COMPARING THE APPROXIMATIONS FOR THE GENERALIZED LOG LIKELIHOOD RATIO OF A MULTINOMIAL DISTRIBUTION

MICHEL VAN DEN BERGH

1. Introduction and statement of the results

We recall some results from [2]. Assume given real numbers

$$a_1 < a_2 < \dots < a_N$$

and a discrete probability distribution

$$P: \{a_1, \ldots, a_N\} \to \mathbb{R}: a_i \mapsto p_i$$
.

Assume a sample taken from $\{a_1,\ldots,a_N\}$ according to P has sample distribution $(\hat{p}_i)_{i=1,\ldots,N}$. We want to compute the corresponding MLE for the true distribution $(p_i)_{i=1,\ldots,N}$, subject to the condition that the latter's expectation value is s. I.e. $\sum_i p_i a_i = s$.

For simplicity we will assume

$$(1.1) a_1 < s < a_N, \forall i : \hat{p}_i \neq 0.$$

Proposition 1.1. The ML distribution is unique. It is given by

$$(1.2) p_i = \frac{\hat{p}_i}{1 + \theta(a_i - s)}$$

where θ is the unique root of the equation

(1.3)
$$\sum_{i} \frac{\hat{p}_i(a_i - s)}{1 + \theta(a_i - s)} = 0$$

in the interval $[-1/(a_N-s), 1/(s-a_1)]$.

Let $\mu = \sum_i p_i a_i$ and let LLR_{exact} be the generalized log-likelihood ratio [4] for $\mu = s_0$ versus $\mu = s_1$, divided by the sample size. If $(\theta_i)_{i=1,2}$ are the solutions to (1.3) for $s = s_i$ then by (1.2) we have

$$LLR_{\text{exact}} = \sum_{i} \hat{p}_{i} \log \left(\frac{1 + \theta_{0}(a_{i} - s_{0})}{1 + \theta_{1}(a_{i} - s_{1})} \right)$$

Computing LLR_{exact} requires numerically solving the rational equation (1.3) twice. This is trivial to do numerically and indeed this is how it is done in Fishtest [5]. Nonetheless to fortify our intuition it is useful to have more manageable approximations to LLR_{exact}. One such approximation was given in [2, Proposition 2.1].

LLR_{alt} =
$$\frac{1}{2} \log \left(\frac{\sum_{i} \hat{p}_{i}(s_{0} - a_{i})^{2}}{\sum_{i} \hat{p}_{i}(s_{1} - a_{i})^{2}} \right)$$

Another, even simpler approximation, was given in [1, (2.1)]:

LLR_{alt2} =
$$\frac{1}{2} \frac{(s_1 - s_0)(2\hat{\mu} - s_0 - s_1)}{\hat{\sigma}^2}$$

where $\hat{\mu}$ and $\hat{\sigma}^2$ are respectively the sample mean and variance. In other words

$$\hat{\mu} = \sum_{i} \hat{p}_i a_i, \qquad \hat{\sigma}^2 = \sum_{i} \hat{p}_i (a_i - \hat{\mu})^2.$$

Put $\Delta := (s_1 - s_0)/\hat{\sigma}$. In this note we relate LLR_{exact}, LLR_{alt} and LLR_{alt2} by providing a power series expression in Δ for them, truncated at Δ^4 .

Remark 1.2. It can be seen from the data in Example 1.6 below that Δ is typically quite small. Moreover it follows from [3] that the expected duration d of an SPRT test with reasonable resolution is $\sim 1/\Delta^2$. Or, by inverting this, $\Delta \sim 1/\sqrt{d}$.

Let ν , κ be respectively the skewness [7] and the excess kurtosis [6] for the sample distribution. Thus

$$\nu = \frac{\hat{\mu}_3}{\hat{\sigma}^3} \,, \qquad \qquad \kappa = \frac{\hat{\mu}_4}{\hat{\sigma}^4} - 3$$

where $\hat{\mu}_3$, $\hat{\mu}_4$ are the third and fourth central sample moments. In other words

$$\hat{\mu}_3 = \sum_i \hat{p}_i (a_i - \hat{\mu})^3, \qquad \qquad \hat{\mu}_4 = \sum_i \hat{p}_i (a_i - \hat{\mu})^4.$$

Let h be the relative position of $\hat{\mu}$ with respect to the interval $[s_0, s_1]$, with h = 1 corresponding to $\hat{\mu} = s_1$ and h = -1 corresponding to $\hat{\mu} = s_0$. Formally

$$h = \frac{2\hat{\mu} - s_0 - s_1}{s_1 - s_0} \,.$$

Remark 1.3. In an SPRT test of $\mu = s_0$ versus $\mu = s_1$ we do not expect $\hat{\mu}$ to straddle very far outside the interval $[s_0, s_1]$ as otherwise the test would end. So h = O(1).

Proposition 1.4. With the above definitions we have the following formulas

(1.4)
$$LLR_{alt2} = \frac{1}{2}h\Delta^2$$

(1.5)
$$LLR_{alt} = \frac{1}{2}h\Delta^2 - \frac{1}{8}(h^3 + h)\Delta^4 + \cdots$$

(1.6)
$$LLR_{\text{exact}} = \frac{1}{2}h\Delta^2 + \frac{1}{12}\nu(3h^2 + 1)\Delta^3 + \frac{1}{8}(2\nu^2 - \kappa - 1)(h^3 + h)\Delta^4 + \cdots$$

Corollary 1.5. One has

(1.7)
$$LLR_{alt} - LLR_{alt2} \cong -\frac{1}{8}(h^3 + h)\Delta^4$$

(1.8)
$$LLR_{exact} - LLR_{alt} \cong \frac{1}{12}\nu(3h^2 + 1)\Delta^3 + \frac{1}{8}(2\nu^2 - \kappa)(h^3 + h)\Delta^4$$

e_0	e_1	pent. freqs	size	Δ	h	ν	κ	exact	alt	rel. err.	approx	rel. err.	err. ratio
-0.50	1.50	[729, 5234, 10174, 5154, 898]	22189	0.0132	1.520	0.0463	-0.1717	2.93696	2.93533	-5.6e-04	2.93696	2.8e-07	-1990.0
-0.50	1.50	[441, 3213, 7170, 3164, 399]	14387	0.0140	-2.106	-0.0144	0.0065	-2.96711	-2.96644	-2.3e-04	-2.96711	3.0e-07	-762.5
-0.50	1.50	[1746, 11875, 23034, 11679, 1820]	50154	0.0133	-0.666	0.0154	-0.1731	-2.93641	-2.93673	1.1e-04	-2.93641	-1.7e-08	-6266.1
-0.50	1.50	[550, 3237, 6268, 3224, 478]	13757	0.0131	-2.483	-0.0245	-0.1821	-2.94598	-2.94457	-4.8e-04	-2.94598	5.4e-07	-888.4
0.25	1.75	[504, 6686, 20525, 6609, 557]	34881	0.0122	-1.141	0.0244	0.4324	-2.94903	-2.94977	2.5e-04	-2.94903	-5.6e-08	-4487.4
-1.50	0.50	[271, 2151, 4827, 2241, 299]	9789	0.0139	3.091	0.0028	-0.0289	2.94174	2.94151	-7.7e-05	2.94174	5.6e-07	-137.5

2. Derivations

- 2.1. The expression for LLR_{alt2}. This is obvious.
- 2.2. The expression for LLR_{exact} . We will use a formula which was derived during the proof of [2, Proposition 2.1]

(2.1)
$$LLR_{exact} = \int_{s_0}^{s_1} \theta(s) ds$$

where $\theta = \theta(s)$ is the root of

(2.2)
$$\sum_{i} \frac{\hat{p}_{i}(a_{i} - s)}{1 + \theta(a_{i} - s)} = 0$$

in the interval $[-1/(a_N - s), 1/(s - a_1)]$. We will think of the latter condition as "being close to zero". It will be convenient to write

$$\hat{o}_n(s) = \sum_i \hat{p}_i (a_i - s)^n .$$

Note

$$\begin{split} \hat{o}_1(s) &= \hat{\mu} - s \\ \hat{o}_2(s) &= \hat{\sigma}^2 + (\hat{\mu} - s)^2 \\ \hat{o}_3(s) &= \hat{\mu}_3 + 3\hat{\sigma}^2(\hat{\mu} - s) + (\hat{\mu} - s)^3 \\ \hat{o}_4(s) &= \hat{\mu}_4 + 4\hat{\mu}_3(\hat{\mu} - s) + 6\hat{\sigma}^2(\hat{\mu} - s)^2 + (\hat{\mu} - s)^4 \,. \end{split}$$

We obtain from (2.2)

$$\hat{o}_1(s) - \theta \hat{o}_2(s) + \theta^2 \hat{o}_3(s) - \theta^3 \hat{o}_4(s) + \dots = 0.$$

Or

$$\theta = \frac{\hat{o}_1(s)}{\hat{o}_2(s)} + \theta^2 \frac{\hat{o}_3(s)}{\hat{o}_2(s)} - \theta^3 \frac{\hat{o}_4(s)}{\hat{o}_2(s)} + \cdots$$

This equation can be solved by repeated self substitution, starting with $\theta = 0$. First step:

$$\theta \cong \frac{\hat{o}_1(s)}{\hat{o}_2(s)} \, .$$

Second step:

$$\theta \cong \frac{\hat{o}_1(s)}{\hat{o}_2(s)} + \frac{\hat{o}_3(s)\hat{o}_1(s)^2}{\hat{o}_2(s)^3} - \frac{\hat{o}_4(s)\hat{o}_1(s)^3}{\hat{o}_2(s)^4} \,.$$

Third step (truncating at $\hat{o}_1(s)^3$):

$$\begin{split} \theta & \cong \frac{\hat{o}_1(s)}{\hat{o}_2(s)} + \frac{\hat{o}_3(s)\hat{o}_1(s)^2}{\hat{o}_2(s)^3} - \frac{\hat{o}_4(s)\hat{o}_1(s)^3}{\hat{o}_2(s)^4} + 2\frac{\hat{o}_3(s)^2\hat{o}_1(s)^3}{\hat{o}_2(s)^5} \\ & \cong \frac{\hat{\mu} - s}{\hat{\sigma}^2 + (\hat{\mu} - s)^2} + \frac{(\hat{\mu}_3 + 3\hat{\sigma}^2(\hat{\mu} - s))(\hat{\mu} - s)^2}{\hat{\sigma}^6} - \frac{\hat{\mu}_4(\hat{\mu} - s)^3}{\hat{\sigma}^8} + 2\frac{\hat{\mu}_3^2(\hat{\mu} - s)^3}{\hat{\sigma}^{10}} \\ & \cong \frac{\hat{\mu} - s}{\hat{\sigma}^2} - \frac{(\hat{\mu} - s)^3}{\hat{\sigma}^4} + \frac{(\hat{\mu}_3 + 3\hat{\sigma}^2(\hat{\mu} - s))(\hat{\mu} - s)^2}{\hat{\sigma}^6} - \frac{\hat{\mu}_4(\hat{\mu} - s)^3}{\hat{\sigma}^8} + 2\frac{\hat{\mu}_3^2(\hat{\mu} - s)^3}{\hat{\sigma}^{10}} \\ & = \frac{1}{\hat{\sigma}^2}(\hat{\mu} - s) + \frac{\hat{\mu}_3}{\hat{\sigma}^6}(\hat{\mu} - s)^2 + \left(-\frac{1}{\hat{\sigma}^4} - \frac{\hat{\mu}_4}{\hat{\sigma}^8} + \frac{2\hat{\mu}_3^2}{\hat{\sigma}^{10}}\right)(\hat{\mu} - s)^3 \,. \end{split}$$

The integral is

$$\int_{s_0}^{s_1} \theta(s) ds = -\frac{1}{2\hat{\sigma}^2} (\hat{\mu} - s)^2 - \frac{\hat{\mu}_3}{3\hat{\sigma}^6} (\hat{\mu} - s)^3 - \frac{1}{4} \left(-\frac{1}{\hat{\sigma}^4} - \frac{\hat{\mu}_4}{\hat{\sigma}^8} + \frac{2\hat{\mu}_3^2}{\hat{\sigma}^{10}} \right) (\hat{\mu} - s)^4 \bigg|_{s_0}^{s_1}.$$

$$\delta = s_1 - s_0$$
$$m = (s_1 + s_0)/2.$$

Then

$$\hat{\mu} = m + h\delta/2.$$

We have

$$\hat{\mu} - s_0 = \delta/2 + h\delta/2 = \frac{1}{2}\delta(h+1)$$

 $\hat{\mu} - s_1 = -\delta/2 + h\delta/2 = \frac{1}{2}\delta(h-1)$.

Hence

$$(\hat{\mu} - s_0)^2 - (\hat{\mu} - s_1)^2 = \delta^2 h$$

$$(\hat{\mu} - s_0)^3 - (\hat{\mu} - s_1)^3 = \frac{1}{4} \delta^3 (3h^2 + 1)$$

$$(\hat{\mu} - s_0)^4 - (\hat{\mu} - s_1)^4 = \frac{1}{2} \delta^4 (h^3 + h)$$

Substituting yields

$$\int_{s_0}^{s_1} \theta(s) ds = \frac{h \delta^2}{2 \hat{\sigma}^2} + \frac{\hat{\mu}_3 \delta^3}{12 \hat{\sigma}^6} (3h^2 + 1) + \frac{1}{8} \left(-\frac{1}{\hat{\sigma}^4} - \frac{\hat{\mu}_4}{\hat{\sigma}^8} + \frac{2\hat{\mu}_3^2}{\hat{\sigma}^{10}} \right) \delta^4(h^3 + h)$$
 which is (1.6).

2.3. The expression for LLR_{alt}. We have

$$\begin{split} \frac{1}{2} \log \left(\frac{\sum_{i} \hat{p}_{i}(s_{0} - a_{i})^{2}}{\sum_{i} \hat{p}_{i}(s_{1} - a_{i})^{2}} \right) &= \frac{1}{2} \log \left(\frac{\hat{\sigma}^{2} + (\hat{\mu} - s_{0})^{2}}{\hat{\sigma}^{2} + (\hat{\mu} - s_{1})^{2}} \right) \\ &= \frac{1}{2} \log \left(\frac{1 + \frac{(\hat{\mu} - s_{0})^{2}}{\sigma^{2}}}{1 + \frac{(\hat{\mu} - s_{1})^{2}}{\hat{\sigma}^{2}}} \right) \\ &\cong \frac{1}{2} \left(\frac{(\hat{\mu} - s_{0})^{2}}{\hat{\sigma}^{2}} - \frac{1}{2} \frac{(\hat{\mu} - s_{0})^{4}}{\hat{\sigma}^{4}} - \frac{(\hat{\mu} - s_{1})^{2}}{\hat{\sigma}^{2}} + \frac{1}{2} \frac{(\hat{\mu} - s_{1})^{4}}{\hat{\sigma}^{4}} \right) \\ &= \frac{h\delta^{2}}{2\hat{\sigma}^{2}} - \frac{1}{8} \frac{\delta^{4}}{\hat{\sigma}^{4}} (h^{3} + h) \qquad \text{(using (2.3))} \, . \end{split}$$

This is (1.5).

References

- 1. Michel Van den Bergh, A practical introduction to the GSPRT, http://hardy.uhasselt.be/ Fishtest/GSPRT_approximation.pdf.
- 2. _____, The generalized likelihood ratio for the expectation value of a multinomial distribution, http://hardy.uhasselt.be/Fishtest/support_MLE_multinomial.pdf.
- 3. _____, The SPRT for Brownian motion, http://hardy.uhasselt.be/Fishtest/sprta.pdf.
- 4. Xiaoou Li, Jingchen Liu, and Zhiliang Ying, Generalized Sequential Probability Ratio Test for $Separate\ Families\ of\ Hypotheses, \verb|http://stat.columbia.edu/~jcliu/paper/GSPRT_SQA3.pdf|.$
- 5. Gary Linscott (original author), The Fishtest framework, https://github.com/glinscott/ fishtest.
- 6. Wikipedia, Kurtosis, https://en.wikipedia.org/wiki/Kurtosis.
- 7. _____, Skewness, https://en.wikipedia.org/wiki/Skewness.