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1. Introduction

Normalized Elo is introduced here [4]. The primary motivation for normalized
Elo is that it is a measure for the amount of games it takes to prove that one engine
is stronger than another, with a given level of significance. In other words it is an
objective measure of strength difference.

In this document we make some cosmetic changes to the terminology introduced
in loc. cit. In particular what was called “normalized Elo” will now be called
“normalized t-value” and we redefine normalized Elo as the normalized t-value
multiplied by an appropriate normalization constant. This is done to make the
comparison with ordinary logistic Elo more intuitive.

2. Background

The normalized t-value for the strength difference of two engines is defined as

tn :=
µ− 1/2

σpg

where µ is the expected score and σpg is the standard deviation of the expected
score per game. In the trinomial case σpg is the standard deviation of the outcome
distribution of a game, scored as 0, 1/2, 1. In the pentanomial case, σpg is the
standard deviation of the outcome distribution multiplied by

√
2, where we score

the outcome of a game pair as 0, 1/4, 2/4, 3/4, 1.
The justification for this convention is that, whatever testing system we use, the

normalized t-value t̂n of a test is defined to be the usual t-value divided by the
square root of the number of games. Then tn is the asymptotic expectation value
of t̂n. More precisely, asymptotically we have

t̂n ∼ N(tn,
1

N
)

where N is the number of games.

In the trinomial case or in the pentanomial case with a perfectly balanced book
we have

(2.1) σpg =
1

2

√
1− d

where d is the draw ratio.
1
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3. Normalization

Below we put

S(x) =
1

1 + 10−x/400

This is the function which converts ordinary (“logistic”) Elo into an expected score.
It is convenient to write

S(x) = L(βx)

where β = log(10)/400 and L is the usual logistic function

L(x) =
1

1 + e−x

L satisfies the functional equation

L′(x) = L(x)(1− L(x))

Let

Ce/t :=
2

β
=

800

log(10)
∼= 347.43

We claim that for small Elo differences we have

(3.1) tn ∼=
1

Ce/t

el
2σpg

where el is the logistic Elo difference between two engines. To see this note

el ∼= (s−S(0))/S′(0) = (s−1/2)/(βL′(0)) = (s−1/2)/(1/2(1−1/2)β) = 4(s−1/2)/β

Hence
1

Ce/t

el
2σpg

∼=
β

2

4

β

s− 1/2

2σpg
=

s− 1/2

σpg
= tn

We define the normalized Elo difference between two engines as

(3.2) en := Ce/ttn

In case of a perfectly balanced book it follows from (2.1) and (3.1) that

(3.3) en ∼=
el√
1− d

This simple formula is the motivation for the normalization introduced in (3.2).
We see in particular that for d = 0 normalized Elo and logistic Elo coincide. For
other draw ratios we have the following conversion table.

Draw ratio 0.00 0.30 0.50 0.60 0.70 0.80 0.90

Normalized Elo 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Logistic Elo 5.00 4.18 3.54 3.16 2.74 2.24 1.58

Let us now discuss the duration of an SPRT test for H0:en = en,0 versus H1 :
en = en,1. Under the assumption that the the Type I/II error probabilities are
given by α = β = 0.05 we get that the worst case expectation duration (which
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corresponds to the actual Elo being half way between H0 and H1) of the test is
given by

(3.4) T =
D

(en,1 − en,0)2

where
D := C2

e/t log(19)
2 ∼= 1046535

This leads to the following table

Normalized Elo difference 1 2 3 4 5 6

Expected duration 1046535 261634 116282 65408 41861 29070

Note that D is close to 1000000 which is sufficiently accurate for back of the
envelope calculations.

Let us derive the formula (3.4). We may equivalently consider an SPRT of
tn = tn,0 versus tn = tn,1. Let us suppose that σpg is known (see §4.2 below for
a discussion) so it is sufficient to consider an SPRT test for µ = s0 versus µ = s1,
for suitable s0, s1. According to [6] the expected duration of such a test, when the
actual score is µ is equal to

T =
T (hµ)

w2

where

w =
s1 − s0
σpg

= tn,1 − tn,0

hµ =
2µ− (s0 + s1)

s1 − s0
=

2tn − (tn,0 + tn,1)

tn,1 − tn,0

T (h) =
2b

h

1− e−hb

1 + e−hb

b = log

(
1− α

α

)
when the Type I/II error probabilities are both equal to α.

The worst case is given when tn = (tn,0 + tn,1)/2. In that case µ = (s0 + s1)/2
and hence hµ = 0. Applying l’Hôpital’s rule we find

T =
T (0)

(tn,1 − tn,0)2
=

b2

(tn,1 − tn,0)2
=

C2
e/tb

2

(en,1 − en,0)2

If α = 0.05 then b = log(19) and we obtain (3.4).

For completeness we note that in case tn = tn,0 or tn = tn,1 the expected duration
is given by a similar formula as (3.4) where the numerator is replaced by

D′ :=
9C2

e/t log(19)

5
∼= 639770
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4. LLR computation

What we call an SPRT is strictly speaking a GSPRT [7] which is based on
monitoring the Generalized Log Likelihood Ratio (which we denote by LLR below)
of H1 versus H0. See [2] for an introduction.

4.1. The exact LLR. Assume given real numbers
a1 < a2 < · · · < al

and a discrete probability distribution
P : {a1, . . . , al} → R : ai 7→ pi .

with mean µ and standard deviation σ. Assume a sample taken from {a1, . . . , aN}
according to P has sample distribution (p̂i)i=1,...,N . Let µref be some reference
value. Put

(4.1) t =
µ− µref

σ
,

We will give a numerical procedure to compute the MLE for the (pi)i given the
empirical distribution p̂, subject to the constraint t = t∗ for a given t∗. Although
in practice this procedure appears to converge rapidly, as confirmed by simulation,
we mention the following caveats:

• we have not proved that the MLE is unique;
• we have not proved convergence, rapidly or not.

Anyway, keeping this in mind, we explain the procedure. We must maximize

(4.2)
∑
i

p̂i log pi

subject to ∑
i

pi = 1(4.3)

µ− µref − t∗σ = 0(4.4)
Let (mi)i≥0 be the moments of P . We rewrite (4.4) as

(4.5) ϕ(P ) := m1 − µref m0 − t∗

√
m2m0 −m2

1 = 0

The distinguishing feature of ϕ is that it is homogeneous of degree 1 in (pi)i. We
will now assume that ϕ(P ) is an arbitrary expression in (pi)i, homogeneous of
degree κ 6= 0. To compute the extremal value(s?) of (4.2) subject to (4.3) and
the condition ϕ(P ) = 0 we use Lagrange multipliers. That is we need to solve
∂ϕ̃/∂pi = 0 where

ϕ̃(P ) =
∑
i

p̂i log pi − λ(
∑
i

pi − 1)− θϕ(P )

where in addition (4.3) and ϕ(P ) = 0 are satisfied. Or in other words

(4.6) p̂i
pi

= λ+ θϕi(P ) = 0, i = 1, . . . , l

for ϕi = ∂ϕ/∂pi. For use below we note the Euler identity

(4.7)
∑
i

piϕi(P ) = κϕ(P )
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Rewriting (4.6) as
p̂i = pi(λ+ θϕi(P ))

and summing over i, using (4.3), ϕ(P ) = 0 and (4.7) we obtain λ = 1. Conversely
if λ = 1 then

∑
i pi = 1. In other words we are reduced to solving the following

system:

(4.8)
pi(1 + θϕi(P )) = p̂i i = 1, . . . , l∑

i

piϕi(P ) = 0

where we have used (4.7) again (here we use κ 6= 0 to have that (4.8) implies
ϕ(P ) = 0). This suggests the following numerical procedure for solving (4.8).

Assume we have an estimate Pn for the MLE distribution. Then determine θn+1

such that

(4.9)
∑
i

p̂iϕi(Pn)

1 + θn+1ϕi(Pn)
= 0

and put

(4.10) pn+1,i =
p̂i

1 + θn+1ϕi(Pn)
, i = 1, . . . , l

Note that automatically
∑

i pn+1,i = 1 (excercise). In order to have 0 ≤ pn+1,i we
should only consider solutions of (4.9) satisfying.

−1/v ≤ θn+1 ≤ −1/u

where u = mini ϕi(Pn), v = maxi ϕi(Pn) (such solutions are unique). Furthermore
in order for (4.9) to have a solution we also should have uv < 0.

In the case where ϕ(P ) is as in (4.5) then we obtain

ϕi(P ) = ai − µref −
1

2
t∗σ

(
1 +

(
ai − µ

σ

)2
)

so we should use this expression in (4.9) and (4.10).

The question remains what we should take for P0. An obvious choice is P0 = p̂
but then it sometimes happens that the condition uv < 0 is not satisfied. A much
safer choice seems to be a uniform distribution. I.e. ∀i : pi = 1/l.

4.2. An approximation. In [5] a relatively elegant method was given to compute
the LLR for an SPRT for the mean of a multinomial distribution. In fact this can
be obtained from the approach in §4.1 by taking ϕ(P ) = m1 − s∗m0.

In [5] an approximation for the LLR was derived and in [3] this was compared
to the exact one. It seems a good strategy to use this approximation if in addition
we estimate σ (necessary to convert the mean into a t-value) from the test itself.

Then by [5] the LLR for an SPRT of H0:µ = s0 versus H1:µ = s1 may be
approximated by

(4.11) LLR ∼=
n

2
log

(∑
i p̂i(s0 − ai)

2∑
i p̂i(s1 − ai)2

)
=

n

2
log

(
(µ̂− s0)

2 + σ̂2

(µ̂− s1)2 + σ̂2

)
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where n is the sample size. Put

(4.12) t̂ =
µ̂− µref

σ̂
, t0 =

s0 − µref
σ

, t1 =
s1 − µref

σ

Remark 4.1. In the context of the pentanomial model described above, µref = 1/2,
n = N/2 and the t-values in (4.12) are the normalized t-values multiplied by

√
2.

In the trinomial case the t-values coincide with the normalized ones.

Assuming that σ̂ is a good approximation for σ we find from (4.11)

(4.13) LLR ∼=
n

2
log

(
1 + (t̂− t0)

2

1 + (t̂− t1)2

)
It is however a bit inelegant that (4.13) does not reduce to the corresponding
trinomial approximation, even with a perfectly balanced book. Taking advantage
of the fact that in practice t̂, t0 and t1 will be small compared to 1 and combining
Remark 4.1 with the fact that for small x we have 1 + 2x ∼= (1 + x)2 we arrive at
our final formula

(4.14) LLR ∼=
N

2
log

(
1 + (t̂n − tn,0)

2

1 + (t̂n − tn,1)2

)
which is valid both in the trinomial and pentanomial case. That (4.14) performs
entirely satisfactorily is confirmed by simulation. See [1].

Remark 4.2. As t̂, t0 and t1 will be small compared to 1, (4.14) can be further
approximated by

(4.15) LLR ∼=
N

2
((t̂n − tn,0)

2 − (t̂n − tn,1)
2) =

N

2
(tn,1 − tn,0)(2t̂n − tn,0 − tn,1)

This formula works just as well but it needs to be regularized in some way. Indeed
at the beginning of a test (say after a few game pairs with identical outcomes) σ̂
will still be very small1 and hence t̂ may be spuriously large. Then the same will
be true for (4.15).

It is easy to see that for small tn,0, tn,1 the extremal values of the the log-factor
in (4.14) are ∼= ±(tn,1−tn,0). This suggests an easy to use regularization rule which
applies to (4.15) but also to other approximations: LLR /N should be clamped to
the interval [−(tn,1 − tn,0)/2, (tn,1 − tn,1)/2].
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