STOCHASTIC STOPPING IN RANDOM WALKS

MICHEL VAN DEN BERGH

1. Description

Let X be a random walk where the steps S follow a distribution θ . Assume we start in -u for $u \ge 0$ and we stop when $X \ge 0$. In that case the value of X is called the *overshoot*. In many cases the overshoot is undesirable. For example in the Sequential Probability Ratio Test (SPRT) it affects the characteristics. Below we sketch a simple procedure which makes the random walk stop exactly at 0 on average (conditioned on the random walk stopping at all, which is not automatic if E(S) < 0).

We will do this via function $q(\delta)$ such that if we are in position δ then we will either stop with probability $1 - q(\delta)$ or continue with probability $q(\delta)$. The requirement that on average the random walk should stop exactly at zero leads to the following condition for $q := q(\delta)$.

$$0 = (1-q)(-\delta) + q \int_{\delta}^{\infty} (y-\delta)\theta(y)dy$$

which solves to

(1)
$$q = \frac{\delta}{\delta + \int_{\delta}^{\infty} (y - \delta)\theta(y)dy}$$

If the distribution θ is discrete then the integral in the denominator becomes of course a sum.

The quantity $\int_{\delta}^{\infty} (y - \delta)\theta(y)dy$ is interesting. It turns out that in practice one can approximate it by replacing θ by a normal distribution $\phi((x - \mu)/\sigma)/\sigma$ with the same variance σ^2 and expectation value μ . In that case we compute

$$\begin{split} \int_{\delta}^{\infty} (y-\delta)\theta(y)dy &\cong \int_{\delta}^{\infty} \frac{y-\delta}{\sigma}\phi\left(\frac{y-\mu}{\sigma}\right)dy\\ &= \int_{\sigma z+\mu\geq\delta} (\sigma z+\mu-\delta)\phi(z)dz\\ &= \sigma\int_{\delta_{z}}^{\infty} (z-\delta_{z})\phi(z)dz \end{split}$$

with $\delta_z = (\delta - \mu)/\sigma$. The standard normal distribution has the interesting property

 $\phi'(z) = -z\phi(z)$

so that we obtain

$$\int_{\delta_z}^{\infty} (z - \delta_z) \phi(z) dz = \phi(\delta_z) - \delta_z (1 - \Phi(\delta_z))$$

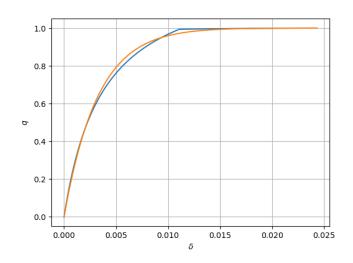


FIGURE 1.

for Φ the cumulative density function of ϕ . So substituting in (1) we get the final formula

$$q \cong \frac{\delta}{\delta + \sigma(\phi(\delta_z) - \delta_z(1 - \Phi(\delta_z)))}$$

2. EXAMPLE

Consider the following distribution

probability	value
0.00625	-0.02251619999999998600
0.23784	-0.011320799999999999000
0.50951	-0.00012539999999999427
0.23983	0.01107000000000000300
0.00657	0.022265399999999999800

Figure 1 shows both the exact value of q and the approximated one. Figure 2 shows both graphs if we are only allowed to stop every two steps.

3. PRACTICAL IMPLEMENTATION

The algorithm was implemented in the SPRT simulator https://github.com/vdbergh/simul and performs entirely satisfactorily.

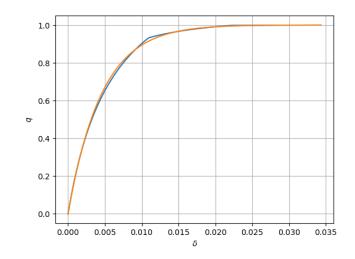


FIGURE 2.