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The formula which is implemented in the Fishtest Framework is (6.1). It is
basically [1, Corollary 3.44]. However I first derived the formula myself before I
discoved this reference and I was too lazy afterwards to do the translation.

1. Continuous random walks

We discuss a continuous 1-dimensional random walk with drift µ and variance σ2

per time unit. We assume there is some boundary C in the x − t-plane (t is the
time coordinate and x is a spatial coordinate, by convention we assume that t is
horizontal) such that if the random walk touches C there is a payoff of ψ(x, t).

Let P (x, t) be the expectation value of the eventual payoff for a particle at (x, t)
Then the value of P (x, t) is governed by the following diffusion equation

(1.1)
∂P

∂t
= −µ∂P

∂x
− σ2

2

∂2P

∂x2

2. Stopping time

The stopping time S is defined as the first time that the random walk touches
the boundary of an interval of length A. Below we compute the probability density
of S.

To do this we first compute the probability that S is larger than a given con-
stant T . I.e. P (S ≥ T ). To do this have to solve (1.1) with the boundary conditions
P (0, t) = P (A, t) = 0 for t < T and P (x, T ) = 1. We will look at the more general
problem where P (x, T ) = ψ(x).

Using separation of variables P (x, t) = X(x)T (t) we have to solve

∂T

∂t
= λT

σ2

2

∂2X

∂x2
+ µ

∂X

∂x
+ λX = 0

with X(0) = 0, X(A) = 0.
The roots of the characteristic equation of the last equation are

χ1,2 =
−µ±

√
µ2 − 2σ2λ

σ2

It follows that we should have

∆ = 2σ2λ− µ2 > 0

and the general solutions are

e−xµ/σ
2

sinx
√

∆/σ2

1
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as the cosine solutions are excluded by our boundary condition X(0) = 0. The
boundary condition X(A) = 0 leads to

A
√

∆/σ2 = nπ

which leads to the following values for λ:

λn =
n2π2σ2

2A2
+

µ2

2σ2

Hence our general solution is now

eλnt−xµ/σ2

sinnπx/A

We look for an such that∑
n

ane
λnT−xµ/σ2

sinnπx/A = ψ(x)

or equivalently bn such that∑
n

bn sinnπx/A = eγxψ(x)

where γ = µ/σ2 and bn = ane
λnT . Standard Fourier analysis yields

bn =
2

A

∫ A

0

eγy sin
nπy

A
ψ(y) dy

So the solution is

(2.1) P (x, t) =
∑
n

e−λnT eλnt−γx sin
nπx

A

[
2

A

∫ A

0

eγy sin
nπy

A
ψ(y) dy

]
Our original problem corresponds to

ψ(x) =

{
1 0 ≤ x ≤ A
0 otherwise

Thus the probability that the stopping time S is ≥ T is

P (S ≥ T ) =
∑
n

e−λnT e−γx sin
nπx

A

[
2

A

∫ A

0

eγy sin
nπy

A
dy

]
For the sequel it will be convenient to define

Hn(γ, x) =
2

A

∫
eγx sin

nπx

A
dx

=
2Aγeγx sinπnx/A− 2πneγx cosπnx/A

A2γ2 + π2n2

In particular we have the following special values

Hn(γ, 0) = − 2πn

A2γ2 + π2n2

Hn(γ,A) = −(−1)n
2πn eγA

A2γ2 + π2n2

so that we find

P (S ≥ T ) =
∑
n

e−λnT−γx(Hn(γ,A)−Hn(γ, 0)) sin
nπx

A
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From this we compute the expected stopping time. The probability distribution of
S is

p(S = T ) =
∑
n

λne
−λnT−xγ(Hn(γ,A)−Hn(γ, 0)) sin

nπx

A

so that

E(S) =
∑
n

1

λn
e−xγ(Hn(γ,A)−Hn(γ, 0)) sin

nπx

A

Assume now that the experiment is truncated at a certain fixed time T . Then the
modified stopping time is

S′ =

{
S if S ≤ T
T if S ≥ T

Taking into account that∫ T

0

λte−λtdt = − (λt+ 1)e−λt

λ

∣∣∣∣T
0

=
1

λ
(1− (Tλ+ 1)e−Tλ)

we find

E(S′) = P (S ≥ T )T+
∑
n

1

λn
(1−(Tλn+1)e−λnT )e−xγ(Hn(γ,A)−Hn(γ, 0)) sin

nπx

A

3. The probability that the particle hits t = T , x ≤ y before hitting
the upper or lower boundary

In this case we must use (2.1) with

ψ(x) =

{
1 x ≤ y
0 x > y

Thus we find

P (x, t) =
∑
n

e−λnT eλnt−γx(Hn(γ, y)−Hn(γ, 0)) sin
nπx

A

So the probability that a particle starting at (0, x) hits the interval [(T, 0), (T, y)]
before hitting the boundary is∑

n

e−λnT−γx(Hn(γ, y)−Hn(γ, 0)) sin
nπx

A

4. The probability that the particle touches the upper boundary
before time T

We must solve the boundary value problem for P with P (0, t) = P (x, T ) = 0,
P (A, t) = 1.

We first look for a Q(x, t) solution indendent of t which satisfies Q(0, t) = 0,
Q(A, t) = 1. Such a solution is of the form

C +De−2γx

for suitable constants C,D. The boundary conditions give the following constraints

C +D = 0

C +De−2γA = 1
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which leads to

C = − 1

e−2γA − 1

D =
1

e−2γA − 1

Hence the solution has the form

Q(x, t) =
e−2γx − 1

e−2γA − 1

Consider now
P ′(x, t) = P (x, t)−Q(x, t)

Then P ′(0, t) = P ′(A, t) = 0 for t ≤ A and

P ′(x, T ) = − e
−2γx − 1

e−2γA − 1

so that using (2.1)

P ′(x, t) = − 1

e−2γA − 1

∑
n

e−λnT eλnt−γx sin
nπx

A

[
2

A

∫ A

0

eγy sin
nπy

A
(e−2γy − 1) dy

]
So the ultimate solution is

P (x, t) =
e−2γx − 1

e−2γA − 1
− 1

e−2γA − 1

∑
n

e−λnT eλnt−γx sin
nπx

A

[
2

A

∫ A

0

eγy sin
nπy

A
(e−2γy − 1) dy

]
which can also be written as

P (x, t) =
e−2γx − 1

e−2γA − 1
− 1

e−2γA − 1

∑
n

e−λnT eλnt−γx sin
nπx

A
(Hn(−γ,A)−Hn(γ,A))

Using the definition of Hn(γ,A) this becomes
(4.1)

P (x, t) =
e−2γx − 1

e−2γA − 1
− 1

e−2γA − 1

∑
n

(−(−1)n)e−λnT eλnt−γx 2πn(e−γA − eγA)

A2γ2 + π2n2
sin

nπx

A

=
e−2γx − 1

e−2γA − 1
− eγA

∑
n

e−λnT eλnt−γx 2πn

A2γ2 + π2n2
sin

nπ(A− x)

A

=
e−2γx − 1

e−2γA − 1
−
∑
n

e−λnT eλnt−γxH(γ,A) sin
nπx

A

So the probability that a particle starting at (0, x) hits the interval [(0, A), (T,A)]
before hitting the lower boundary is.

e−2γx − 1

e−2γA − 1
−
∑
n

e−λnT−γxHn(γ,A) sin
nπx

A

Put T =∞ get that the probability that the particle hits [(0, A), (∞, A)] is

e−2γx − 1

e−2γA − 1

hence the probability that it hits [(T,A), (∞, A)] is∑
n

e−λnT−γxHn(γ,A) sin
nπx

A
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5. The probability that the particle touches the lower boundary
before time T

To get the probability that the particle touches the lower boundary first we have
to make the substitutions x 7→ A− x, µ 7→ −µ (and hence γ 7→ −γ). Note that

Hn(−γ,A) = (−1)ne−γAHn(γ, 0)

So the probability that a particle starting at (0, x) hits the interval [(0, 0), (T, 0)]
before hitting the upper boundary is.

e2γ(A−x) − 1

e2γA − 1
−
∑
n

e−λnT+γ(A−x)(−1)ne−γAHn(γ, 0) sin
nπ(A− x)

A

=
e2γ(A−x) − 1

e2γA − 1
+
∑
n

e−λnT−γxHn(γ, 0) sin
nπx

A

6. The probability that the particle passes below (T, y).

Combining everything we get that the probability that a particle starting in
(0, x) leaves the rectangle [0, T ] × [0, A] in a point below (T, y) where x, y ∈ [0, A]
is given by

(6.1)
e2γ(A−x) − 1

e2γA − 1
+
∑
n

e−λnT−γxHn(γ, y) sin
nπx

A
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