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1. INTRODUCTION AND STATEMENT OF THE RESULTS

We recall some results from [2]. Assume given real numbers
ap <ag <---<an
and a discrete probability distribution
P:{ay,...,an} > R:a;— p;.

Assume a sample taken from {aq,...,an} according to P has sample distribution
(Pi)i=1,....n. We want to compute the corresponding MLE for the true distribution
(pi)i=1,... N, subject to the condition that the latter’s expectation value is s. Ie.

For simplicity we will assume

(1.1) a1 <s<an,Vi:p; #0.
Proposition 1.1. The ML distribution is unique. It is given by
Di

1.2 U | N

(12) Py O(a; — s)

where 0 is the unique root of the equation

pi(a; — s)
1.3 —— =0
(13) —~ 1+ O(a; — s)

in the interval [-1/(an — 8),1/(s — a1)].

Let p = >, pia; and let LLRexact be the generalized log-likelihood ratio [4] for
(= so versus pu = s1, divided by the sample size. If (6;)i=1,2 are the solutions to
(E) for s = s; then by ([L.2) we have

LLReyact = Zﬁi log (1—}—90(611-—50))

1+ Ol(ai — 81)

Computing LLRcxact requires numerically solving the rational equation (B) twice.
This is trivial to do numerically and indeed this is how it is done in Fishtest [5].
Nonetheless to fortify our intuition it is useful to have more manageable approxi-
mations to LLRexact- One such approximation was given in [2, Proposition 2.1].

1 > pi(so — a;)?
LLR.;; = 3 log <Ziﬁi(81 ")
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Another, even simpler approximation, was given in [I|, (2.1)]:

1 (s1 — 80) (2 — 80 —
LLRait2 = 3 (o1 = 2o Auz 0=
g

where /i and 62 are respectively the sample mean and variance. In other words
ﬂ:Zﬁiam &ZZZﬁi(ai—ﬂ)2-
i i

Put A := (s1 — s9)/6. In this note we relate LLRexact, LLRat and LLRa2 by
providing a power series expression in A for them, truncated at A%

Remark 1.2. Tt can be seen from the data in Example @ below that A is typically
quite small. Moreover it follows from [B] that the expected duration d of an SPRT
test with reasonable resolution is ~ 1/A2Z. Or, by inverting this, A ~ 1/\/&

Let v, k be respectively the skewness [[i] and the excess kurtosis [(] for the sample
distribution. Thus
fis _
g 5 R = g -3
where fig, fi4 are the third and fourth central sample moments. In other words

fis =y pilai —p)°, fu =Y pilai — )t
7 [

Let h be the relative position of i with respect to the interval [sg, s1], with h =1
corresponding to i1 = s; and h = —1 corresponding to {1 = sg. Formally
2 — s —
h— H— So — 81 '
S1 — So

Remark 1.3. In an SPRT test of 4 = s¢ versus u = s; we do not expect i to
straddle very far outside the interval [sg, s1] as otherwise the test would end. So
h=0(1).

Proposition 1.4. With the above definitions we have the following formulas

(1.4) LLR.2 = %hAQ
Lo 1.3 4
(1.5) LLR. = §hA — §(h + h)A* 4 -
L, 2 1 2 3,159 3 4

(16) LLRexact = ihA + EV(3h + I)A + §(2V — K — 1)(h + h)A + -
Corollary 1.5. One has

1, .
(1.7) LLRay — LLRap2 & fg(h‘S + h)At

1 1
(1.8) LLRexact — LLRay 2 ﬁy(?)hz +1)A% + g(zu2 — r)(h® + h)A?
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Example 1.6. To get a feel for the sizes of the quantities appearing in the above
formulas we compute them for some pentanomial data taken from Fishtest [5]. We
have s; = 1/(1 + 107%/409) where e, e; are the Elo bounds, given in the first
two columns. The column labeled “approx” gives the approximation to LLRexact

obtained via the formula (

L.

eQ e pent. freqgs size A h v K exact alt rel. err. approx rel. err. err. ratio
—0.50 | 1.50 [729, 5234, 10174, 5154, 898] 22189 | 0.0132 1.520 0.0463 —0.1717 2.93696 2.93533 -5.6e-04 2.93696 2.8e-07 —1990.0
—0.50 | 1.50 [441, 3213, 7170, 3164, 399] 14387 | 0.0140 | —2.106 | —0.0144 0.0065 —2.96711 —2.96644 | -2.3e-04 | —2.96711 3.0e-07 —762.5
—0.50 | 1.50 | [1746,11875,23034,11679,1820] | 50154 | 0.0133 | —0.666 0.0154 —0.1731 | —2.93641 —2.93673 1.1e-04 —2.93641 | -1.7e-08 —6266.1
—0.50 | 1.50 [550, 3237, 6268, 3224, 478] 13757 | 0.0131 | —2.483 | —0.0245 | —0.1821 | —2.94598 | —2.94457 | -4.8e-04 | —2.94598 5.4e-07 —888.4
0.25 1.75 [504, 6686, 20525, 6609, 557 34881 | 0.0122 | —1.141 0.0244 0.4324 —2.94903 | —2.94977 2.5e-04 —2.94903 | -5.6e-08 —4487.4
—1.50 | 0.50 [271,2151, 4827, 2241, 299] 9789 0.0139 3.091 0.0028 —0.0289 2.94174 2.94151 -7.7e-05 2.94174 5.6e-07 —137.5

2. DERIVATIONS

2.1. The expression for LLR,t2. This is obvious.

2.2. The expression for LLRexact-

during the proof of [2, Proposition 2.1]

LLReyact :/ 0(s) ds

(2.1)

where 6 = 6(s) is the root of

(2.2)

pi(a; — s)
1+6(a; —s)

=0

We will use a formula which was derived

in the interval [-1/(any — s),1/(s — a1)]. We will think of the latter condition as
“being close to zero”. It will be convenient to write

s) = Z;ﬁ,(aZ —s)"

Note
01(s
02(s
03(s
04(s
We obtain from (@
Or

(31(8)

g 01(8) | pooals)

— -
ot
= fig + 367 (i —s) + (0 — s)°

fua + 4fiz (i — ) +65°(f1 —

$)2+ (i —s)*.

— 962(8) + 9263(8) - 9364(8) + -

 0a(s)

02(s) 02

This equation can be solved by repeated self substitution, starting with 6 = 0. First

step:

Second step:

0 =
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Third step (truncating at 61(s)?)
g 01(8) | 03(s)01(5)?  0u(5)01(s)® 4 903 )?01(s)?
02(s) 02(s)? 02(s)* 02(s)°
o s (i3 +36°% (0 —5)) (s — 8)*  fua(t — s)° +2u3(ﬂ—8)3
T 624 (ﬂ—s)2 56 58 510
Lis (=9 (430 )5 (o) i)
62 54 56 58 510
T . JIE 9 1 g 203\, 3
_(3'2( _S) AG( ) <_OA,4_6_8 &10 ( _S)
The integral is
_1 A2 3 . 3_1 _i_@ 215 A 4Sl
/50 o pgz =8 — 356 —9) 4( 51 8 T om0 ) )So'
5:81—80
m=(s1+s0)/2.
Then
fg=m+hé/2
We have
p— 0—5/2+h5/2—— (h+1)
1
ﬂ—s1=—5/2+h6/2:§(5(h—1)
Hence
(i = 50)% = (1 — 51)* = &°h
1
3= —53(3h% 4+ 1)

(it = 50)° = (i — 51)
154(h3+h).

(2.3)
(fi = s0)" = (2 = 51)

1 fla 2ll§ 4013
~ S5t 0 )0 (P +n)

64 &8

Substituting yields
h(52 53
L YE S . (—

/ b(s T 1250
which is (@).
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2.3. The expression for LLR,;;. We have

_ 2
. 14 ( 280)
— Clog | —
5 .
14 (fu 281)
o1 (ﬂ—80)2_}(ﬂ—80)4_(ﬂ—51)2+1(u—51)4
2 62 2 o4 62 2 o4
hé%? 1 6%

— S gz (W) (using (B).
This is (@)
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