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1. Introduction

It is often discussed how one should compare the suitability for engine testing
of opening books with different characteristics (balanced versus unbalanced, draw-
ishness). Here we answer this question. A lot of inspiration came from Kai Laskos’
empirical results posted on talkchess as well as from his comments. Credit goes
also to him for first noting that the trinomial model is insufficient for working with
unbalanced openings.

2. Normalized Elo

The primary purpose of an engine test is to show that one engine is stronger
than another. The amount of evidence gathered from a test can be expressed by
its “t-value”.

(2.1) t =
ŝ− 1/2

σ̂(ŝ)

where ŝ = ŵ + (1/2)d̂ is the score of a match (with ŵ, d̂, l̂ being the empirical
WDL-ratios) and σ̂(ŝ) is empirical standard deviation of this score. Note that the
null-hypothesis is s = 1/2 and hence t = 0. The relation between the t-value and
the more commonly used Likelihood Of Superiority is

LOS = Φ(t)

where Φ is the cumulative distribution function of a normal distribution with unit
variance and zero mean. The corresponding p-value is

p = 1− LOS

The disadvantage of (2.1) is that σ̂(ŝ) depends on the number of games N in
the test via

σ̂(ŝ) =
σ̂0√
N

where σ0 refers to the standard deviation of a single game. So

t =
√
N
ŝ− 1/2

σ̂0

So to compare opening books we should really use the normalized quantity.

(2.2) t0 =
ŝ− 1/2

σ̂0
1
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In the case of balanced openings we find

(2.3) t0 =
ŝ− 1/2√
ŵ + 1

4 d̂− ŝ2

Remark 2.1. In the case of unbalanced openings with paired games with reversed

colors the formula σ̂0 =
√
ŵ + 1

4 d̂− ŝ2 over estimates σ̂0 and we should use the

pentanomial model instead [2]. See §4.

Remark 2.2. Note

(2.4) σ(t0) =
1√
N

so a 95%-confidence interval for t0 is given by

(2.5)

[
t0 −

1.96√
N
, t0 +

1.96√
N

]
It makes sense to call t0 “normalized elo” since the result of an engine match

is usually expressed as elo± error where a 95%-confidence interval is assumed and
then in good approximation

(2.6) t0 ∼=
1.96 elo

error
√
N

Other reasonable names for t0 are “sensitivity” (when measured under a standard
set of conditions) or “signal-to-noise ratio” (see §3).

Remark 2.3. It is easy to see that t0 is independent of linear reparametrizations of
the outcome scoring. Hence we may score wins, draws, losses as −1, 0, 1. Then we
find

t0 =
ŵ − l̂√

ŵ + l̂ − (ŵ − l̂)2

which yields the approximation

(2.7) t0 =
t′0√

1− t′20

with

(2.8) t′0 =
ŵ − l̂√
ŵ + l̂

For small elo differences we obtain

(2.9) t0 = t′0 +
1

2
t′30 + · · ·

so that we may use t0 and t′0 interchangeably.
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Remark 2.4. We have

t′0 =
ŵ − l̂√
1− d̂

= 2
ŝ− 1/2√

1− d̂
For small elo differences we have

ŝ− 1/2 ∼=
log(10)

1600
elo

so that we also find

t′0
∼=

log(10)

800

elo√
1− d̂

which gives the approximation

(2.10) t0 ∼= t′0
∼= 0.002878

elo√
1− d̂

Remark 2.5. A typical setup to measure sensitivity is a self match with time odds
using a well known engine. This reduces the number of parameters involved in
setting up the testing environment. Time doubling seems reasonable although it is
unknown if results for large elo differences truly extrapolate to small elo differences.

3. Signal-to-noise ratio

Here we present a different point of view on “normalized elo”. In engineering a
signal is decomposed1 as

X = Xs +Xn

where Xs is the true signal and Xn is the noise added to it. The power ratio
between the two components of X is the signal-to-noise ratio (SNR)

SNR =

∫
Xs(t)

2 dt∫
Xn(t)2 dt

As noise will typically have zero mean we may also write

SNR =

(
RMS(Xs)

σ(Xn)

)2

where RMS stands for “root mean square”:

RMS(Xs) =

√
1

T

∫ T

0

Xs(t)2 dt

We can view an engine match as a noisy DC-signal where Xs is the expected
score s minus 1/2 and Xn is the difference between the game outcome ∈ {0, 1/2, 1}
and s. We then find

SNR ∼= t20

1A signal will typically be sent over the wire by modulating the properties of a carrier signal,
which has its own power content. Here we assume that the signal has already been demodulated.
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4. The pentanomial model

Let O := {0, 1/2, 1, 3/2, 2} be the set of possible outcomes of game pairs and let
(p̂i)i∈O be the corresponding sample distribution. Let

ŝ2 :=
∑
i∈O

p̂ii = 2ŝ

be the average outcome of a game pair. Then we get

σ̂(ŝ2) =
1√
N/2

√∑
i∈O

p̂ii2 − ŝ22

So for the t-value we obtain

t =
ŝ2 − 1

1√
N/2

√∑
i∈O p̂ii

2 − ŝ22

Normalizing (dividing by
√
N) we get

(4.1) t0 =
√

2
ŝ− 1/2√∑
i∈O p̂ii

2 − 4ŝ2

5. Normalized elo and engine testing

5.1. Introduction. Below we will refer to a context as the conditions under which
an individual game (or perhaps game pair) takes place in an engine match. Tra-
ditionally a context consists of a book and a time control. Other ingredients of a
context could be certain engine settings (like contempt or hash size) and adjudi-
cation rules. As a general principle we will decorate quantities with a subscript to
indicate the context under which they are measured.

For a context D and engines X and Y we denote in this section the normalized
elo difference by NED(X,Y ) (rather than the adhoc notation t0 which we used
above).

Remark 5.1.1. By (2.5) NED(X,Y ) is a well defined quantity. It can be mea-

sured with precision O(1/
√
N) using a fixed length match with N games using the

context D.

Now let us define for contexts C,D:

(5.1) NED/C(X,Y ) :=
NED(X,Y )

NEC(X,Y )

It follows from Remark 5.1.1 that NED/C(X,Y ) is also a well defined quantity that
can be measured to any desired degree of precision.

Now the idea is that NED/C(X,Y ) should only be weakly dependent on X,Y so
that in fact we may write

(5.2) NED/C = NED/C(X,Y )

We will call this the weak dependency hypothesis. We may call NED/C the relative
sensitivity of context D compared to context C.
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Remark 5.1.2. Of course in the generality we have stated it, the weak dependency
hypothesis will be trivially false. It is more likely to be somewhat correct when X is
a patched version of Y and Y is a patched version of some base engine Z. But even
then the hypothesis should probably be interpreted statistically since for example
in the case of an increase in time control there could be “well scaling patches”
and “badly scaling patches”. Below we will ignore such subtleties to simplify the
exposition.

Remark 5.1.3. Under the trinonial model we have by (2.10)

NED(X,Y )

NEC(X,Y )
∼=

√
1− dC(X,Y )

1− dD(X,Y )

eloD(X,Y )

eloC(X,Y )

where eloD(−) is the standard logistic elo difference for D and dD(−) is the draw
ratio. It is well known that for closely related engines X, Y the draw ratio is already
quite independent of X and Y . So the weak dependency hypothesis is more or less
the same as the hypothesis that there is is a scaling factor for logistic elo measured
under the contexts C and D which is weakly dependent on X,Y .

We will prove (somewhat heuristically)

Theorem 5.1.4. Assume the weak dependency hypothesis holds. Let C, D and let
S = SPRTC(0, e), T = SPRTD(0, f) be SPRT’s using the indicated contexts C,D
which have the same power to separate the engines X,Y if their elo difference is e
under context C. More precisely we assume.
(5.3)

PS(H1 accepted | eloC(X,Y ) = 0) = PT (H1 accepted | eloC(X,Y ) = 0) = α

PS(H0 accepted | eloC(X,Y ) = e) = PT (H0 accepted | eloC(X,Y ) = e) = β

For R ∈ {S, T} let NR(X,Y ) be the expected number of games for a test R to finish.
Then

(5.4)
NS(X,Y )

NT (X,Y )
= NE2

D/C

Remark 5.1.5. We have seen in §3 that NEC(X,Y ) is the square root of the signal-
to-noise ratio for an engine match. So (5.4) shows that the relative effort required
to separate two engines using contexts C,D is proportional to the relative SNR. I
consider this to be a very intuitively plausible statement.

Remark 5.1.6. The analogue of Theorem 5.1.4 for fixed length tests is trivial to
prove.

5.2. Proof of Theorem 5.1.4. We will work somewhat more generaly, using the
results in [1]. Assume that φ is some quantity we are measuring. An SPRT (or
GSPRT) of H0 : φ = φ0 against H1 : φ = φ1 is (asymptotically) a sequential test
based on monitoring

LLRM =
1

2

(φ1 − φ0)(2φ̂M − φ0 − φ1)

V (φ̂M )

with continuation region
A ≤ LLRM ≤ B

where
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(1) A,B depend on the error probablities α, β in the usual way.

(2) φ̂M is the maximum likelihood estimator of φ after M observations.

(3) V (φ̂M ) is an estimate for the variance of φ̂M .

We will consider the special case that

(5.5) φ̂M =
X1 + · · ·+XM

M
where Xi are identically distributed independent random variables with mean φ
and variance σ2. Then we get

LLRM =
(φ1 − φ0)(

∑M
i=1(Xi − (φ0 + φ1)/2))

σ2

So (LLRM )M may be approximated by a Brownian motion with drift m and infin-
itesimal variance s2 given by

m =
(φ1 − φ0)(

∑M
i=1(φ− (φ0 + φ1)/2))

σ2
= s2φ̄

s2 =
(φ1 − φ0)2

σ2

where φ̄ measures the relative position of φ in the interval [φ0, φ1] in such a way
that φ̄ = −1 corresponds to φ = φ0 and φ̄ = 1 corresponds to φ = φ1. The formula
for the expected boundary crossing time of such a Brownian motion is

N = −m−1−Ae
−γB +Be−γA − (B −A)

e−γB − e−γA
where

γ = 2
m

s2
= 2φ̄

So

(5.6) N =

(
σ

φ1 − φ0

)2

× [· · · ]

where [· · · ] depends only on φ̄.
Now we assume that we are in the situation of Theorem 5.1.4 so that2 φ = φC =

eloC(X,Y ). By the weak dependency hypothesis we have

eloD(X,Y )

σD
= NED/C

eloC(X,Y )

σC

It follows that to satisfy the conditions (5.3) we should put

f = eNED/C
σD
σC

Since all we are doing is a rescaling it is clear that φD = eloD(X,Y ) satisfies
φ̄D = φ̄C (note that φ̄C is computed with respect to the bounds [0, e] and φ̄D is
computed with respect to the bounds [0, f ]). From (5.6) we get

NS
NT

=
(σC
e

)2/(
σD
f

)2

= NE2
D/C

2Small elo differences are proportional to the difference between the win and the loss ratio. So
(5.5) holds in good approximation.
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which finishes the proof.
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