E)); this is a very mild generalization
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of Quillen’s calculation of K∗(Br-S(E)), with which we shall assume that the
reader is familiar in the following proof. We refer the reader to section 8.4 of
[6] for unexplained terminology in the following.
Let E be a division algebra of index r; Quillen constructs a bundle J on Br-S(E)
whose sheaf of endomorphism rings is E⊗O(X) where E acts on the right on J .
We define Ji to be the i-fold tensor power of J and the sheaf of endomorphism
rings of Ji is E⊗i⊗O(X). We have a functor from left E⊗i modules to sheaves
on Br-S(E) by Ji⊗E⊗i which restricts to a functor from left E⊗i−, right D
bimodules, that is right (D ⊗ (E0)⊗i) modules, to Coh(D ⊗ Br-S(E)). Using
this, we state the theorem

Theorem 1.5. We have isomorphisms :

⊕r−1
i=0Ki(D ⊗ (E0)⊗i)→ Ki(D ⊗X)

by (xn)→
∑r−1
i=1 (Ji ⊗E⊗i −)∗(xn).

Proof : Recall that a sheaf P on Br-S(E) is said to be regular ifHi(P⊗k(−i)) =
0 for i > 0. On the subcategory of regular sheaves, there are functors Ti to left
modules for E⊗i such that there is an exact sequence :

0→ Jr−1 ⊗Er−1 Tr−1(F )→ ...→ P(X)⊗k T0(F )→ F → 0

On the subcategory of Coh(D ⊗ X) of regular sheaves, Ti is a functor to left
E⊗i, right D bimodules, since the functoriality of Ti implies there is a right D
action on Ti(F ).
Finally, given any sheaf ζ on Br-S(E), ζ ⊗ ((ΛrJ)∨)n is regular for sufficiently
large n. This, together with the sequence

0→ ΛrJ → Λr−1J → ...→ J → O → 0

allows us to prove that the K-theory of Coh(D ⊗ X) is naturally isomorphic
to the K-theory of the regular sheaves in Coh(D ⊗ X), and the functors Ti
show that the K-theory of regular sheaves in Coh(D⊗X) is as required by the
arguments of section 8.4 and 8.2 of [6].

For the statement of the next consequence, which is equivalent to theorem 1.3,
we identify, for a central simple algebra S, K0(S) with 1

nZ, where n is chosen
in such a way that the class of the free S-module of rank 1 maps to the element
1 ∈ 1

nZ.

Theorem 1.6. K0(D ⊗K(Br-S(E))) =
∑
riK0(D ⊗ (E0)⊗i). Therefore, the

index of D⊗K(Br-S(E)) is the highest common factor of the indices of D⊗(E0)i

as i varies.

Proof : Since the rank of Ji is ri, the combined map

Ji ⊗E⊗i − : K0(D ⊗ (E0)⊗i)→ K0(D ⊗ Br-S(E))→ K0(D ⊗K(Br-S(E))
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is multiplication by ri.
The last sentence is a simple calculation.

In theorem 1.3., we stated that the index of D⊗K(Br-S(E)) was the minimum
of the indices of D ⊗ Ei as i varies. The reader may check by splitting E as a
tensor product of division algebra of prime power index that the theorem above
is actually equivalent to 1.3.

2. Applications.

Theorem 1.3. has a number of consequences which we shall outline in this
section. These fall into two types : the calculation of the index of a division
algebra under certain generic central extensions; and the construction of division
algebras with certain special properties. We begin with the first type, and we
note a simple consequence.

Theorem 2.1. Let D be a division algebra of index n with center k. Let n = st
where every prime dividing n divides t, and s and t are integers. Let K be the
function field of the Brauer-Severi variety of Dt. Then D ⊗k K has index n.

Proof : The class of D ⊗ (Dt)i is (1 + it)[D] where (1 + it) is co-prime to n.
D ⊗ (Dt)i has index n for all i, and so, by 1.3., D ⊗K has index n.

This has the following consequence pointed out by Saltman. We recall that the
generic division algebra of index n and exponent t over k is the division algebra
E⊗LK where E is a generic division algebra over k with center L and K is the
generic splitting field of Et. A division algebra is indecomposable if it is not a
tensor product of smaller index division algebras.

Theorem 2.2. Let D be a division algebra of index pa with center k such
that Dp has index pa−1. Let t ≥ 2, and let K be the generic splitting field
of Dpt

. Then D ⊗K has index pa, Dp ⊗K has index pa−1, and so, D ⊗K is
indecomposable.

In particular, the generic division algebra of index pa and exponent pt is inde-
composable.

Proof : The previous theorem shows that the indices of D ⊗K and Dp ⊗K
are as stated. If D⊗K ' E ⊗k F , then Dp ⊗K ' Ep ⊗ F p and its index must
be less than pa−1.

We shall extend this later to give examples of a division algebra D of prime
power index such that the sequence of indices of D,Dp, Dp2 ... is any given
strictly decreasing sequence.
Next, we extend 1.3 to the function field of a product of Brauer-Severi varieties.
If K is the function field of

∏
i Br-S(Ei), for central division algebras {Ei} over

k, then the subgroup of the Brauer group in the kernel of Br(k) → Br(K) is
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generated by {[Ei]}.

Theorem 2.3. Let K be the function field of
∏
i Br-S(Ei) where each Ei is a

central division algebra over k. Then the index of D⊗kK where D is a central
division algebra over k is the minimum of the indices of D ⊗ Ei11 ⊗ ...⊗ Einn .

Proof : Let K1 be the function field of
∏
i 6=1 Br-S(Ei). Then K is the function

field of Br-S(E1⊗kK1). By theorem 1.3, the index of (D⊗kK1)⊗K1K = D⊗K
is the minimum of the indices of (D ⊗ Ej1)⊗K1 as j varies.
By induction, the index of (D ⊗k Ej1) ⊗ K1 is the minimum of the indices of
D ⊗k Ej1 ⊗ E

j2
2 ⊗ ...⊗ Ejnn so the result follows.

We consider the following general situation. We define central division algebras
D and E over k to be independent if there are commutative fields K ′ and K ′′

such that D ⊗k K ′ is split and, for any i, the index of Ei ⊗k K ′ is the index of
Ei whilst E ⊗kK ′′ is split and, for any i, the index of Di⊗kK ′′ is the index of
Di.

Theorem 2.4. Let D,E be independent central division algebras over k. Let
K be the function field of the Brauer-Severi variety of D⊗E0. Then the index
of Di ⊗k K is the highest common factor of the indices of Di and Ei.

Proof : Fix i. The index of Di ⊗k K is the minimum of the indices of Di ⊗
(D⊗E0)j = Di+j ⊗ (E0)j by theorem 1.3. Let p be a prime number dividing `
= h.c.f. {ind(Di), ind(Ei)} and let ps be the highest power of p dividing `. For
fixed j, let pt be the highest power of p dividing (i+ j) and j; then pt divides i.
Either pt+1 6 | (i + j) or pt+1 6 | j. In the first case, let K ′′ be a field that splits
E such that the index of Dh ⊗k K ′′ equals the index of Dh for all h. Then, the
index of Di+j ⊗k (E0)j is a multiple of the index of Di+j ⊗k (E0)j ⊗kK ′′ which
is the index of Di+j ⊗kK ′′ which equals the index of Di+j . Since pt+1 6 | (i+ j)
and pt | i, the p-component of Di is a power of the p-component of Di+j and so
the p-primary part of the index of Di divides the index of Di+j which divides
the index of Di+j⊗(E0)j by the above. So, ps divides the index of Di+j⊗(E0)j .
Similarly, if pt+1 6 | j, we tensor with K ′ where K ′ splits D and leaves the index
of Eh alone and follow the same argument. We conclude in either case that ps

divides the index of Di ⊗k K where ps is the highest power of p dividing `. So,
` divides the index of Di ⊗k K.
The converse is clear since Di ⊗k K is similar to Ei ⊗k K.

Let S be a central simple algebra over k of dimension n2 over k and index s; so
n = st and S 'Mt(D) whereD is a division algebra. Let σ ∈ H1(k/k, PG`n(k))
be the cohomology class corresponding to S. Let q be an integer dividing
n, n = qr, and let K(Gr

(
n
r

)
(σ)) be the function field of the twisted form,

Gr
(
n
r

)
(σ), corresponding to σ, of the Grassmannian, Gr

(
n
r

)
, of r-dimensional

subspaces of n-dimensional space. In [7], we considered this field since S ⊗k
K(Gr

(
n
r

)
(σ)) 'Mq(S′) for a simple algebra S′, and is universal with this prop-

erty since Gr
(
n
r

)
(σ) has a point in a field L if and only if S ⊗ L ' Mq(S1).

8



This variety and its function field have also been investigated by A. Blanchet
in [2]. We wish to determine the index of S ⊗k K(Gr

(
n
r

)
(σ)). It clearly divides

h.c.f.{r, s}. We shall prove it is equal to this by finding a suitable field L such
that S ⊗k L ' Mq(S1) for some algebra S1, of index h.c.f.{r, s}. Then the
universal property of Gr

(
n
r

)
(σ) allows us to pull this back to S⊗kK(Gr

(
n
r

)
(σ)).

Theorem 2.5. Let S be a central simple algebra of dimension n2 over k
and of index s where n = st. Let n = qr for integers q and r and let K be
the function field of Gr

(
n
r

)
(σ) where Gr

(
n
r

)
(σ) is the twisted form of Gr

(
n
r

)
, the

Grassmannian, corresponding to the cocycle σ ∈ H1(k/k, PGLn(k)) determined
by S. Then the index of S ⊗k K is h.c.f.{r, s}.

Proof : Let D be a generic division algebra of index r with center C, and let
L be the generic splitting field of (S◦ ⊗k C)⊗C D. Then S ⊗k L = Mq(S1) for
some central simple algebra, and as pointed out in the discussion just before the
present theorem, it suffices to show that the index of S1 is equal to h.c.f.{r, s}
i.e. equal to the h.c.f. of the indices of S and D.
It is easy to see that S1 = D⊗CL. If we show that S⊗kC and D are independent
then the index of S1 is the h.c.f. of the indices of S ⊗k C and D. Furthermore,
since C is unirational over k, the index of Si is the index of Si ⊗ C. Taking
i = 1 then proves the theorem.
We now proceed by showing that S ⊗k C and D are independent.
D has a splitting field K ′, rational over k. The index of (S ⊗k C)i ⊗C K ′ is the
index of Si which is, as pointed out above, equal to the index of Si ⊗k C.
Let l ⊃ k be an algebraic splitting field of S and let K ′′ = l ⊗k C, l ⊗k D is a
generic division algebra over K ′′, so the index of K ′′ ⊗C Di = l ⊗k Di equals
the index of Di. This shows that S ⊗k C and D are independent.

Finally, we can fill in a hole in the paper [7]. We showed in that paper that if
D is a central division algebra of index and exponent n and l ⊃ k is a separable
extension of dimension dividing n, then there is a regular field extension K ⊃ k
such that D ⊗k K contains l ⊗k K and remains a division algebra. In the next
part, we use the notation of this paper freely since the question is of interest
only if one has read this paper.
Let us suppose that [l : k] = q where n = qr. Let K be the function field of
the variety V = Gr

(
n
r

)
(σ)
x l
k

y l
k (we refer the reader to [7] for the notation and

description of this variety). Then V has a point in the field F if and only if
D ⊗k F contains l ⊗k F (at least when l ⊗k F is a field; more care is required
in general). We wish to prove that D ⊗k K is a division algebra even when the
exponent of D is less than n. We shall prove this by finding a field F such that
D⊗k F ⊃ l⊗k F and is a division algebra from which the result follows at once
since D ⊗k K specializes to D ⊗k F .

Theorem 2.6. Let D be a central division algebra over k of index n. Let l ⊃ k
be a separable extension of dimension q where n = qr for r an integer. Let K
be the function field of Gr

(
n
r

)
(σ)
x l
k

y l
k . Then D⊗kK is a division algebra and
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l ⊗k K embeds in it.

Proof : For the notation see [7]. We construct a field F such that D⊗k F is a
division algebra and l ⊗k F embeds in it.
Let E be a generic division algebra of index n over k with center C. Let

C ′′ ⊃ C be the function field of Gr
(
n
r

)
(τ)
xC ⊗ l
C

yC ⊗ l
C

where τ is the class in

H1(C/C,PGln(C)) determined by E. Then, by theorem 3.9 of [7], C ′′ ⊗C E is
a division algebra of index and exponent n in which C ′′ ⊗k l embeds. We call
this construction the universal division algebra over k of index n containing l.
If K1 ⊃ k is any field such that K1 ⊗k l is a field, then the simple algebra of
quotients of K1⊗k (C ′′⊗C E) is the universal division algebra over K1 of index
n containing K1 ⊗k l.
We shall prove that C ′′ ⊗C E and C ′′ ⊗k D are independent in the sense of
theorem 2.4. Then, by taking F to be Brauer-Severi variety of D0⊗k (E⊗C C ′′)
our result follows from 2.4.
First of all, if we take K1 to be the generic splitting field of D over k,K1 ⊗k l
is a field, so the simple algebra of fractions of K1 ⊗k (E ⊗C C ′′) is a division
algebra of index and exponent n by the preceding remarks. So, set K ′ to be the
field of fractions K1 ⊗k C ′′.
On the other hand, E has a splitting field C ′ ⊃ C ⊃ k rational over k, and the va-

riety
(

Gr
(
n
r

)
(σ)
xC ⊗ l
C

yC ⊗ l
C

)
⊗C C ′ becomes simply Gr

(
n
r

)xC ′ ⊗ l
C ′

yC ′ ⊗ l
C ′

which is rational over C ′ and hence its function field K ′′ is rational over k.
Therefore (E ⊗C C ′′) ⊗C′′ K ′′ is split but (Di ⊗k C ′′) ⊗C′′ K ′′ has the same
index as Di. Thus we have shown that E ⊗C C ′′ and D⊗k C ′′ are independent
and our result follows.

It follows at once that given any division algebra D of index n over k, there
exists a regular field extension K ⊃ k such that D ⊗k K is a cyclic division
algebra. In order to prove this, one notes that there exists some unirational
field k′ ⊃ k which has a field extension L ⊃ k′ which is cyclic of dimension n.
If K ⊃ k′ is the generic field such that (D ⊗k k′)⊗k′ K contains L⊗k′ K, then
D ⊗k K is a cyclic division algebra by theorem 2.6. Of course, we could have
found some field K(G) such that D⊗K(G) is a crossed product division algebra
with Galois group G for any group G of order n.
Now we give some constructions of division algebras. First of all, we construct
a division algebra, D, of index pn such that the sequence of integers, index(D),
index(Dp), index(Dp2), ... is any given strictly decreasing sequence of powers
of p. For this we need the following result.

Theorem 2.7. Let D be a central division algebra over k of index pa. Assume
that Dpb

is a division algebra of index and exponent pc. Let d < c. Let E
be a generic division algebra of index pd over k with center C. Let K ⊃ C

be the function field of the Brauer-Severi variety of Dpb ⊗ E0. Then D ⊗k K
is a division algebra, Dpi ⊗ K has the same index as Dpi

for i < b, and for
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i ≥ b,Dpi ⊗K has index and exponent max(pd−i+b, 1).

Proof : For i ≥ b, we may apply theorem 2.4 since Dpb⊗C and E are indepen-
dent. We obtain that the index of Dpi⊗K is the h.c.f. of the indices of Dpi

and
Ep

i−b

. By hypothesis, Dpb

and E have exponent equal to index, so we obtain
that the index of Dpi

is max(pc−i+b, 1) and the index of Ep
i−b

is max(pd−i+b, 1).
The result follows from this, using d < c.
Assume i < b. We have to calculate the indices ofDpi⊗(Dpb⊗E0)j for varying j.
Let L ⊃ C be a splitting field of E rational over k; then Dpi⊗ (Dpb⊗E0)j⊗C L
is similar to Dpi+jpb ⊗k L which has the same index as Dpi

since L ⊃ k is
rational.
It follows that Dpi ⊗k K has the same index as Dpi

, as required.

Construction 2.8. We wish to construct a division algebra D of index pn

such that the sequence of numbers index (D), index (Dp), index (Dp2), ... is
any given sequence of strictly decreasing powers of p. We simply apply 2.7
inductively. We begin by taking D0 to be a generic division algebra of index pn.
We assume that Di is a division algebra such that the sequence index (Di), ...,
index(Dpi

i ) is as required, but index (Dpi+j

i ) = index (Dpi

i )/pj . Then we apply
2.7 to pass to Di+1 = Di ⊗Ki for some field Ki such that Di+1 has the correct
inductive property.

Construction 2.9. In [8], Tignol and Wadsworth give examples of division
algebras D and E of any odd index such that D⊗E0 has zero-divisors, but, as
Saltman remarked, D ⊗ E has not, so they have no field in common.

Given any odd prime p, we construct a pair of division algebras D,E of index
p such that D ⊗ Ei, for i = 2 → p − 1, has zero-divisors but D ⊗ E does
not. We would like to thank L. Rowen for suggesting this. Our construction is
simply to take D1 and E1 to be a pair of generic division algebras of index p on
independent sets of variables and then generically make D1 ⊗Ei1 of index p for
i = 2 to p− 1. For this universal example, D ⊗ E has index p2. In order to do
this, let D1, E1, F2, ..., Fp−1 be p generic division algebras of index p on distinct
sets of indeterminates. Let C be the field of fractions of the tensor product
over k of their centers. We shall abusively write D1, E1, F2, ..., Fp−1 in place of
D1⊗C,E1⊗C, etc. where the tensor product in each case over the center of the
division algebra. The index of Di1

1 ⊗E
i2
1 ⊗F

i3
2 ⊗ ...⊗F

ip
p−1 is simply the product

index(Di1
1 ) × index(Ei21 ) × · · · × index(F ipp−1). Let K ⊃ C be the function field

of
∏p−1
i=2 Br-S(D1 ⊗ Ei1 ⊗ Fi).

By construction, the index of D1 ⊗ Ei1 ⊗K is p for i ≥ 2.
By theorem 2.3, the index of D1 ⊗ E1 ⊗C K is the minimum of the indices of
(D1⊗E1)⊗⊗p−1

i=2 (D1⊗Ei1⊗Fi)ji . If two of the ji’s are not divisible by p, then
by looking at the contribution of the algebras F jii ⊗ F

j′i
i′ we see the index is at

least p2. So this leaves checking the index of D1 ⊗ E1 ⊗ (D1 ⊗ Ei1 ⊗ Fi)ji for
some i and ji. Again this must have index at least p2. So D1 ⊗ E1 ⊗ K has
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index p2 as required.
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