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1. Introduction

Assume we have a parametrized distribution p(θ, x) A statistical test for com-
paring hypotheses H0 : θ = θ0 versus H1 : θ 6= θ0 (or similarly H0 : θ ≤ θ0 versus
H1 : θ > θ0) typically consists of two parts:

(1) the choice of a test statistic which can be computed from a sample;
(2) the choice of a decisision rule for choosing between H0 and H1.

In statistical theory the merits of test statistics (1) can be evaluated independently
of their use (2). This is the subject of “efficiency”. See e.g. [1]. In fact the relative
efficiency of test statistics can even be evaluated empirically when the underlying
distribution p(θ, x) is unknown. However empirical testing alone can not tell us
what is an “optimal” test statistic in a particular situation. This requires some
statistical theory.

It is known that the so-called “score statistic1” S(x) [4]

S(x) :=
∂ log p(θ, x)

∂θ

∣∣∣∣
θ=θ0

is an optimal statistic for testing H0 : θ = θ0 versus H1 : θ 6= θ0 (or similar onesided
comparisons). Thus for a sample (xi)

n
i=1 the total score statistic is

S(x) :=

n∑
i=1

S(xi)

2. Application to engine testing

In the case of engine testing the test statistic of choice is the match score [3].
This is obvious for the traditional fixed length tests but it is also true, albeit less
obvious, for the SPRT test as implemented for example in cutechess-cli. We will
show that under some common scenarios and assumptions the match score contains
the same information as the score statistic introduced above. Hence it is an optimal
test statistic in a suitable sense.

2.1. The trinomial model. Assume that the outcome of a game between two en-
gines is modeled by a trinomial distribution with outcome probabilities (w(θ), d(θ), l(θ)
where θ is the elo difference in some unspecified elo model. We assume that θ = 0

1In the context of this note the standard terminology “score statistic” is somewhat unfortunate
as we will also be talking about a “match score”.
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corresponds to engines of equal strength. We also assume that test conditions are
fair, i.e.

(2.1)

w(θ) = l(−θ)
d(θ) = d(−θ)
l(θ) = w(−θ)

These assumptions are reasonable in the following contexts

(1) Randomly chosen opening positions and randomly assigned colors.
(2) (Nearly) balanced randomly chosen opening positions and paired games

with reversed colors.2

Under the trinomial model we have

S(win) =
d logw(θ)

dθ

∣∣∣∣
θ=0

S(draw) =
d log d(θ)

dθ

∣∣∣∣
θ=0

S(loss) =
d log l(θ)

dθ

∣∣∣∣
θ=0

From (2.1) we easily deduce

λ := S(win) = −S(draw)

S(draw) = 0

so that the score statistic of a match with outcome frequencies (W,D,L) is given as
(W−L)λ. Since the constant scale factor λ does not matter, the quantity (W−L)λ

contains the same information as the match score ŵ + (1/2)d̂ = 1/2 + 1/2(ŵ − l̂).

2.2. Paired games. Now we assume that we are using paired games with (possi-
bly) unbalanced positions. Let us write the outcome probabilities in a game pair as
(w1(θ), d1(θ), l1(θ), w2(θ), d2(θ), l2(θ)). We assume that there are no correllations
between paired games. The fairness assumption can be expressed as

(2.2)

w1(θ) = l2(−θ)
d1(θ) = d2(−θ)
l1(θ) = w2(−θ)

We now write

S1(win) =
d logw1(θ)

dθ

∣∣∣∣
θ=0

S1(draw) =
d log d1(θ)

dθ

∣∣∣∣
θ=0

etc . . .

Then we get from (2.2)

a := S1(win) = −S2(loss)

b := S1(draw) = −S2(draw)

c := S1(loss) = −S2(win)

Hence a game pair should now be scored according to the following table

(2.3)

win draw loss
win a− c a− b 0

draw b− c 0 b− a
loss 0 c− b c− a

2Even though we assume the positions are nearly balanced it would still be very hard to ensure

that the average position bias in an opening book is perfectly zero (this would be a mathematical

fiction anyway). This is why it is still necessary to replay games with reversed colors in order to
achieve fairness.
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At this point it seems we cannot continue to work in complete generality and we
have to assume a specific underlying elo model. Under the Davidson elo model [2]
we have

b =
a+ c

2
In that case if we put λ := 1

2 (a− c), (2.3) can be written as

win draw loss
win 2λ λ 0

draw λ 0 −λ
loss 0 −λ −2λ

and we see that the score statistic contains again the same information as the match
score.

There are indications that the Davidson elo model fits reality better than the
more commonly used Rao-Kupper3 elo model [2]. However as far as I know this
has not been firmly established in the specific case of engine-engine matches with
unbalanced opening positions. So for completeness let us describe what happens
for the Rao-Kupper elo model. In that case we have

b = a+ c

and now (2.3) becomes

win draw loss
win a− c −c 0

draw a 0 c
loss 0 −a c− a

Now if a + c 6= 0 (as would be the case with unbalanced positions) the score
statistic is different from the match score. Note however that in order to use the
true score statistic we would have to know the ratio −a/c which depends on the
drawelo parameter and the average position bias, both of which would have to be
estimated from the sample. This leads to a test statistic which is substantially more
complicated to compute than the simple match score.

As indicated in the introduction the relative efficiency of the true score statistic
(assuming the Rao-Kupper elo model) versus the naive match score statistic can
be evaluated empirically. Such an analysis has not been carried out yet.
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