COMPUTING OPERATING CHARACTERISTICS FOR RANDOM WALKS

Consider a random walk starting at x = 0 between lines x = a, x = b, a < 0 < b with increments Y having distribution F(y). To calculate the operating characteristics (ignoring overshoots) we should proceed as follows. Consider

$$\theta(s) := \int e^{sy} dF(y)$$

Then $\theta(0) = 1$ and $\theta''(s) > 0$. Hence the equation

(1)
$$\int e^{sy} dF(y) = 1$$

has either a double root 0 or a unique (real) root $\neq 0$. The case of a double root occurs when $\mu = \theta'(0) = 0$ where $\mu = E(Y)$. I.e. when E(Y) = 0. This will be considered as a limiting case. See below.

For now we assume there is a root $h \neq 0$. We have

 $h < 0 \iff \mu > 0$

The probability for crossing the line x = b first is approximately

(2)
$$p_b \cong \frac{1 - e^{ha}}{e^{hb} - e^{ha}}$$

The probability of crossing x = a first is $p_a := 1 - p_b$. I.e.

$$p_a \cong \frac{e^{hb} - 1}{e^{hb} - e^{ha}}$$

An approximate formula for the expected duration is

(3)
$$E = \frac{p_a a + p_b b}{\mu} \cong -\frac{1}{\mu} \frac{-a e^{hb} + b e^{ha} - (b-a)}{(e^{hb} - e^{ha})}$$

Unfortunately the above formulas may be numerically unstable since they depend for example on the evaluation of $e^x - 1$ where x may be very close to 0 leading to catastrofic cancellation (this will happen if μ is very small). Therefore we introduce functions ϕ_1 , ϕ_2 via

$$e^x = 1 + x + x\phi_1(x)$$

and

(4)
$$e^{x} = 1 + x + \frac{x^{2}}{2} + x^{2}\phi_{2}(x)$$

It it easy to evaluate $\phi_1(x)$, $\phi_2(x)$ robustly for small x using Taylor series. Substituting (4) in (1) and rescaling $h = \mu e$ we must solve

$$\int \left(1 + \mu ey + \mu^2 e^2 \frac{y^2}{2} + \mu^2 e^2 y^2 \phi_2(\mu ey)\right) dF(y) = 1$$

or

$$\int \left(y + \mu e \frac{y^2}{2} + \mu e y^2 \phi_2(\mu e y)\right) dF(y) = 0$$

which is equivalent to (for $m_2 = \int y^2 dF(y)$):

(5)
$$1 + e\left(\frac{m_2}{2} + \int y^2 \phi_2(\mu e y) dF(y)\right) = 0$$

This equation can be solved efficiently using Newton's method.

Remark. Note that (5) makes perfect sense for $\mu = 0$ in which case we simply find

$$e = -\frac{2}{m_2}$$

as a solution. This is actually a good approximation for the solution in general if μ is small, in which case we find

(6)
$$h \cong -2\frac{\mu}{m_2} \cong -2\frac{\mu}{\sigma^2}$$

where σ is the standard deviation of Y. Applying the formulas (2,3) with h as in (6) is the so-called "Brownian approximation".

Now we evaluate (2) robustly. We calculate

$$p_b = \frac{1 - e^{ha}}{e^{hb} - e^{ha}}$$
$$= \frac{-a - a\phi_1(ha)}{b + b\phi_1(hb) - a - a\phi_1(ha)}$$

Similarly for (3)

$$\begin{split} E &= -\frac{1}{\mu} \frac{-a(1+hb+\frac{(hb)^2}{2}+(hb)^2\phi_2(hb))+b(1+ha+\frac{(ha)^2}{2}+(ha)^2\phi_2(ha))-(b-a)}{(1+hb+hb\phi_1(hb))-(1+ha+ha\phi_1(ha))} \\ &= -\frac{1}{\mu} \frac{-a(hb+\frac{(hb)^2}{2}+(hb)^2\phi_2(hb))+b(ha+\frac{(ha)^2}{2}+(ha)^2\phi_2(ha))}{(hb+hb\phi_1(hb))-(ha+ha\phi_1(ha))} \\ &= -\frac{1}{\mu} \frac{-ab(h+\frac{h^2b}{2}+h^2b\phi_2(hb))+ba(h+\frac{h^2a}{2}+h^2a\phi_2(ha))}{(hb+hb\phi_1(hb))-(ha+ha\phi_1(ha))} \\ &= -\frac{hab}{\mu} \frac{-(\frac{b}{2}+b\phi_2(hb))+(\frac{a}{2}+a\phi_2(ha))}{(b+b\phi_1(hb))-(a+a\phi_1(ha))} \\ &= eab\frac{(\frac{b}{2}+b\phi_2(hb))-(\frac{a}{2}+a\phi_2(ha))}{(b+b\phi_1(hb))-(a+a\phi_1(ha))} \end{split}$$

Remark. It is well known how to deduce (3) from (2). We may give a heuristic proof of (2) as follows.

Let g(z) be the probability that the above random walk starts in x = z and ends on the line x = b. Then g(z) is determined by the equation

(7)
$$g(z) = \int g(z+y)dF(y) \quad \text{for } a \le z \le b$$

with boundary conditions

(8)
$$g(z) = 0 \quad \text{for } z \le a$$
$$g(b) = 1 \quad \text{for } z \ge b$$

Clearly (2) is equivalent to

(9)
$$g(z) = \frac{1 - e^{h(a-z)}}{e^{h(b-z)} - e^{h(a-z)}}$$

It is clear that the righthand side of (9) does *not* satisfy (8). However it satisfies (8) for z = a and z = b. Since we are looking for an approximate solution, let's be satisfied with that.

We now show that (9) satisfies for all z in fact (7). We calculate

$$\begin{split} \int g(z+y)dF(y) &= \int \frac{1 - e^{h(a-z-y)}}{e^{h(b-z-y)} - e^{h(a-z-y)}} dF(y) \\ &= \int \frac{e^{hy} - e^{h(a-z)}}{e^{h(b-z)} - e^{h(a-z)}} dF(y) \\ &= \frac{1}{e^{h(b-z)} - e^{h(a-z)}} \left(\int e^{hy} f(y) dy - e^{h(a-z)} \int dF(y) \right) \\ &= g(z) \end{split}$$