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1. Exact results

Assume given real numbers

a1 < a2 < · · · < aN

and a probability distribution

P : {a1, . . . , aN} → R : ai 7→ pi

Assume a sample taken from {a1, . . . , aN} according to P has sample distribution
(p̂i)i=1,...,N . We want to compute the corresponding MLE for the true distribution
(pi)i=1,...,N , subject to the condition that the latter’s expectation value is s. I.e.∑

i piai = s.
For simplicity we will assume

(1.1) a1 < s < aN ,∀i : p̂i 6= 0

Proposition 1.1. The ML distribution is unique. It is given by

(1.2) pi =
p̂i

1 + θ(ai − s)

where θ is the unique root of the equation

(1.3)
∑
i

p̂i(ai − s)

1 + θ(ai − s)
= 0

in the interval [−1/(aN − s), 1/(s− a1)].

Proof. We have to maximize the objective function

LLR((pi)i) =
∑
i

p̂i log pi

subject to the constraints

(1.4)

∑
i

pi = 1∑
i

aipi = s

pi > 0

The objective function is continuous on (1.4) and approaches −∞ on the boundary.
So it has at least one maximum. To prove that it has a unique maximum it suffices
to prove that there is a unique extremal value.
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Using Lagrange multipliers we have to determine the extremal values of∑
i

p̂i log pi − λ(
∑
i

pi − 1)− θ(
∑
i

piai − s)

We obtain

(λ+ θai)pi = p̂i

and hence by (1.1) λ+ θai 6= 0 so that

(1.5) pi =
p̂i

λ+ θai

where λ, θ must satisfy ∑
i

p̂i
λ+ θai

= 1(1.6)

∑
i

p̂iai
λ+ θai

= s(1.7)

Evaluating λ(1.6)+θ(1.7) we find

λ+ θs = 1

and hence λ = 1− θs and we immediately obtain (1.2) from (1.5).

If is clear that (1.6)(1.7) imply (1.3). Assume (1.3) holds. Then

1 =
∑
i

p̂i

=
∑
i

p̂i(1 + (ai − s)θ)

1 + (ai − s)θ

=
∑
i

p̂i
1 + (ai − s)θ

+ θ
∑
i

p̂i(ai − s)

1 + (ai − s)θ

so that (1.6) holds. On the other hand we also have∑
i

p̂i(1 + (ai − s)θ)

1 + (ai − s)θ
= (1− sθ)

∑
i

p̂i
1 + (ai − s)θ

+ θ
∑
i

p̂iai
1 + (ai − s)θ

We conclude that (1.7) holds, unless perhaps if θ = 0. If θ = 0 then λ = 1 and
(1.7) is equivalent to

µ̂ :=
∑
i

p̂iai = s

which also follows from (1.3).
Hence we have to solve (1.3) for θ. Moreover the fact that p ≥ 0 leads to the

additional constraint

p̂i > 0 ⇒ 1 + θ(ai − s) > 0

So we should have

θ > − 1

ai − s
if s < ai and p̂i > 0

θ <
1

s− ai
if s > ai and p̂i > 0



THE GENERALIZED LIKELIHOOD RATIO FOR THE EXPECTATION VALUE OF A MULTINOMIAL DISTRIBUTION3

By (1.1) this is equivalent to

θ ∈
]
− 1

aN − s
,

1

s− a1

[
One verifies that on this interval the left hand side of (1.3) is strictly descending
and goes from +∞ to −∞. Hence (1.3) has a unique solution. �

Remark 1.2. It is easy to see that Proposition 1.1 is still true under the weaker
hypothesis p̂1 > 0, p̂N > 0. Moreover if there are i, j such that ai < s < aj and
p̂i 6= 0, p̂j 6= 0 then a suitable analogue of Proposition 1.1 still holds (θ must be
in the interval between the poles of (1.3) which contains zero). If such i, j do not
exist then the description of the ML distribution is different. When (1.1) does not
hold it is easier in practice to deform p̂i a little bit so that it becomes true. One
may think of this as introducing a very weak prior.

Remark 1.3. (1.3) can be trivially solved numerically. For example using Newton’s
method.

2. Approximate results

Proposition 2.1. Let LLR be the generalized log-likelihood ratio for µ = µ0 versus
µ = µ1, divided by the sample size. Then we have

(2.1) LLR ∼=
1

2
log

(∑
i p̂i(µ0 − ai)

2∑
i p̂i(µ1 − ai)2

)
Proof. Let θ = θ(s) be the solution to (1.3). By (1.2) the corresponding maximal
log-likelihood value (divided by the sample size) is given by

(2.2) LL(s) := −
∑
i

p̂i log(1 + θ(s)(ai − s))

Developing the left hand side of (1.3) in a Taylor series in θ and keeping only the
first order term we get∑

i

p̂i(ai − s)− θ
∑
i

p̂i(ai − s)2 = µ̂− s− θ
∑
i

p̂i(ai − s)2

so that we get

(2.3) θ(s) ∼=
µ̂− s∑

i p̂i(ai − s)2

This is the only approximation we make in the proof. From (2.2) we obtain

LLR = −
∑
i

p̂i

∫ µ1

µ0

d

ds
log(1 + θ(s)(ai − s)) ds

= −
∑
i

p̂i

∫ µ1

µ0

θ′(s)(ai − s)− θ(s)

1 + θ(s)(ai − s)
ds

=

∫ µ1

µ0

θ(s) ds by (1.3)(1.6)

∼=
∫ µ1

µ0

µ̂− s∑
i p̂i(ai − s)2

ds by (2.3)
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On the other hand

d

ds
log

(∑
i

p̂i(s− ai)
2)

)
= 2

∑
p̂i(s− ai)∑

i p̂i(s− ai)2

= 2
s− µ̂∑

i p̂i(s− ai)2

so that we find

LLR ∼= −1

2

∫ µ1

µ0

d

ds
log

(∑
i

p̂i(s− ai)
2

)
ds

=
1

2
log

(∑
i

p̂i(µ0 − ai)
2

)
− 1

2
log

(∑
i

p̂i(µ1 − ai)
2

)
finishing the proof. �

Remark 2.2. Experiments show that the approximation (2.1) is very accurate.


