COMPUTING OPERATING CHARACTERISTICS FOR RANDOM
WALKS

Consider a random walk starting at © = 0 between lines z = a, x = b, a <
0 < b with increments Y having distribution F(y). To calculate the operating
characteristics (ignoring overshoots) we should proceed as follows. Consider

o) i= [ erar()

Then 6(0) =1 and 6”(s) > 0. Hence the equation

(1) [erar) =1

has either a double root 0 or a unique (real) root # 0. The case of a double root
occurs when p = 6’(0) = 0 where p = E(Y). Le. when E(Y) = 0. This will be
considered as a limiting case. See below.

For now we assume there is a root h % 0. We have

h<0 <= >0

The probability for crossing the line z = b first is approximately

1 — eha

(2) Po= 55 oha

The probability of crossing x = a first is p, := 1 — pp. Le.

et — 1
p b ha
@ = ohb _ gha
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An approximate formula for the expected duration is

1 1 (et —eh)

Unfortunately the above formulas may be numerically unstable since they depend
for example on the evaluation of e* — 1 where z may be very close to 0 leading to
catastrofic cancellation (this will happen if i is very small). Therefore we introduce
functions ¢, ¢o via

3) EﬁpaaqtpbbEilfaehbereh“f(bfa)

e =14z +xp1(x)

and

2
X
(4) " =1+a+ 5 +2h(x)

It it easy to evaluate ¢1(x), ¢2(x) robustly for small x using Taylor series. Substi-
tuting (4) in (1) and rescaling h = e we must solve

2
y
/ <1 +pey + pte? T+ ﬂ262y2¢2(u6y)> dF(y) =1
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or
2
/ (y + ue% + uey2¢2(uey)) dF(y) =0
which is equivalent to (for mo = [ y?dF(y)):
m
6 L (B4 [olpenar)) -0

This equation can be solved efficiently using Newton’s method.

Remark. Note that (5) makes perfect sense for = 0 in which case we simply find
2

e=——
ma

as a solution. This is actually a good approximation for the solution in general if u
is small, in which case we find

(6) he ot
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where o is the standard deviation of Y. Applying the formulas (2,3) with h as in
(6) is the so-called “Brownian approximation”.

Now we evaluate (2) robustly. We calculate
_ 1—ehe
Pb = b gha
—a — a¢:(ha)
b+ bo1(hd) — a — apy(ha)

Similarly for (3)

o _l—a(+hb+ GO 4 (hb)2¢(hb)) + b(1 + ha + P22 + (ha)2¢y(ha)) — (b— a)

] (14 hb + hbp1(hd)) — (1 + ha + hags(ha))
1 —a(hb+ Y22 4 (hb)2a(hb)) + b(ha + 222 1 (ha)2gy(ha))
W (hb + hbp1(hb)) — (ha + hagy(ha))
1 —ab(h + 2 4 h2bpo(hb)) + ba(h + 22& + h2ags(ha))
7 (hb + hbp1(hd)) — (ha + hagr(ha))
_hab —(§ + bz (hb)) + (§ + ada(ha))
p (b+bgi(hd)) — (a+ agi(ha))
(5 + bp2(hb)) — (§ + agz(ha))
(b+ b1 (kb)) — (a + ap1(ha))
Remark. It is well known how to deduce (3) from (2). We may give a heuristic
proof of (2) as follows.

Let g(z) be the probability that the above random walk starts in 2 = z and ends
on the line x = b. Then ¢(z) is determined by the equation

(7) o(2) = / g(z+y)dF(y) fora<z<b

with boundary conditions

(8)

= eab

g(z) =0 forz<a
g(b)=1 forz>b



COMPUTING OPERATING CHARACTERISTICS FOR RANDOM WALKS 3

Clearly (2) is equivalent to
1— 6h(afz)
(9) g(Z) = eh(b—2) _ gh(a—=z)

It is clear that the righthand side of (9) does not satisty (8). However it satisfies (8)
for z = a and z = b. Since we are looking for an approximate solution, let’s be
satisfied with that.

We now show that (9) satisfies for all z in fact (7). We calculate

1— eh(a—z—y)
/ g(z 4+ y)dF(y) = / ey F W)
ehy _ ghla—2)
- / oh(b—2) _ ghla—=2) dF(y)
1 a—=z
T Gh(b—2) _ ghla—2) (/ e f(y)dy — @) / dF(y>>
9(2)




