
COMPUTING OPERATING CHARACTERISTICS FOR RANDOM

WALKS

Consider a random walk starting at x = 0 between lines x = a, x = b, a <
0 < b with increments Y having distribution F (y). To calculate the operating
characteristics (ignoring overshoots) we should proceed as follows. Consider

θ(s) :=

∫
esydF (y)

Then θ(0) = 1 and θ′′(s) > 0. Hence the equation

(1)

∫
esydF (y) = 1

has either a double root 0 or a unique (real) root 6= 0. The case of a double root
occurs when µ = θ′(0) = 0 where µ = E(Y ). I.e. when E(Y ) = 0. This will be
considered as a limiting case. See below.

For now we assume there is a root h 6= 0. We have

h < 0 ⇐⇒ µ > 0

The probability for crossing the line x = b first is approximately

(2) pb ∼=
1− eha

ehb − eha

The probability of crossing x = a first is pa := 1− pb. I.e.

pa ∼=
ehb − 1

ehb − eha

An approximate formula for the expected duration is

(3) E =
paa+ pbb

µ
∼= −

1

µ

−aehb + beha − (b− a)

(ehb − eha)

Unfortunately the above formulas may be numerically unstable since they depend
for example on the evaluation of ex − 1 where x may be very close to 0 leading to
catastrofic cancellation (this will happen if µ is very small). Therefore we introduce
functions φ1, φ2 via

ex = 1 + x+ xφ1(x)

and

(4) ex = 1 + x+
x2

2
+ x2φ2(x)

It it easy to evaluate φ1(x), φ2(x) robustly for small x using Taylor series. Substi-
tuting (4) in (1) and rescaling h = µe we must solve∫ (

1 + µey + µ2e2
y2

2
+ µ2e2y2φ2(µey)

)
dF (y) = 1

1
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or ∫ (
y + µe

y2

2
+ µey2φ2(µey)

)
dF (y) = 0

which is equivalent to (for m2 =
∫
y2dF (y)):

(5) 1 + e

(
m2

2
+

∫
y2φ2(µey)dF (y)

)
= 0

This equation can be solved efficiently using Newton’s method.

Remark. Note that (5) makes perfect sense for µ = 0 in which case we simply find

e = − 2

m2

as a solution. This is actually a good approximation for the solution in general if µ
is small, in which case we find

(6) h ∼= −2
µ

m2

∼= −2
µ

σ2

where σ is the standard deviation of Y . Applying the formulas (2,3) with h as in
(6) is the so-called “Brownian approximation”.

Now we evaluate (2) robustly. We calculate

pb =
1− eha

ehb − eha

=
−a− aφ1(ha)

b+ bφ1(hb)− a− aφ1(ha)

Similarly for (3)

E = − 1

µ

−a(1 + hb+ (hb)2

2 + (hb)2φ2(hb)) + b(1 + ha+ (ha)2

2 + (ha)2φ2(ha))− (b− a)

(1 + hb+ hbφ1(hb))− (1 + ha+ haφ1(ha))

= − 1

µ

−a(hb+ (hb)2

2 + (hb)2φ2(hb)) + b(ha+ (ha)2

2 + (ha)2φ2(ha))

(hb+ hbφ1(hb))− (ha+ haφ1(ha))

= − 1

µ

−ab(h+ h2b
2 + h2bφ2(hb)) + ba(h+ h2a

2 + h2aφ2(ha))

(hb+ hbφ1(hb))− (ha+ haφ1(ha))

= −hab
µ

−( b
2 + bφ2(hb)) + (a

2 + aφ2(ha))

(b+ bφ1(hb))− (a+ aφ1(ha))

= eab
( b
2 + bφ2(hb))− (a

2 + aφ2(ha))

(b+ bφ1(hb))− (a+ aφ1(ha))

Remark. It is well known how to deduce (3) from (2). We may give a heuristic
proof of (2) as follows.

Let g(z) be the probability that the above random walk starts in x = z and ends
on the line x = b. Then g(z) is determined by the equation

(7) g(z) =

∫
g(z + y)dF (y) for a ≤ z ≤ b

with boundary conditions

(8)
g(z) = 0 for z ≤ a
g(b) = 1 for z ≥ b
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Clearly (2) is equivalent to

(9) g(z) =
1− eh(a−z)

eh(b−z) − eh(a−z)
It is clear that the righthand side of (9) does not satisfy (8). However it satisfies (8)
for z = a and z = b. Since we are looking for an approximate solution, let’s be
satisfied with that.

We now show that (9) satisfies for all z in fact (7). We calculate∫
g(z + y)dF (y) =

∫
1− eh(a−z−y)

eh(b−z−y) − eh(a−z−y)
dF (y)

=

∫
ehy − eh(a−z)

eh(b−z) − eh(a−z)
dF (y)

=
1

eh(b−z) − eh(a−z)

(∫
ehyf(y)dy − eh(a−z)

∫
dF (y)

)
= g(z)


