
1. The SPSA “process”

We analyze an elegant chess oriented version of the SPSA algorithm invented by
Stockfish author Joona Kiiski [3].

Let (ci)i≥0 ∈ Rn be a sequence of (column) vectors and let (ri)i≥0 ∈ Rn
>0. To

go from a vector of engine parameters θi = (θ
(j)
i )j=1,...,n ∈ Rn to a new vector

θi+1 ∈ Rn we play a match of θi + ci against θi − ci and put

(1.1) θi+1 =


θi + rici in case of a win
θi in case of a draw
θi − rici in case of a loss

Since we have biased1 the update of θi in the direction of the engine that won the
game, the hope is that θi for i ≫ 0 will yield a stronger engine than θ0.

The next two examples illustrate standard choices for c.

Example 1.1. Let c0, . . . , cn−1 > 0 and put ci = cı̄eı̄ where ı̄ = imodn and ei is
the i’th basis vector of Rn. This is a variant of the FDSA algorithm. We have

E(cct) =
1

n
diag(c21, . . . , c

2
n)

Example 1.2. Let c0, . . . , cn−1 > 0 and put ci =
∑

i cıeı∆i where ∆i is chosen
uniform randomly in {±1}. Then

E(cct) = diag(c21, . . . , c
2
n)

This is the SPSA algorithm.

Assumption 1.3. We allow (ci)i to be stochastic but throughout we assume that
(cic

t
i)i stays close to its short term running average/expectation value (denoted by

E(ctc)) and that the latter is an invertible n× n matrix.

2. Main results

2.1. Statements. Let e be the function which maps θ ∈ Rn to Elo. Assume
that e is (approximately) quadratic and attains its maximum value at θ = θ̄. We
normalize e such that e(θ̄) = 0.

Apply the generalized SPSA algorithm with constant r and with c satisfying
Assumption 1.3 such that E(cct) is constant. We will heuristically derive some
reasonable approximations.

(1) Asymptotically the expectation value of e(θi) will satisfy

(2.1) E(e(θi)) = −Cn(1− d)

8
r

with d ∈ [0, 1] being equal to the draw ratio2 and
C = 800/ ln(10) = 347.43558552.

1For the purpose of exposition we assume that the games are played with an opening book that
is perfectly balanced. In practice this will never be satisfied but one may simulate it by replaying
every game with reversed colors. This will be assumed silently below.

2 With an unbalanced book and replayed color reversed games the factor 1− d in the formula
can be reduced to 1 − d − 4b2 where b is the RMS bias of the opening book (computed using
0, 1/2, 1 scoring, see [6]). The same holds true for similar formulas below.

1



2

(2) Let 0 ≤ γ ≤ 1 and define z by γ = P (X ≤ z) for X ∼ χ2
n. E.g. for γ = 0.95

we have in low dimensions
dim z
1 3.8414588206941236
2 5.9914645471079799
3 7.8147279032511765
4 9.4877290367811540

With probablity γ, e(θi) will asymptotically satisfy

(2.2) e(θi) ≥ −Cz(1− d)

8
r

(3) The expectation value of θi will converge linearly towards θ̄ as
∼ e−i/λ

with the time constant λ bounded by

(2.3) λ =
C

2rµ

where µ is the smallest eigenvalue of 3 −E(ctc)Hess(e).

Remark 2.1. We see from (3) that the nicest possible case is when
−E(ctc)Hess(e) = µIn×n.

It follows from the derivation below that in that case the update (1.1) is (on average)
proportional to rµHess(e)−1(grad e)(θi), which is in particular the optimal direction
for gradient descent.

2.2. Derivations. Below vectors are always column vectors. We will also switch
to continuous time. Hence we write θ(t) (or simply θ) instead of θi, etc…

We can think of the dynamics of θ as a discrete version of the continuous process
dθ = rc(µθ,cdt+ σθ,cdWt)

where (µθ,c, σθ,c) are the mean and standard deviation of a single game between
parameters θ±c (scored as −1, 0, 1) and Wt is a Wiener process (Brownian motion).
We simplify further and assume that σθ,c is independent of θ, c so that
(2.4) σθ,c := σ ∼= 1− d

where d is the draw ratio4.
Let f(θ) be the function that maps θ to the expected score against a reference

engine (scored as −1, 0, 1). Assuming linearity we get
µθ,c

∼= score(θ + c, θ − c) ∼= f(θ + c)− f(θ − c) = 2ct(grad f)(θ)

we find
dθ = 2rcct(grad f)(θ)dt+ rσcdWt

We now replace cct by its short term average/expectation value which we denote
by E(cct) and we put a = rE(cct). Note that a is symmetric. We obtain

dθ = 2a(grad f)(θ)dt+ rσcdWt

3In the formula we have used that e is quadratic so that Hess(e)(θ) does not depend on θ.
4See Footnote 2.



3

The conversion between f and e is approximately given by
(2.5) f(θ) = e(θ)/C

So f is approximately quadratic as well. Hence (translating such that θ̄ = 0)

f(θ) = −1

2
θtΞθ

with Ξ a positive definite symmetric n× n-matrix. So
(grad f)(θ) = −Ξθ

from which we get
dθ = −2aΞθdt+ rσcdWt

The solution of the corresponding homogeneous equation
dθ = −2aΞθdt

is given by
θ = exp(−2aΞt)D

where D is a column vector of constants. We now solve the inhomogeneous system
using variation of constants (i.e. we make D depend on t). We get

exp(−2aΞt)D′(t) = rσcdWt

D(t) = C + rσ

∫ t

0

exp(2aΞs)cdWs

So

θ(t) = exp(−2aΞt)θ(0) + rσ

∫ t

0

exp(2aΞ(s− t))cdWs

So θ(t) is multivariate normal with expectation value
E(θ(t)) = exp(−2aΞt)θ(0) = exp(2aHess(f)t)θ(0)

from which we deduce (4,3) using the conversion (2.5) combined with (2.4).
We now calculate the covariance of θ(t).

Cov(θ(t)) = r2σ2

∫ t

0

exp(2aΞ(s− t))cct exp(2Ξa(s− t))ds

(taking into account that Ξ and a are symmetric). Replacing once again cct by its
average we obtain

Cov(θ(t)) = rσ2

∫ t

0

exp(2aΞ(s− t))a exp(2Ξa(s− t))ds

= rσ2a

∫ t

0

exp(4Ξa(s− t))ds

=
1

4
rσ2Ξ−1 exp(4Ξa(s− t))|t0

=
1

4
rσ2Ξ−1(1− exp(−4Ξat))

Hence asymptotically
Cov(θ) =

1

4
rσ2Ξ−1



4

and so asymptotically the distribution of θ is

θ ∼ N(0,
1

4
rσ2Ξ−1)

Recall the following.

Lemma 2.2. Let Σ be a positive definite symmetric n× n matrix and

X ∼ N(0,Σ)

Then
XtΣ−1X ∼ χ2

n

Proof. We may write Σ = PP t. Put Y = P−1X. Then Cov(Y ) = P−1 Cov(X)P−t =
P−1ΣP−t = I. Hence Y ∼ N(0, I) and thus Y tY ∼ χ2

n. But Y tY = XtP−tP−1X =
XtΣ−1X. □

Hence with this lemma we obtain asymptotically

4

rσ2
θtΞθ = −8f(θ)

rσ2
∼ χ2

n

So

−8E(f(θ))

rσ2
= n

from which we deduce (1), using the conversion (2.5) and (2.4). Also asymptotically

P

(
−8f(θ)

rσ2
≤ z

)
= γ

Or

P

(
f(θ) ≥ −zrσ2

8

)
= γ

from which we deduce (2), again using the conversion (2.5) and (2.4).

2.3. The case of diagonal Hessian. In this section we assume

e(θ) = −
∑
i

eiθ
2
i

and furthermore that we are in the situation of Example 1.2) so that

E(cct) = (c21, . . . , c
2
n)

Then Statement (3) maybe refined as follows.
(4) The expectation value of θ

(j)
i , j = 1, . . . , n will converge linearly towards

θ̄(j) as
∼ e−i/λj

with the time constant λj given by

(2.6) λj =
C

4reic2j



5

We will now discuss some more detailed results. We have that θi(t) is normally
distributed, and moreover

E(θi(t)) = exp(−4rc2i eit/C)θi(0)

Var(θi(t) =
r(1− d)C

8ei
(1− exp(−8eirc

2
i t/C))

In particular we obtain

E(e(θ(t))) = −
∑
i

(
ei exp(−8rc2i eit/C)θ2i (0) +

r(1− d)C

8
(1− exp(−8rc2i eit/C))

)
Furthermore e(θ(t)) follows a generalized χ2-distribution [1]. The SPSA simula-
tor [5] contains routines to calculate the cumulative density function (CDF) and
the percent point function (PPF) for the generalized χ2-distribution. The CDF
routine was originally based on MATLAB code written by Abhranil Das [2] and
is based on Ruben’s algorithm [4]. Essentially in Ruben’s algorithm one develops
the characteristic function f(t) of a generalized χ2-distribution as a power series in
(1−2itp)−1/2 for a suitable chosen p. This leads to a description of the generalized
χ2-distribution as a mixture of ordinary scaled χ2

n+2i-distributions for i ≥ 0.
It follows from Ruben’s formulas that if exp(−8rc2i eit/C) = exp(−2t/λi) is small

then the distribution of e(θ(t)) satisfies approximately
ne(θ(t))

E(e(θ(t)))
∼ χ2

n

We have also shown that one has exactly
ne(θ(∞))

E(e(θ(∞)))
∼ χ2

n

It follows that
E(e(θ(t)))

E(e(θ(∞)))

serves as a scale factor to translate asymptotic location quantities (e.g. mean and
percentiles) into the corresponding quantities at time t for t ≫ 0.

Let us finally note that if c2i ei is independent of i so that we can put λ = λj then
we get the following elegant formula
(2.7) E(e(θ(t))) = E(e(θ(0))) exp(−2t/λ) + E(e(θ(∞)))(1− exp(−2t/λ))



6

2.4. Optimal approach. Fix −p. Starting from (2.7) we attempt to choose r in
such a way that E(e(θ(t))) = −p is achieved for the smallest possible t. To obtain
t from r we have to solve the following equation.

p = p0 exp(−rat) + br(1− exp(−rat))

with
p0 = −E(e(θ(0)))

a = 8c2i ei/C

b =
n(1− d)C

8

After some rescaling to eliminate parameters we obtain the universal equation
(2.8) exp(−RT ) +R(1− exp(−RT ))− p = 0

with

R =
br

p0

p =
p

p0

T =
p0at

b

Using (2.8) we may express T in terms of R, p. Then we may then determine R
such that ∂T (R, p)/∂R = 0. It seems this last step must be done numerically. The
following graph gives the optimal R in terms of p.

References
1. Wikipedia contributors, Generalized chi-squared distribution, https://en.wikipedia.org/w/

index.php?title=Generalized_chi-squared_distribution&oldid=958566492.

https://en.wikipedia.org/w/index.php?title=Generalized_chi-squared_distribution&oldid=958566492
https://en.wikipedia.org/w/index.php?title=Generalized_chi-squared_distribution&oldid=958566492


7

2. A. Das, MATLAB toolbox for classifying amongst normal distributions, https://github.com/
abhranildas/classify.

3. J. Kiiski, SPSA Tuner for Stockfish Chess Engine, https://github.com/zamar/spsa.
4. H. Ruben, Probability content of regions under spherical normal distributions. IV. The distri-

bution of homogeneous and non-homogeneous quadratic functions of normal variables, Ann.
Math. Statist. 33 (1962), 542–570.

5. M. Van den Bergh, A multi threaded simulator for the chess version of the SPSA algorithm
created by Joona Kiiski, https://github.com/vdbergh/spsa_simul.

6. , The accounting identiy, http://hardy.uhasselt.be/Fishtest/accounting_identity.
pdf.

https://github.com/abhranildas/classify
https://github.com/abhranildas/classify
https://github.com/zamar/spsa
https://github.com/vdbergh/spsa_simul
http://hardy.uhasselt.be/Fishtest/accounting_identity.pdf
http://hardy.uhasselt.be/Fishtest/accounting_identity.pdf

	1. The SPSA ``process''
	2. Main results
	2.1. Statements
	2.2. Derivations
	2.3. The case of diagonal Hessian
	2.4. Optimal approach

	References

