A PRACTICAL INTRODUCTION TO THE GSPRT

MICHEL VAN DEN BERGH

1. Description of the GSPRT

Let $p(\underline{\theta}, x)$ be a parametrized distribution and let $L(\underline{\theta}, \underline{x}) = \sum_{i=1}^{N} \log p(\underline{\theta}, x_i)$ be the corresponding log-likelihood function for N independent trials.

Let $\phi(\underline{\theta})$ be a function of the parameters and assume given $\phi_0, \phi_1 \in \mathbb{R}$. The Generalized Sequential Probability Likelihood Ratio Test [1] for $\phi = \phi_0$ versus $\phi = \phi_1$ is based on monitoring the difference

(1.1)
$$LLR := L(\hat{\theta}_1, \underline{x}) - L(\hat{\theta}_0, \underline{x})$$

where $\underline{\hat{\theta}}_i$ is the maximum likelihood estimator for $\underline{\theta}$ subject to the condition $\phi(\underline{\hat{\theta}}_i) = \phi_i$. I.e.

$$\underline{\hat{\theta}}_i = \operatorname*{arg\,max}_{\phi(\underline{\theta})=\phi_i} L(\underline{\theta}, \underline{x})$$

Like for the SPRT the test stops when LLR leaves the interval $[\log(\beta/(1-\alpha)), \log((1-\beta)/\alpha)]$ where as usual α, β stand for the Type I,II error probabilities.

2. An approximation

Let $\hat{\underline{\theta}}$ be the unconstrained maximum likelihood estimator for $\underline{\theta}$, i.e.

$$\underline{\hat{\theta}} = \arg\max_{\underline{\theta}} L(\underline{\theta}, \underline{x})$$

and put $\hat{\phi} = \phi(\underline{\hat{\theta}})$. Let $V(\hat{\phi})$ be an estimator for the variance $\operatorname{Var}(\hat{\phi})$ of $\hat{\phi}$ with relative error $O(1/\sqrt{N})$ (thus any standard estimator will do). We claim that under suitable regularity conditions we have the following very convenient approximation for (1.1)

(2.1)
$$L(\underline{\hat{\theta}}_1, \underline{x}) - L(\underline{\hat{\theta}}_0, \underline{x}) \cong \frac{1}{2} \frac{(\phi_1 - \phi_0)(2\hat{\phi} - \phi_0 - \phi_1)}{V(\hat{\phi})}$$

This means that the, sometimes quite cumbersome, calculation of the conditional estimates $\underline{\hat{\theta}}_0, \underline{\hat{\theta}}_1$ is not actually required.

Example. Assume we take independent trials from a multinomial distribution with probabilities $(p_i)_{i=1,...,n}$. Let $\phi = \sum_{i=1}^n a_i p_i$ for given $(a_i)_{i=1,...,n} \in \mathbb{R}$. Assume that after N trials the outcome frequencies are $(N_i)_{i=1,...,n}$ (with $N = \sum_{i=1}^n N_i$). Then to calculate (2.1) we calculate first the empiric probabilities $\hat{p}_i := N_i/N$ and then

we put

$$\hat{\phi} = \sum_{i=1}^{n} a_i \hat{p}_i$$
$$V(\hat{\phi}) = \frac{1}{N} (-\hat{\phi}^2 + \sum_i a_i^2 \hat{p}_i)$$

This example is relevant for chess engine testing [2] in which case ϕ would stand for the expected score of a match. For the naive trinomial model one takes $(p_1, p_2, p_3) =$ (w, d, l) and $a_1 = 1$, $a_2 = 1/2$, $a_3 = 0$ whereas in the 5-nomial model (for paired games with reversed colors) one takes $(p_1, p_2, p_3, p_4, p_5) = (p_2, p_{3/2}, p_1, p_{1/2}, p_0)$ with $a_1 = 1$, $a_2 = 3/4$, $a_3 = 1/2$, $a_4 = 1/4$, $a_5 = 0$. Note that in the 5-nomial model N is the number of games divided by two (one trial consists of two games).

3. Derivation of the approximation

For simplicity we will give the derivation for one particular choice of $V(\hat{\phi})$. One may check that the relative change in the right hand side of (2.1), when replacing one $V(\hat{\phi})$ by another, goes to zero when N goes to infinity.

In order to verify (2.1) the first mission is to calculate $\underline{\hat{\theta}}_i$. Using Lagrange multipliers we see that we have to solve $(i \in \{0, 1\})$

$$\nabla_{\underline{\theta}} L(\underline{\hat{\theta}}_i, \underline{x}) = \lambda \nabla_{\underline{\theta}} \phi(\underline{\hat{\theta}}_i)$$
$$\phi(\underline{\hat{\theta}}_i) = \phi_i$$

If $\hat{\phi} = \phi_i$ then $\lambda = 0$, $\underline{\hat{\theta}}_i = \underline{\hat{\theta}}$. We will assume that $\hat{\phi}$ is close to ϕ_i so that λ is small. We get in first order (H = Hessian)

$$\begin{split} (H_{\underline{\theta}}L(\underline{\hat{\theta}},\underline{x}) - \lambda H_{\underline{\theta}}\phi(\underline{\hat{\theta}})) \cdot (\underline{\hat{\theta}}_i - \underline{\hat{\theta}}) &= \lambda \nabla_{\underline{\theta}}\phi(\underline{\hat{\theta}}) \\ \nabla_{\underline{\theta}}\phi(\underline{\hat{\theta}})^t \cdot (\underline{\hat{\theta}}_i - \underline{\hat{\theta}}) &= \phi_i - \hat{\phi} \end{split}$$

and hence

(3.1)
$$\frac{\underline{\theta}_i - \underline{\theta} = \lambda H_{\underline{\theta}} L(\underline{\theta}, \underline{x})^{-1} \cdot \nabla_{\underline{\theta}} \phi(\underline{\theta})}{\lambda \nabla_{\underline{\theta}} \phi(\underline{\hat{\theta}})^t \cdot H_{\underline{\theta}} L(\underline{\hat{\theta}}, \underline{x})^{-1} \cdot \nabla_{\underline{\theta}} \phi(\underline{\hat{\theta}}) = \phi_i - \hat{\phi}}$$

Write $V(\hat{\phi}) = -\nabla_{\underline{\theta}} \phi(\underline{\hat{\theta}})^t \cdot H_{\underline{\theta}} L(\underline{\hat{\theta}}, \underline{x})^{-1} \cdot \nabla_{\underline{\theta}} \phi(\underline{\hat{\theta}})$. It is well-known that $V(\hat{\phi})$ is an approximation for the variance $\operatorname{Var}(\hat{\phi})$ of $\hat{\phi}$. Then we get by eliminating λ from (3.1)

$$\underline{\hat{\theta}}_i - \underline{\hat{\theta}} = -\frac{\phi_i - \hat{\phi}}{V(\hat{\phi})} H_{\underline{\theta}} L(\underline{\hat{\theta}}, \underline{x})^{-1} \cdot \nabla_{\underline{\theta}} \phi(\underline{\hat{\theta}})$$

Now we have (using the fact that $\underline{\hat{\theta}}$ is extremal for $L(\underline{\theta}, \underline{x})$)

$$\begin{split} L(\underline{\hat{\theta}}_i,\underline{x}) &\cong L(\underline{\hat{\theta}},\underline{x}) + \frac{1}{2}(\underline{\hat{\theta}}_i - \underline{\hat{\theta}})^t \cdot H_{\underline{\theta}}L(\underline{\hat{\theta}},\underline{x}) \cdot (\underline{\hat{\theta}}_i - \underline{\hat{\theta}}) \\ &\cong L(\underline{\hat{\theta}},\underline{x}) - \frac{1}{2}\frac{(\phi_i - \hat{\phi})^2}{V(\hat{\phi})} \end{split}$$

Substituting this in (1.1) yields what we want.

A PRACTICAL INTRODUCTION TO THE GSPRT

References

- Xiaoou Li, Jingchen Liu, and Zhiliang Ying, Generalized Sequential Probability Ratio Test for Separate Families of Hypotheses, http://stat.columbia.edu/jcliu/paper/GSPRT_SQA3.pdf.
 Chess Programming WIKI, Match statistics, https://chessprogramming.wikispaces.com/Match+Statistics.